

TMA4305 Partial **Differential Equations** Spring 2009

Department of Mathematical Sciences

Solutions week 13

1 (McOwen 5.1:2)

(1)
$$\begin{cases} u_t = \Delta u \quad \text{in } \Omega \times (0, \infty) \\ u = h \quad \text{on } \partial \Omega \times (0, \infty) \\ u = g \quad \text{on } \overline{\Omega} \times \{0\} \end{cases}$$

Note that u(x, t) = v(x, t) + w(x) solve (1) if *v* and *w* solve

{	$\Delta w \\ w$	= 0 = h	in Ω on ∂Ω			v_t	$=\Delta v$	in $\Omega \times (0,\infty)$
				and		v	= 0	on $\partial \Omega \times (0,\infty)$
						v	= g - w	on $\overline{\Omega} \times \{0\}$

If $\{\lambda_n, \varphi_n\}_{n=1}^{\infty}$ are eigenvalues and eigenfunctions for $-\Delta$ on Ω and $g - w = \sum a_n \varphi_n$, then from McOwen,

$$v(x,t)=\sum a_n e^{-\lambda_n t}\varphi_n.$$

Note that, for $t \to \infty$,

$$|v(x,t)| \le e^{-\lambda_i t} |\sum_{n=1}^{\infty} a_n e^{-(\lambda_n - \lambda_i)t} \varphi_n| \le e^{-\lambda_i t} |\sum_{n=1}^{\infty} a_n \varphi_n| \to 0$$

where λ_i is the smallest positive eigenvalue and we assumed $|\sum_{n=1}^{\infty} a_n \varphi_n|$ to be bounded. Hence

$$\lim_{t\to\infty} u(x,t) = \lim_{t\to\infty} (v(x,t)+w(x)) = w(x)$$

2 (McOwen 5.2:1)

Theorem 1. If g bounded continuous function and

$$u(x,t) = \int_{\mathbb{R}^n} K(x,y,t)g(y)dy$$

where

$$K(x, y, t) = \frac{1}{(4\pi t)^{\frac{n}{2}}} e^{-\frac{|x-y|^2}{4t}}$$

Then,

i)
$$u \in C^{\infty}(\mathbb{R}^n \times (0, \infty))$$

ii)
$$u_t = \Delta u \text{ in } (\mathbb{R}^n \times (0, \infty))$$

iii)
$$\lim_{t\to 0} u(x,t) = g(x)$$

Proof.

(a) Obs: *K* is C^{∞} for t > 0

$$K_t = -\frac{n}{2} \frac{4\pi}{(4\pi t)^{\frac{n}{2}+1}} e^{-\frac{|x-y|^2}{4t}} + \frac{1}{(4\pi t)^{\frac{n}{2}}} \frac{|x-y|^2}{4t^2} e^{-\frac{|x-y|^2}{4t}}$$

$$K_{x_{i}x_{i}} = \frac{1}{(4\pi t)^{\frac{n}{2}}} \left[-\frac{2(x_{i} - y_{i})}{4t} e^{-\frac{|x - y|^{2}}{4t}} \right]_{x_{i}}$$

$$= \frac{1}{(4\pi t)^{\frac{n}{2}}} \left(-\frac{2}{4t} + \frac{4(x_{i} - y_{i})^{2}}{4t} \right) e^{-\frac{|x - y|^{2}}{4t}}$$
So, $K_{t} - \sum_{i=1}^{n} K_{x_{i}x_{i}} = 0 \ (t > 0)$
(b)
$$\int_{\mathbb{R}^{n}} K(x, y, t) dy = \int_{\mathbb{R}^{n}} \frac{1}{(4\pi t)^{\frac{n}{2}}} e^{-\frac{|x - y|^{2}}{4t}} dy = \frac{1}{2\sqrt{t}} \frac{1}{\pi^{\frac{n}{2}}} \int_{\mathbb{R}^{n}} e^{-|z|^{2}} dz = \frac{1}{\pi^{\frac{n}{2}}} \left(\int_{\mathbb{R}} e^{-s^{2}} ds \right)^{n} = 1$$
(c)

$$\int_{|x-y|>\delta} K(x,y,t) dy = \frac{1}{z=\frac{y-x}{2\sqrt{t}}} \frac{1}{\pi^{\frac{n}{2}}} \int_{|z|>\frac{\delta}{2\sqrt{t}}} e^{-|z|^2} dz \le \frac{1}{\pi^{\frac{n}{2}}} \int_{|z|>\frac{\delta}{2\sqrt{t}}} e^{-\frac{1}{2}\frac{\delta^2}{4t}} e^{-\frac{1}{2}|z|} \le \frac{e^{-\frac{\delta^2}{8t}}}{\pi^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{-\frac{|z|^2}{2}} dz \to 0$$

as
$$t \to 0$$
 uniformly in x since $\int_{\mathbb{R}^n} e^{-\frac{|z|^2}{2}} dz < \infty$.

(d)

$$D^{\alpha}u(x,t) = \int_{\mathbb{R}^n} (D^{\alpha}_{t,x}K)(x,y,t)g(y)dy$$

is continuous for all α , hence $u \in C^{\infty}(\mathbb{R} \times (0, \infty))$

(*ii*)

(*i*)

$$u_t - \Delta u = \int_{\mathbb{R}^n} (K_t(x, y, t) - \Delta_x K(x, y, t)) g(y) dy = 0$$

for all t > 0 since $K_t(x, y, t) - \Delta_x K(x, y, t) = 0$ (*iii*) Using (b),

$$u(x, t) - g(x) = \int_{\mathbb{R}^n} K(x, y, t)(g(y) - g(x))dy$$

= $(\int_{|x-y|<\delta} + \int_{|x-y|>\delta})K(x, y, t)(g(y) - g(x))dy$

that implies

$$|u(x,t) - g(x)| \le \int_{|x-y| < \delta} K(x,y,t) |g(y) - g(x)| dy + 2\|g\|_{\infty} \int_{|x-y| > \delta} K(x,y,t) dy$$

For all $\epsilon > 0$ take $\delta > 0$ such that $|x - y| < \delta$ implies $|g(x) - g(y)| < \frac{\epsilon}{2}$ (g continuous) and t > 0 small such that $\int_{|x-y|>\delta} K(x, y, t) dy < \frac{\epsilon}{2} \frac{1}{2\|g\|_{\infty}}$ by (c). Then,

$$|u(x,t)-g(x)|<\epsilon$$

Remark: $(iii) + (i) \Rightarrow u \in C(\mathbb{R}^n \times [0,\infty)).$

3 (McOwen 5.2:2)

$$u(x,t) = \int_{\mathbb{R}^n} K(x,y,t)g(y)dy$$

where g bounded and continuous.

(a)

$$\begin{aligned} |u(x,t)| &\leq \int_{\mathbb{R}^n} K(x,y,t) |g(y)| dy \quad \text{since } K > 0 \\ &\leq \|g\|_{\infty} \int_{\mathbb{R}^n} K(x,y,t) dy \\ &= \|g\|_{\infty} \quad \text{since } \int K(x,y,t) dy = 1 \end{aligned}$$

(b) Assume in addition $\int_{\mathbb{R}^n} |g(y)| dy < \infty$, then

$$|u(x,t)| \le \frac{1}{(4\pi t)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{-\frac{|x-y|^2}{4t}} |g(y)| dy$$
$$\le \frac{\int_{\mathbb{R}^n} |g(y)| dy}{(4\pi t)^{\frac{n}{2}}} \quad \text{since } e^{-\frac{|x-y|^2}{4t}} \le 1$$

and the last term goes to zero as $t \rightarrow \infty$.

4 (McOwen 5.2:5)

Theorem 2. Assume $u \in C(U_T \cup \Gamma_T) \cap C^{2,1}(U_T) \cap L^{\infty}(U_T)$ and $u_t - \Delta u \leq 0$ in $U_T := \Omega \times (0, T)$ where $\Gamma_T = \Omega \times \{0\} \cup \partial\Omega \times (0, T)$. Then,

$$\sup_{U_T} u = \sup_{\mathbb{R}^n} u(x,0)$$

Proof.

1) Let $\tau < T$, $\epsilon > 0$, k > 0:

Obs:

 $w_t - \Delta w \le 2n\epsilon - k < 0$

if $k > 2n\epsilon$.

2) Obs:

$$\lim_{|x|\to\infty}w(x,t)=-\infty$$

 $w(x, t) = u(x, t) - \epsilon |x|^2 - kt$

Take R > 0 such that

$$|x| > R \Rightarrow \epsilon R^2 > 2 \|u\|_{\infty} + kT + 1 \Rightarrow w(x, t) < -\|u\|_{\infty} - 1$$

On the other hand at (x, t) = (0, 0)

$$w(0,0) = u(0,0) \ge -\|u\|_{\infty}$$

Conclusion:

$$\sup_{U_{\tau}} w = \sup_{B_R(0) \times [0,\tau)} u = \max_{\overline{B_R(0)} \times [0,\tau]} u$$

3) Let $(x, t) \in \overline{U}_{\tau}$ such that

$$w(x,t) = \max_{\overline{U}_T} w$$

If $0 < t < \tau$, then $w_t = 0$ and $\Delta w \le 0$. If $t = \tau$, then $w_t \ge 0$ and $\Delta w \le 0$. Both cases are in contradiction with the observation in (1). Hence,

$$\max_{\overline{U}_{\tau}} w = \max_{\mathbb{R}^n} w(x, 0)$$

(4) Let $(x, t) \in U_T$: Then $(x, t) \in U_\tau$ for some $\tau < T$ and

$$u(x,t) = w(x,t) + \epsilon |x|^2 + kt \le \max_{\mathbb{R}^n} w(x,0) + \epsilon |x|^2 + kT \le \sup_{\mathbb{R}^n} u(x,0) + \epsilon |x|^2 + kT,$$

where the last inequality follows since $w \le u$. Send $\epsilon \to 0$, then $k \to 0$:

$$u(x,t) \le \sup_{\mathbb{R}^n} u(x,0)$$

and hence

$$\sup_{U_T} u \leq \sup_{\mathbb{R}^n} u(x,0).$$