TMA4305 Partial Differential Equations Spring 2009
Norwegian University of Science and Technology

The exercises are from McOwen's book: Partial differential equations.

1 Exercise 4.1.3. We are looking at the Laplace equation with a mixed boundary condition:

$$
\begin{cases}\Delta u=0 & \text { in } \Omega, \tag{1}\\ \frac{\partial u}{\partial v}+\alpha u=\beta & \text { on } \partial \Omega,\end{cases}
$$

where we assume α, β are constants.
Assume $\alpha>0$; we are asked to prove uniqueness. So suppose

$$
u, v \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})
$$

are both solutions of (1). Set $w=u-v$. Then w satisfies

$$
\begin{cases}\Delta w=0 & \text { in } \Omega, \tag{2}\\ \frac{\partial w}{\partial v}+\alpha w=0 & \text { on } \partial \Omega .\end{cases}
$$

From Green's first identity we get

$$
\int_{\partial \Omega} w \frac{\partial w}{\partial v} d S=\int_{\Omega} \nabla w \cdot \nabla w d x
$$

and using the boundary condition we then get

$$
-\alpha \int_{\partial \Omega} w^{2} d S=\int_{\Omega}|\nabla w|^{2} d x
$$

But the left side is ≤ 0 and the right side is ≥ 0, so both sides must equal zero. Hence $w=0$ in Ω, and by continuity also in $\bar{\Omega}$. This proves that $u=v$.

2 Exercise 4.1.5. We consider

$$
\begin{equation*}
\Delta u-q(x) u=0 \quad \text { in } \Omega, \tag{3}
\end{equation*}
$$

where $q(x) \geq 0$ is assumed to be bounded and continuous in Ω. Moreover, we assume that $q(x)$ is not everywhere zero, so there is a point $x_{0} \in \Omega$ such that

$$
\begin{equation*}
q\left(x_{0}\right)>0 . \tag{4}
\end{equation*}
$$

We are asked to prove uniqueness of solutions in the space

$$
\begin{equation*}
C^{2}(\Omega) \cap C^{1}(\bar{\Omega}), \tag{5}
\end{equation*}
$$

subject to either (i) $u=g$ on $\partial \Omega$, or (ii) $\partial u / \partial v=h$ on $\partial \Omega$. (Note that uniqueness fails for (ii) if $q=0$, so the assumption (4) is needed.)

So assume u, v are two solutions belonging to (5). Then $w=u-v$ satisfy (3) with either (i) $w=0$ on $\partial \Omega$, or (ii) $\partial w / \partial v=0$ on $\partial \Omega$. In either case,

$$
\int_{\partial \Omega} w \frac{\partial w}{\partial v} d S=0
$$

hence we get from Green's first identity:

$$
0=\int_{\Omega}|\nabla w|^{2}+w \Delta w d x=\int_{\Omega}|\nabla w|^{2}+q w^{2} d x
$$

and since the integrand on the right side is continuous and ≥ 0, it follows that $|\nabla w|^{2}+q w^{2}=0$ in Ω, hence $\nabla w=0$ in Ω, so $w=$ const $=C$ in Ω. But also $q(x) w(x)^{2}=0$ for all $x \in \Omega$, and taking $x=x_{0}$ and using (4), we conclude that $w\left(x_{0}\right)=0$. Thus $C=0$, so $w=0$ in Ω, hence in $\bar{\Omega}$, by continuity.

3 Exercise 4.1.6. Assume $n \geq 3$, fix $a \in \mathbb{R}^{n}$, and set $v(x)=|x-a|^{2-n}$ for $x \neq a$. Thus, $v(x)=r^{2-n}$, where $r=|x-a|=\sqrt{\left(x_{1}-a_{1}\right)^{2}+\cdots\left(x_{n}-a_{n}\right)^{2}}$. Then

$$
r_{x_{i}}=\frac{2\left(x_{i}-a_{i}\right)}{2 \sqrt{\left(x_{1}-a_{1}\right)^{2}+\cdots\left(x_{n}-a_{n}\right)^{2}}}=\frac{x_{i}-a_{i}}{r}
$$

so the chain rule gives

$$
v_{x_{i}}=(2-n) r^{1-n} r_{x_{i}}=(2-n) r^{1-n} \frac{x_{i}-a_{i}}{r}=(2-n) r^{-n}\left(x_{i}-a_{i}\right),
$$

and

$$
v_{x_{i} x_{i}}=(-n)(2-n) r^{-n-1}\left(x_{i}-a_{i}\right) r_{x_{i}}+(2-n) r^{-n}=(-n)(2-n) r^{-n-2}\left(x_{i}-a_{i}\right)^{2}+(2-n) r^{-n} .
$$

Thus,

$$
\Delta v=\sum_{i=1}^{n} v_{x_{i} x_{i}}=(-n)(2-n) r^{-n-2} r^{2}+n(2-n) r^{-n}=0 .
$$

A similar calculation works for $n=2$, with $v(x)=\log r$.

4 Exercise 4.1.7.
a) We assume $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ and $\Delta u=0$ in Ω, and we have to show that

$$
\begin{equation*}
\max _{\bar{\Omega}}|u|=\max _{\partial \Omega}|u| . \tag{6}
\end{equation*}
$$

(So the only difference from the standard (weak) maximum principle is that we have absolute values here.) As usual, Ω is assumed bounded.
It suffices to prove

$$
\begin{equation*}
\max _{\bar{\Omega}}|u| \leq \max _{\partial \Omega}|u|, \tag{7}
\end{equation*}
$$

since the reverse inequality is obvious.
Since $|u|$ is continuous, and since $\bar{\Omega}$ is a compact set, the maximum is attained, so there exists $x_{1} \in \bar{\Omega}$ such that

$$
\left|u\left(x_{1}\right)\right|=\max _{\bar{\Omega}}|u| .
$$

Without loss of generality we may assume that $u\left(x_{1}\right) \geq 0$ (since otherwise, we can replace u by $-u$). Thus,

$$
u\left(x_{1}\right)=\max _{\bar{\Omega}}|u|,
$$

but this implies $\max _{\bar{\Omega}}|u|=\max _{\bar{\Omega}} u$ (why?). From the standard maximum principle, we have $\max _{\bar{\Omega}} u=\max _{\partial \Omega} u$, so finally we conclude that

$$
\max _{\bar{\Omega}}|u|=u\left(x_{1}\right)=\max _{\bar{\Omega}} u=\max _{\partial \Omega} u \leq \max _{\partial \Omega}|u|,
$$

which proves (7).
b) Here we are asked to show the same thing for the unbounded set

$$
\Omega=\left\{x \in \mathbb{R}^{n}:|x|>1\right\},
$$

again assuming $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ and $\Delta u=0$ in Ω, and also assuming

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty} u(x)=0 \tag{8}
\end{equation*}
$$

So we have to prove (6); again it suffices to prove (7).
Let us first note that the maxima are attained. For the maximum over $\partial \Omega=\{x:|x|=1\}$, this is clear, since this set is compact, but for $\bar{\Omega}=\{x:|x| \geq 1\}$ it is not completely obvious, since this set is unbounded. First of all, let us assume u is not everywhere zero (otherwise there is nothing to prove!), so

$$
\alpha:=\sup _{\bar{\Omega}}|u|>0 .
$$

By the assumption (8), there exists $R>0$ such that

$$
\begin{equation*}
|x| \geq R \Longrightarrow|u(x)| \leq \alpha / 2 \tag{9}
\end{equation*}
$$

Now, the set

$$
A_{R}:=\{x: 1 \leq|x| \leq R\}
$$

is compact, hence the maximum of $|u|$ on this set is attained; thus, there exists $x_{1} \in A_{R}$ such that $\left|u\left(x_{1}\right)\right|=\max _{A_{R}}|u|$, and in view of (9) we must then have $\max _{\bar{\Omega}_{R}}|u|=\alpha$.
We conclude that the sup of $|u|$ over $\bar{\Omega}$ is actually a max, and that

$$
\begin{equation*}
\left|u\left(x_{1}\right)\right|=\max _{A_{R}}|u|=\max _{\bar{\Omega}}|u| . \tag{10}
\end{equation*}
$$

As before, we may assume $u\left(x_{1}\right) \geq 0$, without loss of generality. Then from (10) we conclude:

$$
\begin{equation*}
u\left(x_{1}\right)=\max _{A_{R}} u \tag{11}
\end{equation*}
$$

Applying the standard maximum principle on the region A_{R}, and recalling (9), we find that

$$
\max _{A_{R}} u=\max _{\partial \Omega} u
$$

so we finally conclude that

$$
\max _{\bar{\Omega}}|u|=u\left(x_{1}\right)=\max _{A_{R}} u=\max _{\partial \Omega} u \leq \max _{\partial \Omega}|u|,
$$

which proves (7).

