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Department of Mathematical Sciences

Exam in TMA4305 Partial differential Equations

Suggested solutions: May 2009

Problem 1 Characteristic equations
T = X, I(O) = Xo,
=Y, y(o =4
Z=—z, 2(0) = u(xg, 1) = h(xo),

with solutions
T = 1€, y=e", z = h(zg)e .

t

In terms of (x,y) we get zop = ze™" and e~* = y, thus,

u(z,y) = z(t(x,y); 2oz, y)) = h(zy)y.

Problem 2 Characteristic equations
t=1, t(0) = 0,
T =€, z(0) = xo,
1 <0
z =0, 2(0) = u(xg,0) =< ’
0 =0 =y T30
We solve for z before x, and get
(=1,
= g+ te(E00) — xo + te; xo <0,
4 o + te?, xo > 0,
1 <0
z =u(xp,0) =< re
L 2, x> 0.
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Figure 1: The projected characteristic curves of Problem 2.

See Figure 1 for a sketch of the solution.
The rarefaction fan is given by u(z,t) = ¢(x/t) satisfying the PDE
x ol _
—t—ng’ +e ;qb' =0.

We get e? = 7, that is, ¢ = In . (Note that ¢' = 0 implies ¢ constant and does not give a
rarefaction fan.)

The total solution is

1, z < te,
u(r,t) =qIn,  te <z <te?
2, x > te?.

Remarks:

e Continuous, piecewise smooth solutions are weak solutions by Rankine-Hugoniot.

e This is the entropy solution since no projected characteristics collide.

Problem 3 We will need the following Green’s identity (can be derived using the Diver-

gence Theorem):

v%dS = /(UAU + Vv - Vu)de, (1)
o OV Q
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Assume that there are two solutions, u and v, and let w = u —v. Note that w is in C?(f2) and

solves

Aw—cw =0, in

a—w—i-)\w:O, on 0f).
v

By Green’s identity (1) we have

ow / 9
wW— = wAw + |[Vw|?),
/a g = [ Vul?)

and using equation (2) we get

—/ Aw? = /(cw2+ Vw|?),

90 Q

/(cw2 + [Vw|?) +/ Mw?® = 0.
Q 9

Since w € C2(2), this implies that

(2)

(3)

Recall that ¢ and A are non-negative and w € C(Q2). If c+ A > 0, it then follows from (3) that

w =0 in €. Hence, v = v in ) and the solutions are unique.

Problem 4

a) 1. Observe that in 2

Lve = Lu+eL(z® +y*) > 0+€(2(1+ %) + 2(1 +2°) + 22° + 2¢°) > 0. (4)

2. Since v, is continous and 2 compact, there is (7, %) € Q so that v (T,7) = maxg v,.

3. If (z,7) € Q, then at (T,7)

2
Vew = 0= 0y, Zfivexizjfj <0 forall £ € R

i=1

In particular, take first £ = (1,0) and then £ = (0, 1) to get

Vezz <0, Veyy <0 at (T,7)
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Hence,
Lo (Z,7) < (1+7Z%)-0+(1+7%)-04+0+0=0,

T
which contradicts (4). Therefore, (Z,7) € 0%, and for (z,y) € 2
ve(w,y) < ve(T,y) = maxw, (5)

4. We now have

u(z,y) < v(x,y) < mAX v, < né%x(u +e(2® +97)) < max u + 2¢(diam()?.

Sending € — 0, we get

maxu < maxu.
Q o0

b) Assume there are two solutions, u,v € C*(Q) N C(Q)- Let w = u — v and note that
w € C?*(Q) N C(N) solves

Lw=0, in €,
w=0, on .

Hence, the assumptions in a) are satisfied by +w, and the weak maximum principle
yields
maxw = maxw = 0,
Q E19)

mﬁax(—w) = r%%x(—w) = 0.

Therefore, |w| =0 in Q and u = v, which proves uniqueness.

Problem 5

a)

F(u+tv) = / %(A(u +t))? — f(u+ tv)
= /%Au + tAulAv + %tQsz — fu+tfo
= F(u) —|—t/(AuAU — fu)+ %tZ/Av2.
D,F(u) = ling Flut tvt) — Flu) = /(AUAU — fo).
t= Q
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The Euler-Lagrange equation:

0=D,F(u) = /(AuAv — fv), for all v € HZ ().
Q

b) By a) u satisfy
/ Aulv = / fv, forall v e HZ(Q)
Q Q
Since C§°() € HZ();
/ AulA¢ = / fo, forall ¢ € C5°(Q). (6)
Q Q

Integration by parts;

[suse = ¥ [ s,

ibp. ( /Q O, (Augpy,) — /QAUI%)

%

div. thm.
>/ _

¢€:CSOO—Z/ Ay, Dy,
— Ja

_ _Zi: ( /Q B, (Ay, ) — /Q Aum.é)

— O+Z/Auwixi¢
— Ja

= /Q A?up.

/(A2u —v)p =0, forall ¢ € C5°(Q),
Q

By (6),

and since A%y — v is continous, it follows from the variational lemma that A%u = v in Q.
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1
o) = o= [ g0

eq. (6) 1 9
EHUHQ,Q_/fU
2
ab<%-+2 1 1 c
5 B — oo lllE - S1171E
e=2Cq

1
=" iz = Call 7115,
hence, F is coersive with Cy = 1 and Cy = Col|f]}3.
d) The direct method:

1. Since F' is coersive;

I:= inf F(v) > Cillull3, — Cy > —Cy > —o0.
veEH? ’

2. Take a minimixing sequence {u;} C HZ(Q) satisfying F(u;) — I and |F(u;)| < T+1

for all .

3. ||ul]22 < M for all ¢ since

Cillull35 < Co+ F(u) < Co+ 1+ 1= M? < o0.

By weak compactness there exists a subsequence {u;, } C {u;}, u € H3({), so that

4. F(u) <liminf;_ . F(u;,): We will use that in any Hilbert space (X, || ||)
w— = [lul| < liminf ||, ||,

and that
u; = uin L? = /ful—>/fu

1
Flu) = ylult, — [ fu

< tymint flu, 3, ~ im [ fu,
= liminf F'(u;,).
We can now conclued that
I < F(u) <liminf F(u;,) = lim F(u;, ) = 1,
and hence F(u) = I.
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Conclusion: There exists a u € H () so that F(u) = I = inf,cp2 F(v).



