

TMA4305 Partial Differential Equations Spring 2009

Solutions for Problem Set Week12

The exercises are from McOwen's book: Partial differential equations.

1 *Exercise 4.2.7.* Assume $u \in C(\Omega)$ and satisfies the mean value property:

$$u(x) = \frac{1}{\omega_n} \int_{|y|=1} u(x+ry) \, dS(y) \quad \text{if } \overline{B_r(x)} \subset \Omega.$$

We are supposed to prove that $u \in C^2(\Omega)$ and that $\Delta u = 0$.

Fix a ball $B_r(x)$ such that $\overline{B_r(x)} \subset \Omega$. Using Poisson's formula on this ball, with boundary values $u|_{\partial B_r(x)}$, we can find (see Theorem 4) a harmonic function $v \in C^2(B_r(x)) \cap C(\overline{B_r(x)})$ such that v(z) = u(z) for $z \in \partial B_r(x)$.

We now claim that u = v in $B_r(x)$. To see this, note that u - v satisfies the mean value property (since both u and v do), hence the maximum principle holds (the proof of Theorem 3 on page 109 works for any continuous function satisfying the mean value property) for u - v on $B_r(x)$, so we get $u - v \le 0$ in $B_r(x)$. Applying the maximum principle also to v - u gives $v - u \le 0$ in $B_r(x)$, and we conclude that u - v = 0 in $B_r(x)$, which proves the claim.

2 *Exercise 4.2.11.* We are supposed to prove Liouville's Theorem: If $u \in C^2(\mathbb{R}^n)$ is harmonic and bounded, then u is a constant.

From Eq. (46) on page 122, we have (this comes from differentiating Poisson's formula)

$$|\nabla u(x_0)| \leq \frac{n}{a} \max_{x \in \partial B_a(x_0)} |u(x)|.$$

Since *u* is assumed to be bounded, we get

$$\nabla u(x_0)| \le \frac{C}{a}$$

for all $x_0 \in \mathbb{R}^n$ and all a > 0, where *C* is independent of x_0 and *a*. Thus, letting $a \to \infty$, we see that $\nabla u = 0$, hence *u* must be a constant.