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1 We are asked to prove that the operator norm is a norm on the space L(X ,Y ) of bounded linear
maps from X to Y , and moreover, if Y is a Banach space, then so is L(X ,Y ).

So let T ∈ L(X ,Y ). The operator norm is defined by

‖T ‖ = sup
x∈X , x 6=0

‖T x‖Y

‖x‖X
,

which is a well-defined non-negative real number, since by assumption there exists some constant
C > 0 such that ‖T x‖Y ≤C ‖x‖X , hence ‖T ‖ ≤C .

Clearly,

(1) ‖T x‖Y ≤ ‖T ‖‖x‖X .

The properties of a norm are easily checked. First, if ‖T ‖ = 0, then (1) implies T = 0. Second,

‖cT ‖ = sup
x∈X , x 6=0

‖cT x‖Y

‖x‖X
= sup

x∈X , x 6=0

|c|‖T x‖Y

‖x‖X
= |c| sup

x∈X , x 6=0

‖T x‖Y

‖x‖X
= |c|‖T ‖ ,

where we used the general fact that the supremum commutes with multiplication by a non-negative
constant. Third, if S,T ∈ L(X ,Y ), then

sup
x∈X , x 6=0

‖Sx +T x‖Y

‖x‖X
≤ sup

x∈X , x 6=0

‖Sx‖Y +‖T x‖Y

‖x‖X
≤ sup

x∈X , x 6=0

‖Sx‖Y

‖x‖X
+ sup

x∈X , x 6=0

‖T x‖Y

‖x‖X
,

which proves ‖S +T ‖ ≤ ‖S‖+‖T ‖. This concludes the proof that ‖T ‖ is a norm.

Now assume Y is Banach, and let us prove that L(X ,Y ) is then also Banach. So assume {T j } is a
Cauchy sequence in L(X ,Y ). For any x ∈ X , we have by (1) and linearity,

(2)
∥∥T j x −Tk x

∥∥
Y ≤ ∥∥T j −Tk

∥∥‖x‖X ,

hence {T j x} is a Cauchy sequence in Y , hence it has a limit in Y , which we denote T x. Doing this
for every x ∈ X , we obtain a map T : X → Y , and this map is linear, since each T j is. It remains to
prove that T ∈ L(X ,Y ) and that

∥∥T j −T
∥∥→ 0 as j →∞.

But being a Cauchy sequence, T j is bounded, i.e., there exists M > 0 such that
∥∥T j

∥∥≤ M for all j .
Thus,

∥∥T j x
∥∥

Y ≤ M ‖x‖X for all x ∈ X , which implies that ‖T x‖Y ≤ M ‖x‖X , hence T ∈ L(X ,Y ), and
‖T ‖ ≤ M .

Finally, given ε> 0, there exists N = N (ε) ∈N such that
∥∥T j −Tk

∥∥ ≤ ε for all j ,k ≥ N . Then letting
k →∞ in (2), we get ∥∥T j x −T x

∥∥≤ ε‖x‖X for all j ≥ N and all x ∈ X ,

hence
∥∥T j −T

∥∥≤ ε for j ≥ N .

2 a) LetΩ be a bounded set,
(
C (Ω) ; ‖ f ‖∞ = maxx∈Ω | f (x)|) is a Banach space.

Proof.
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1) ‖ ·‖∞ is well-defined, indeed:

f ∈C (Ω) ⇒∃ x0 ∈Ω such that ‖ f ‖∞ = | f (x0)|
2) ‖ ·‖∞ is a norm on C (Ω). Trivial, for example,

‖ f ‖∞ = 0 ⇒| f (x)| = 0 for all x ⇒ f = 0

3) Completeness:
{ fi } ⊂C (Ω) Cauchy ⇒ fi (x) ⊂R Cauchy,

since
| fi (x)− f j (x)| ≤ ‖ fi − f j ‖∞.

This implies that there exists yx ∈R (R is complete) such that

fi (x) → yx for all x ∈Ω
Define the function f as

f (x) = yx for all x ∈Ω,

and note that

{ fi } Cauchy ⇒ ‖ fi‖∞ ≤ M <∞∀ i ⇒ | f (x)| ≤ M ∀ x ⇒ sup
Ω

| f (x)| ≤ M ,

and

sup
Ω

| f j (x)− f (x)| = sup
Ω

| f j (x)− lim
k

fk (x)| = lim
k

sup
Ω

| f j (x)− fk (x)| = lim
k

‖ f j − fk‖→ 0

as j → 0. Hence,

(i) f j → f uniformly inΩ implies f ∈C (Ω)

(ii) ‖ f j − f ‖∞ → 0 as j → 0

and C (Ω) is complete.

b) LetΩ be a bounded set, then(
C 1(Ω) ; ‖ f ‖1,∞ := sup

x∈Ω

{| f (x)|+ |∇ f (x)|})
is a Banach space.

Proof.

1) ‖ ·‖1,∞ well defined and norm on C 1(Ω) as in the previous exercise.

2)

{ fi } Cauchy ⇒ { fi (x)}, {∇ fi (x)} Cauchy

⇒ exists yx ∈R, −→y ′
x ∈Rn such that fi (x),∇ fi (x) → yx ,−→y ′

x

3) Def. f (x) = yx , −→g (x) =−→y ′
x , x ∈Ω. As in the previous exercise:

f ∈C (Ω), ‖ fi − f ‖∞ → 0

−→g ∈ [C (Ω)]n , ‖∇ fi −−→g ‖∞ → 0

4) Check: ∇ f =−→g . For any ε> 0,∣∣∣ f (x +he j )− f (x)

h
− g j (x)

∣∣∣≤ |De j f (x)−De j fk (x)|+ |De j fk (x)− g j (x)| < ε

since the first term on the right-hand side is less than ε
2 for k large enough and the sec-

ond term is less than ε
2 for h small enough.

March 30, 2009 Page 2 of 5



Problem set for week 14

5) Conclude f j → f in C 1(Ω) and the space is complete.

c) LetΩ be a bounded set, (
C (Ω) ; < f , g >=

∫
Ω

f g
)

is an inner product space which is not a Hilbert space.

Proof.

1) < ·, · > well defined on C (Ω) (ifΩ nice)

2) < ·, · > inner product on C (Ω). Trivial, e.g.

< f , f >= 0 ⇒
∫

| f |2d x = 0 ⇒ f ≡ 0

2) Not complete. Counter-example in C ([−1,1]). Define

f (x) =
{

0 x < 0
1 x ≥ 0

and fk (x) =


0 x <− 1
k

x + 1
k − 1

k ≤ x < 0
1 x ≥ 0,

and observe that

‖ f − fk‖2 =
∫ 1

−1
| f − fk |2 =

∫ 0

− 1
k

| f − fk |2 ≤
1

k
→∞

since | f − fk |2 ≤ 1. Hence ‖ fk − f ‖→ 0 but f 6∈C (Ω), so C (Ω) is not complete.

3 (Young’s inequality) Let a,b > 0, p > 1 q <∞, 1
p + 1

q = 1. Then

a ·b ≤ ap

p
+ bq

q

Proof. Note that the function f (x) = ex is convex. Then,

ab = e ln a+lnb = e
1
p ln(ap )+ 1

q ln(bq )

= f (λ ln ap + (1−λ) ln aq ), λ= 1

p
,

≤λ f (ln ap )+ (1−λ) f (ln aq ), by convexity,

= ap

p
+ bq

q
.

4 (McOwen 6.1:5) We setΩ= (0,1).

a) Define u :Ω→R by

u(x) =
{

x for 0 < x ≤ 1/2,

1−x for 1/2 ≤ x < 1.
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We compute the weak derivative u′(x). So let v ∈C∞
0 (Ω), and calculate, using integration by

parts, ∫ 1

0
u(x)v ′(x)d x =

∫ 1/2

0
xv ′(x)d x +

∫ 1

1/2
(1−x)v ′(x)d x

=−
∫ 1/2

0
v(x)d x −

∫ 1

1/2
(−1)v(x)d x

=−
∫ 1

0
f (x)v(x)d x,

where

f (x) =
{

1 for 0 < x ≤ 1/2,

−1 for 1/2 ≤ x < 1.

This shows that f is the weak derivative of u onΩ.

b) Now set u(x) = xα for x ∈ Ω = (0,1), where α ∈ R. We want to check for which α we have
u ∈ H 1(Ω). To do this, let us use the fact that

H 1(Ω) =W 1,2(Ω) = {
f ∈ L2(Ω) : f ′ ∈ L2(Ω)

}
,

where f ′ denotes the distributional derivative (the weak derivative).

First, we check for which α we have u ∈ L2(Ω). We have∫ 1

0
u(x)2 d x =

∫ 1

0
x2αd x,

and this integral converges if and only if 2α>−1, i.e., α>−1/2.

Next, we check for which α we have u′ ∈ L2(Ω). Since u′(x) =αxα−1, we see as above that this
is in L2(Ω) if and only if α−1 >−1/2, i.e., α> 3/2.

So the answer is: u ∈ H 1(Ω) if and only if α> 3/2.

5 (McOwen 6.1:15)
A bounded bilinear form on a Hilbert space X is a map B : X ×X →R such that

(i) B(ax +by, z) = aB(x, z)+bB(y, z)

(ii) B(x, ay +bz) = aB(x, y)+bB(x, z)

(iii) |B(x, y)| ≤C‖x‖‖y‖
for all a,b ∈R and x, y, z ∈ X .

Thm 1. There exists a unique bounded linear operator A : X → X such that

B(x, y) =< Ax, x >, < ·, · > inner product in X ,

for all x, y ∈ X .

Proof.

(i) Define Fx : X →R as
Fx (y) = B(x, y) for all y ∈ X .

Note that Fx is linear
Fx (ay +bz) = aFx (y)+bFx (z) (by (ii))

and bounded
|Fx (y)| = |B(x, y)| ≤C‖x‖‖‖y‖ (by (iii)).
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(ii) Riesz representation theorem: There exists a unique zx ∈ X such that Fx (y) =< zx , y > for all
y ∈ X . Moreover, ‖Fx‖ = ‖zx‖.

(iii) Define A : X → X by
Ax = zx .

A linear:

< A(ax +by), z >=< zax+by , z >= Fax+by (z) = B(ax +by, z)

= aFx (z)+bFy (z) by (i )

=< azx +bzy , z > by definition of zx

=< a Ax +b Ay , z > by definition of A(*)

Take

z = A(ax +by)− [a Ax +b Ay ] in (*) ⇒ ‖A(ax +by)− [a Ax +b Ay ]‖ = 0

⇒ A(ax +by) = a Ax +b Ay

A bounded:

‖Ax‖ = ‖zx‖ = ‖Fx‖ = sup
y 6=0

|Fx (y)|
‖y‖ = sup

y 6=0

|B(x, y)|
‖y‖ ≤C‖x‖ by (i i i ).

A unique: Assume Ã is such that B(x, y) =< Ãx, y > for all x, y ∈ X . Then

0 =< Ax, y >−< Ãx, y >=< (A− Ã)x, y >
⇒ 0 = ‖(Ã− A)x‖ for all x ∈ X (take y = (Ã− A)x)

⇒ (Ã− A)x = 0 for all x ∈ X

⇒ Ã = A
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