TMA4305 Partial Differential Equations Spring 2009
Norwegian University of Science and Technology
Department of Mathematical Sciences

Solutions for Problem Set

Week12

The exercises are from McOwen's book: Partial differential equations.

1 Exercise 4.2.7. Assume $u \in C(\Omega)$ and satisfies the mean value property:

$$
u(x)=\frac{1}{\omega_{n}} \int_{|y|=1} u(x+r y) d S(y) \quad \text { if } \overline{B_{r}(x)} \subset \Omega .
$$

We are supposed to prove that $u \in C^{2}(\Omega)$ and that $\Delta u=0$.
Fix a ball $B_{r}(x)$ such that $\overline{B_{r}(x)} \subset \Omega$. Using Poisson's formula on this ball, with boundary values $\left.u\right|_{\partial B_{r}(x)}$, we can find (see Theorem 4) a harmonic function $v \in C^{2}\left(B_{r}(x)\right) \cap C\left(\overline{B_{r}(x)}\right)$ such that $v(z)=$ $u(z)$ for $z \in \partial B_{r}(x)$.
We now claim that $u=v$ in $B_{r}(x)$. To see this, note that $u-v$ satisfies the mean value property (since both u and v do), hence the maximum principle holds (the proof of Theorem 3 on page 109 works for any continuous function satisfying the mean value property) for $u-v$ on $B_{r}(x)$, so we get $u-v \leq 0$ in $B_{r}(x)$. Applying the maximum principle also to $v-u$ gives $v-u \leq 0$ in $B_{r}(x)$, and we conclude that $u-v=0$ in $B_{r}(x)$, which proves the claim.

2 Exercise 4.2.11. We are supposed to prove Liouville's Theorem: If $u \in C^{2}\left(\mathbb{R}^{n}\right)$ is harmonic and bounded, then u is a constant.

From Eq. (46) on page 122, we have (this comes from differentiating Poisson's formula)

$$
\left|\nabla u\left(x_{0}\right)\right| \leq \frac{n}{a} \max _{x \in \partial B_{a}\left(x_{0}\right)}|u(x)|
$$

Since u is assumed to be bounded, we get

$$
\left|\nabla u\left(x_{0}\right)\right| \leq \frac{C}{a}
$$

for all $x_{0} \in \mathbb{R}^{n}$ and all $a>0$, where C is independent of x_{0} and a. Thus, letting $a \rightarrow \infty$, we see that $\nabla u=0$, hence u must be a constant.

