TMA4305 Partial Differential Equations

Spring 2009
Norwegian University of Science and Technology

Solutions week 13
Department of Mathematical Sciences

1 (McOwen 5.1:2)
(1)

$$
\left\{\begin{aligned}
u_{t} & =\Delta u & & \text { in } \Omega \times(0, \infty) \\
u & =h & & \text { on } \partial \Omega \times(0, \infty) \\
u & =g & & \text { on } \bar{\Omega} \times\{0\}
\end{aligned}\right.
$$

Note that $u(x, t)=v(x, t)+w(x)$ solve (1) if v and w solve

$$
\left\{\begin{array} { r l l }
{ \Delta w } & { = 0 } & { \text { in } \Omega } \\
{ w } & { = h } & { \text { on } \partial \Omega }
\end{array} \quad \text { and } \quad \left\{\begin{array}{rll}
v_{t} & =\Delta v & \text { in } \Omega \times(0, \infty) \\
v & =0 & \text { on } \partial \Omega \times(0, \infty) \\
v & =g-w & \text { on } \bar{\Omega} \times\{0\}
\end{array}\right.\right.
$$

If $\left\{\lambda_{n}, \varphi_{n}\right\}_{n=1}^{\infty}$ are eigenvalues and eigenfunctions for $-\Delta$ on Ω and $g-w=\sum a_{n} \varphi_{n}$, then from McOwen,

$$
v(x, t)=\sum a_{n} e^{-\lambda_{n} t} \varphi_{n} .
$$

Note that, for $t \rightarrow \infty$,

$$
|\nu(x, t)| \leq e^{-\lambda_{i} t}\left|\sum_{n=1}^{\infty} a_{n} e^{-\left(\lambda_{n}-\lambda_{i}\right) t} \varphi_{n}\right| \leq e^{-\lambda_{i} t}\left|\sum_{n=1}^{\infty} a_{n} \varphi_{n}\right| \rightarrow 0
$$

where λ_{i} is the smallest positive eigenvalue and we assumed $\left|\sum_{n=1}^{\infty} a_{n} \varphi_{n}\right|$ to be bounded. Hence

$$
\lim _{t \rightarrow \infty} u(x, t)=\lim _{t \rightarrow \infty}(v(x, t)+w(x))=w(x)
$$

2 (McOwen 5.2:1)
Theorem 1. If g bounded continuous function and

$$
u(x, t)=\int_{\mathbb{R}^{n}} K(x, y, t) g(y) d y
$$

where

$$
K(x, y, t)=\frac{1}{(4 \pi t)^{\frac{n}{2}}} e^{-\frac{|x-y|^{2}}{4 t}}
$$

Then,
i) $u \in C^{\infty}\left(\mathbb{R}^{n} \times(0, \infty)\right)$
ii) $u_{t}=\Delta u$ in $\left(\mathbb{R}^{n} \times(0, \infty)\right)$
iii) $\lim _{t \rightarrow 0} u(x, t)=g(x)$

Proof.
(a) Obs: K is C^{∞} for $t>0$

$$
K_{t}=-\frac{n}{2} \frac{4 \pi}{(4 \pi t)^{\frac{n}{2}+1}} e^{-\frac{|x-y|^{2}}{4 t}}+\frac{1}{(4 \pi t)^{\frac{n}{2}}} \frac{|x-y|^{2}}{4 t^{2}} e^{-\frac{|x-y|^{2}}{4 t}}
$$

$$
\begin{aligned}
K_{x_{i} x_{i}} & =\frac{1}{(4 \pi t)^{\frac{n}{2}}}\left[-\frac{2\left(x_{i}-y_{i}\right)}{4 t} e^{-\frac{|x-y|^{2}}{4 t}}\right]_{x_{i}} \\
& =\frac{1}{(4 \pi t)^{\frac{n}{2}}}\left(-\frac{2}{4 t}+\frac{4\left(x_{i}-y_{i}\right)^{2}}{4 t}\right) e^{-\frac{|x-y|^{2}}{4 t}}
\end{aligned}
$$

So, $K_{t}-\sum_{i=1}^{n} K_{x_{i} x_{i}}=0(t>0)$
(b)

$$
\int_{\mathbb{R}^{n}} K(x, y, t) d y=\int_{\mathbb{R}^{n}} \frac{1}{(4 \pi t)^{\frac{n}{2}}} e^{-\frac{|x-y|^{2}}{4 t}} d y \underset{z=\frac{\bar{y}-x}{2 \sqrt{t}}}{ } \frac{1}{\pi^{\frac{n}{2}}} \int_{\mathbb{R}^{n}} e^{-|z|^{2}} d z=\frac{1}{\pi^{\frac{n}{2}}}\left(\int_{\mathbb{R}} e^{-s^{2}} d s\right)^{n}=1
$$

(c)

$$
\int_{|x-y|>\delta} K(x, y, t) d y=\frac{\bar{y}-\frac{y}{2 \sqrt{t}}}{\pi^{\frac{n}{2}}} \int_{|z|>\frac{\delta}{2 \sqrt{t}}} e^{-|z|^{2}} d z \leq \frac{1}{\pi^{\frac{n}{2}}} \int_{|z|>\frac{\delta}{2 \sqrt{t}}} e^{-\frac{1}{2} \frac{\delta^{2}}{4 t}} e^{-\frac{1}{2}|z|} \leq \frac{e^{-\frac{\delta^{2}}{8 t}}}{\pi^{\frac{n}{2}}} \int_{\mathbb{R}^{n}} e^{-\frac{|z|^{2}}{2}} d z \rightarrow 0
$$

as $t \rightarrow 0$ uniformly in x since $\int_{\mathbb{R}^{n}} e^{-\frac{|z|^{2}}{2}} d z<\infty$.
(d)
(i)

$$
D^{\alpha} u(x, t)=\int_{\mathbb{R}^{n}}\left(D_{t, x}^{\alpha} K\right)(x, y, t) g(y) d y
$$

is continuous for all α, hence $u \in C^{\infty}(\mathbb{R} \times(0, \infty))$
(ii)

$$
u_{t}-\Delta u=\int_{\mathbb{R}^{n}}\left(K_{t}(x, y, t)-\Delta_{x} K(x, y, t)\right) g(y) d y=0
$$

for all $t>0$ since $K_{t}(x, y, t)-\Delta_{x} K(x, y, t)=0$
(iii) Using (b),

$$
\begin{aligned}
u(x, t)-g(x) & =\int_{\mathbb{R}^{n}} K(x, y, t)(g(y)-g(x)) d y \\
& =\left(\int_{|x-y|<\delta}+\int_{|x-y|>\delta}\right) K(x, y, t)(g(y)-g(x)) d y
\end{aligned}
$$

that implies

$$
|u(x, t)-g(x)| \leq \int_{|x-y|<\delta} K(x, y, t)|g(y)-g(x)| d y+2\|g\|_{\infty} \int_{|x-y|>\delta} K(x, y, t) d y
$$

For all $\epsilon>0$ take $\delta>0$ such that $|x-y|<\delta$ implies $|g(x)-g(y)|<\frac{\epsilon}{2}$ (g continuous) and $t>0$ small such that $\int_{|x-y|>\delta} K(x, y, t) d y<\frac{\epsilon}{2} \frac{1}{2\|g\|_{\infty}}$ by (c). Then,

$$
|u(x, t)-g(x)|<\epsilon
$$

Remark: $(i i i)+(i) \Rightarrow u \in C\left(\mathbb{R}^{n} \times[0, \infty)\right)$.

3 (McOwen 5.2:2)

$$
u(x, t)=\int_{\mathbb{R}^{n}} K(x, y, t) g(y) d y
$$

where g bounded and continuous.
(a)

$$
\begin{aligned}
|u(x, t)| & \leq \int_{\mathbb{R}^{n}} K(x, y, t)|g(y)| d y \text { since } K>0 \\
& \leq\|g\|_{\infty} \int_{\mathbb{R}^{n}} K(x, y, t) d y \\
& =\|g\|_{\infty} \text { since } \int K(x, y, t) d y=1
\end{aligned}
$$

(b) Assume in addition $\int_{\mathbb{R}^{n}}|g(y)| d y<\infty$, then

$$
\begin{aligned}
|u(x, t)| & \leq \frac{1}{(4 \pi t)^{\frac{n}{2}}} \int_{\mathbb{R}^{n}} e^{-\frac{|x-y|^{2}}{4 t}}|g(y)| d y \\
& \leq \frac{\int_{\mathbb{R}^{n}}|g(y)| d y}{(4 \pi t)^{\frac{n}{2}}} \quad \text { since } e^{-\frac{|x-y|^{2}}{4 t}} \leq 1
\end{aligned}
$$

and the last term goes to zero as $t \rightarrow \infty$.

4 (McOwen 5.2:5)

Theorem 2. Assume $u \in C\left(U_{T} \cup \Gamma_{T}\right) \cap C^{2,1}\left(U_{T}\right) \cap L^{\infty}\left(U_{T}\right)$ and $u_{t}-\Delta u \leq 0$ in $U_{T}:=\Omega \times(0, T)$ where $\Gamma_{T}=\Omega \times\{0\} \cup \partial \Omega \times(0, T)$. Then,

$$
\sup _{U_{T}} u=\sup _{\mathbb{R}^{n}} u(x, 0)
$$

Proof.

1) Let $\tau<T, \epsilon>0, k>0$:

$$
w(x, t)=u(x, t)-\epsilon|x|^{2}-k t
$$

Obs:

$$
w_{t}-\Delta w \leq 2 n \epsilon-k<0
$$

if $k>2 n \epsilon$.
2) Obs:

$$
\lim _{|x| \rightarrow \infty} w(x, t)=-\infty
$$

Take $R>0$ such that

$$
|x|>R \Rightarrow \epsilon R^{2}>2\|u\|_{\infty}+k T+1 \Rightarrow w(x, t)<-\|u\|_{\infty}-1
$$

On the other hand at $(x, t)=(0,0)$

$$
w(0,0)=u(0,0) \geq-\|u\|_{\infty}
$$

Conclusion:

$$
\sup _{U_{\tau}} w=\sup _{B_{R}(0) \times[0, \tau)} u=\max _{B_{R}(0) \times[0, \tau]} u
$$

3) Let $(x, t) \in \bar{U}_{\tau}$ such that

$$
w(x, t)=\max _{\bar{U}_{T}} w
$$

If $0<t<\tau$, then $w_{t}=0$ and $\Delta w \leq 0$. If $t=\tau$, then $w_{t} \geq 0$ and $\Delta w \leq 0$. Both cases are in contradiction with the observation in (1). Hence,

$$
\max _{\bar{U}_{\tau}} w=\max _{\mathbb{R}^{n}} w(x, 0)
$$

(4) Let $(x, t) \in U_{T}$: Then $(x, t) \in U_{\tau}$ for some $\tau<T$ and

$$
u(x, t)=w(x, t)+\epsilon|x|^{2}+k t \leq \max _{\mathbb{R}^{n}} w(x, 0)+\epsilon|x|^{2}+k T \leq \sup _{\mathbb{R}^{n}} u(x, 0)+\epsilon|x|^{2}+k T,
$$

where the last inequality follows since $w \leq u$. Send $\epsilon \rightarrow 0$, then $k \rightarrow 0$:

$$
u(x, t) \leq \sup _{\mathbb{R}^{n}} u(x, 0)
$$

and hence

$$
\sup _{U_{T}} u \leq \sup _{\mathbb{R}^{n}} u(x, 0) .
$$

