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The exercises are from McOwen'’s book: Partial differential equations.

Exercise 4.1.3. We are looking at the Laplace equation with a mixed boundary condition:

{Au:O inQ,
€y ou

—+au= 0Q,
3y au=f on

where we assume «, § are constants.
Assume a > 0; we are asked to prove uniqueness. So suppose
u,veC*QnCH(Q)
are both solutions of (1). Set w = u— v. Then w satisfies
Aw=0 in Q,
(2)

ow
—+aw=0 on 0€).
ov

From Green’s first identity we get

f wa—wdS:/Vw'dex,
o 0V Q

and using the boundary condition we then get

—-a deS:[ Ile2 dx.
4Q Q

But the left side is < 0 and the right side is = 0, so both sides must equal zero. Hence w =0 in Q,
and by continuity also in Q. This proves that u = v.

Exercise 4.1.5. We consider
3 Au-qg(x)u=0 inQ,

where g(x) = 0 is assumed to be bounded and continuous in Q. Moreover, we assume that g(x) is
not everywhere zero, so there is a point xp € Q such that

(4) q(xo) > 0.
We are asked to prove uniqueness of solutions in the space
5) c2nc'(Q),

subject to either (i) u = g on 0Q, or (ii) 0u/0v = h on 0Q. (Note that uniqueness fails for (ii) if g = 0,
so the assumption (4) is needed.)
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So assume u, v are two solutions belonging to (5). Then w = u — v satisfy (3) with either (i) w =0

on 0Q), or (ii) Ow/0v = 0 on 0Q). In either case,
0
w—w dsS=0,
a0V

hence we get from Green’s first identity:
0 :f IVw|? + wAwdx =f IVwl|? + qw2 dx,
Q Q

and since the integrand on the right side is continuous and = 0, it follows that |V wl? + q w? =0in
Q,hence Vw =0in Q, so w = const = C in Q. Butalso g(x)w(x)?> =0forall x € %and taking x = xo
and using (4), we conclude that w(xp) = 0. Thus C =0, so w = 0in Q, hence in Q, by continuity.

Exercise 4.1.6. Assume n = 3, fix a € R”, and set v(x) = |x—al*>™" for x # a. Thus, v(x) = r¥™",

where r = |x—al = /(x1 — a1)2 + -+ (x, — a,)?. Then

- 2(x; — a;) _Xi—ai
X — - y
2y/ (1 — apZ+ -+ (xp — ap)? r

so the chain rule gives
Xi—a;
v =C-mr' M =-nr!' T = 2 - (g - ay),
r

and

n

Y+@2-nr "

Ve = ()R- r "N —adry + @-n)r = (@ -nr A - a
Thus,

Av =

n
Uy = (—m)R-mr " 2r2+ n2-nr " =0.

i=1
A similar calculation works for n = 2, with v(x) =logr.

Exercise 4.1.7.

a) We assume u € C2(Q) N C(ﬁ) and Au = 0in Q, and we have to show that

(6) max|u| = max|ul.
a 0Q

(So the only difference from the standard (weak) maximum principle is that we have absolute
values here.) As usual, Q is assumed bounded.

It suffices to prove

(7) max|u| < max|ul,
a 00

since the reverse inequality is obvious.
Since |u/| is continuous, and since Q is a compact set, the maximum is attained, so there
exists x; € Q such that

lu(x)l = mﬁﬁXlul.

Without loss of generality we may assume that u(x;) = 0 (since otherwise, we can replace u
by —u). Thus,
u(x) = max|ul,
Q

but this implies maxg|u| = maxg u (why?). From the standard maximum principle, we have
maxg U = maxyq U, so finally we conclude that

max|u| = u(x;) = maxu = max u < max|ul,
a a Q. 0Q

which proves (7).
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b) Here we are asked to show the same thing for the unbounded set
Q={xeR":|x|>1}
again assuming u € C:Q)nc (5) and Au =0in Q, and also assuming

(8) lim wu(x)=0.

[x]—o00

So we have to prove (6); again it suffices to prove (7).

Let us first note that the maxima are attained. For the maximum over 0Q2 = {x : | x| = 1}, this
is clear, since this set is compact, but for Q = {x : |x| = 1} it is not completely obvious, since
this set is unbounded. First of all, let us assume u is not everywhere zero (otherwise there is
nothing to prove!), so
a:=suplul>0.
Q

By the assumption (8), there exists R > 0 such that
9) |x]=R = |lux)| < a/2.

Now, the set
Ap:={x:1<|x|<R}

is compact, hence the maximum of |u| on this set is attained; thus, there exists x; € A such
that |u(x1)| = max 4, |ul, and in view of (9) we must then have maxg lul = a.

We conclude that the sup of |u| over Qis actually a max, and that

(10) lu(x1)| = max|ul = max|ul.
AR Q

As before, we may assume u(x;) = 0, without loss of generality. Then from (10) we conclude:

(11) u(x;) = maxu.
AR

Applying the standard maximum principle on the region A, and recalling (9), we find that

maxu =maxu,
AR 0Q

so we finally conclude that

max|u| = u(x;) = maxu = maxu < max|ul,
Q AR 0Q 0Q

which proves (7).
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