TMA4305 Partial
Differential Equations
Spring 2009

Norwegian University of Science and

Technology . _ Problem set for week 14
Department of Mathematical Sciences

We are asked to prove that the operator norm is a norm on the space L(X, Y) of bounded linear
maps from X to Y, and moreover, if Y is a Banach space, then so is L(X, Y).

Solet T € L(X,Y). The operator norm is defined by

I Txlly

1T = ,
xeX,x#0 I1xllx

which is a well-defined non-negative real number, since by assumption there exists some constant
C>0suchthat || Tx|ly <Clxl|x, hence | T| <C.

Clearly,

ey ITxlly < ITlHxllx.

The properties of a norm are easily checked. First, if | T'l| = 0, then (1) implies T = 0. Second,

leTxly lclI Txlly ITxly
lcT|l= sup = p ——=lcl
xeX, x#0 llxll x xeX, x#0 lxll x xeX, x#0 x|l x

=lclITl,

where we used the general fact that the supremum commutes with multiplication by a non-negative
constant. Third, if S, T € L(X,Y), then
ISx+ Txlly - ISxlly + I Txlly - IISJCIIY+ u ITxlly

< < s ,
xex,xz0  lxllx xeX, x£0 llxll x xex,x#0 [1Xllx  xex,xzo0 llxlx

which proves [|S+ Tl < S| + I T|l. This concludes the proof that || T|| is a norm.

Now assume Y is Banach, and let us prove that L(X, Y) is then also Banach. So assume {T}} is a
Cauchy sequence in L(X, Y). For any x € X, we have by (1) and linearity,

@) | Tjx-Tex|, < | Tj - Te| Il x,

hence {T;x} is a Cauchy sequence in Y, hence it has a limit in Y, which we denote Tx. Doing this
for every x € X, we obtain amap T : X — Y, and this map is linear, since each T is. It remains to
prove that T € L(X, V) and that || T; - T|| = 0 as j — co.

But being a Cauchy sequence, T} is bounded, i.e., there exists M > 0 such that H T; || < M for all j.
Thus, || Tjx||, < M xllx for all x € X, which implies that || Tx|ly < M||x|| x, hence T € L(X, Y), and
I1TI=M.

Finally, given € > 0, there exists N = N(¢) € N such that || Tj— Ty H <eforall j, k= N. Then letting
k — oo in (2), we get

”zj—Tx”SEIIxIIX forall j= Nandall x€ X,

hence || Tj - T| <efor j=N.

a) Let Q beaboundedset, (C(Q); | flloo =max g5|f(x)])is a Banach space.

Proof.
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1) |- lloo is well-defined, indeed:
f€C(Q) =3 xp € Qsuch that || flloo = | f (x0)]
2) || lloc isanormon C (Q). Trivial, for example,
Ifloo=0=|f(x)|=0forallx= f=0

3) Completeness: o
{fi} € C(Q) Cauchy = f;(x) c R Cauchy,

since
Ifi () = fi) <l fi = filloo-
This implies that there exists y, € R (R is complete) such that

fi(x) =y, forall xeQ

Define the function f as .
fx)=yx foral xeQ,

and note that

{fi}Cauchy = |filoo=<M<ooVi = |f(x)IsMVYx = suplf(x)=M,
Q

and

sup| fj(x) — f(x)| = sup|fj(x) —lim fi (x)| = limsup | f; (x) — fr(x)| =lim|l f; — fell = 0
a a k k a k

as j — 0. Hence,

() fj — f uniformly in Q implies f € C(Q)
(i) Ifj=flloo—0asj—0

and C(Q) is complete.

b) Let Q be a bounded set, then

(C'@5 1flheo=sup{ifCal+1VFC1})
xeQ

is a Banach space.

Proof.
1) |- Il1,00 well defined and norm on Cl(Q) as in the previous exercise.
2)

{fi} Cauchy = {f; (x)},{Vf; (x)} Cauchy
= exists yy € R, ¥, € R" such that f;(x), Vfi(x) > yx, V%
3) Def. f(x) = yx, g (x) =¥, x€ Q. Asin the previous exercise:
FeC@, Ifi-floo—0
gelC”, IVfi—Elloo—0
4) Check: Vf=g.Foranye >0,

flx+hej) - f(x)

Y —8j(X)| =|De; f(x) = De; fie(X)| + | De; fie(x) - gj(x)| <€

since the first term on the right-hand side is less than § for k large enough and the sec-
ond term is less than § for 4 small enough.
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5) Conclude f; — fin C'(Q) and the space is complete.

c) Let Q be abounded set,

(c@;: <rg>=] ro)

is an inner product space which is not a Hilbert space.

Proof.

1) <-->well defined on C(Q) (if Q nice)
2) <.,->inner product on C (Q). Trivial, e.g.

<f,f>:0:>f|f|2dx:0:>f50

2) Not complete. Counter-example in C([—1, 1]). Define

f(x)={

and observe that

0 x<0
1 x=0

0

1

and fr(x) = { X+

1
k

1 0
1=l = [ 1f=fi= [ 15 il =~ oo

since | f — fr|> < 1. Hence || fi. — fIl — 0 but f ¢ C(Q), so C(Q) is not complete.

cl;:l Then
P pa
absZ + 2
q

Proof. Note that the function f(x) = e* is convex. Then,

1 pyL 1 q
ab:elna+lnh: epln(a )+qln(h )

= f(Alna’+(1-M)Ina?, A= %,

aP

=—+—.

p

(McOwen 6.1:5) We set Q = (0, 1).
a) Define u:Q — Rby

<Af(naP)+ (1 -2A)f(na?), by convexity,
ba
q
X for0<x<1/2,
u(x) =
1-x forl/2=<x<1.
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We compute the weak derivative u'(x). So let v € C§°(Q), and calculate, using integration by

parts,
1 1/2 1
f u(x)v'(x) dx:f xv'(x) dx+f 1-x)v' (x)dx
0 0 1/2
1/2 1
:—f v(x) dx—f (-Dvx)dx
0 1/2
1
=—f fv(x)dx,
0
where

1 for0<x<1/2,
fx)=
1 forl/2<x<1.
This shows that f is the weak derivative of  on Q.

b) Now set u(x) = x® for x € Q = (0,1), where a € R. We want to check for which a« we have
ue HY(Q). To do this, let us use the fact that

H'(Q) =W ={fel*(Q:f e >},

where f’ denotes the distributional derivative (the weak derivative).
First, we check for which a we have u € I2(Q). We have

1 1
f u(x)? dxzf x*%dx,
0 0

and this integral converges if and only if 2a > -1, i.e, a > -1/2.

Next, we check for which a@ we have u’ € L2(Q). Since u/(x) = ax®"!, we see as above that this
isin L2(Q) ifand only if @ — 1 > —1/2, i.e., a > 3/2.
So the answer is: u € H'(Q) if and only if & > 3/2.

(McOwen 6.1:15)

A bounded bilinear form on a Hilbert space X isa map B: X x X — R such that

(i) B(ax+by,z) =aB(x,z)+bB(y,z)
(i) B(x,ay+bz)=aB(x,y)+ bB(x,z)
(iii) [B(x, pI=Clxllyl

foralla,beRand x,y,z€ X.

Thm 1. There exists a unique bounded linear operator A: X — X such that
B(x,y) =< Ax,x>, <-,-> inner productinX,
forallx,ye X.

Proof.

(i) Define F,: X — Ras
Fy(y)=B(x,y) forall yeX.

Note that F, is linear
Fy(ay+bz) = aFx(y) + bFy(2) (by (ii))

and bounded
[Ex(M=Bx, )< Clxllyl (by (iii)).
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(i) Rieszrepresentation theorem: There exists a unique z, € X such that Fy(y) =< z,,y > for all
y € X. Moreover, || Fx|l = [l zx]l.

(iii) Define A: X — X by

Ax = zy.
Alinear:
< A(ax+by),z>=<zgx+by, 2 >= Fax+py(2) = Blax + by, z)
= aFyx(z) + bFy(z) by (i)
=<azy+bzy,z> by definition of z,
@) =<aAx+bAy,z> by definition of A
Take

z=A(ax+by)—laAx+bAylin(*) = [Alax+by)—laAx+DbAy]l=0
= Alax+by)=aA;+bA,

Abounded:

()] B(x, )|
I Ax] = lzxll = I Fxll = sup —22 = su Y
T AR

<Clix| by (iii).

A unique: Assume Ais such that B(x, y) =< Ax, y>forall x,y € X. Then

0=<Ax,y>-<Ax,y>=<(A-A)x,y>
=>0=|(A-Ax| forallxeX (takey=(A-A)x)
=>(A-A)x=0 forallxeX

>A=A
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