

TMA4305 Partial Differential Equations Spring 2009

Problem set for week 14

1 We are asked to prove that the operator norm *is* a norm on the space L(X, Y) of bounded linear maps from *X* to *Y*, and moreover, if *Y* is a Banach space, then so is L(X, Y).

So let $T \in L(X, Y)$. The operator norm is defined by

$$||T|| = \sup_{x \in X, \, x \neq 0} \frac{||Tx||_Y}{||x||_X},$$

which is a well-defined non-negative real number, since by assumption there exists *some* constant C > 0 such that $||Tx||_Y \le C ||x||_X$, hence $||T|| \le C$.

Clearly,

(1)
$$\|Tx\|_{Y} \le \|T\| \, \|x\|_{X}.$$

The properties of a norm are easily checked. First, if ||T|| = 0, then (1) implies T = 0. Second,

$$\|cT\| = \sup_{x \in X, x \neq 0} \frac{\|cTx\|_{Y}}{\|x\|_{X}} = \sup_{x \in X, x \neq 0} \frac{|c| \|Tx\|_{Y}}{\|x\|_{X}} = |c| \sup_{x \in X, x \neq 0} \frac{\|Tx\|_{Y}}{\|x\|_{X}} = |c| \|T\|$$

where we used the general fact that the supremum commutes with multiplication by a non-negative constant. Third, if $S, T \in L(X, Y)$, then

$$\sup_{x \in X, x \neq 0} \frac{\|Sx + Tx\|_Y}{\|x\|_X} \le \sup_{x \in X, x \neq 0} \frac{\|Sx\|_Y + \|Tx\|_Y}{\|x\|_X} \le \sup_{x \in X, x \neq 0} \frac{\|Sx\|_Y}{\|x\|_X} + \sup_{x \in X, x \neq 0} \frac{\|Tx\|_Y}{\|x\|_X},$$

which proves $||S + T|| \le ||S|| + ||T||$. This concludes the proof that ||T|| is a norm.

Now assume *Y* is Banach, and let us prove that L(X, Y) is then also Banach. So assume $\{T_j\}$ is a Cauchy sequence in L(X, Y). For any $x \in X$, we have by (1) and linearity,

(2)
$$||T_j x - T_k x||_Y \le ||T_j - T_k|| ||x||_X$$

hence $\{T_j x\}$ is a Cauchy sequence in *Y*, hence it has a limit in *Y*, which we denote *Tx*. Doing this for every $x \in X$, we obtain a map $T: X \to Y$, and this map is linear, since each T_j is. It remains to prove that $T \in L(X, Y)$ and that $||T_j - T|| \to 0$ as $j \to \infty$.

But being a Cauchy sequence, T_j is bounded, i.e., there exists M > 0 such that $||T_j|| \le M$ for all j. Thus, $||T_j x||_Y \le M ||x||_X$ for all $x \in X$, which implies that $||Tx||_Y \le M ||x||_X$, hence $T \in L(X, Y)$, and $||T|| \le M$.

Finally, given $\varepsilon > 0$, there exists $N = N(\varepsilon) \in \mathbb{N}$ such that $||T_j - T_k|| \le \varepsilon$ for all $j, k \ge N$. Then letting $k \to \infty$ in (2), we get

 $||T_j x - Tx|| \le \varepsilon ||x||_X$ for all $j \ge N$ and all $x \in X$,

hence $||T_j - T|| \le \varepsilon$ for $j \ge N$.

a) Let $\overline{\Omega}$ be a bounded set, $(C(\overline{\Omega}); ||f||_{\infty} = \max_{x \in \overline{\Omega}} |f(x)|)$ is a Banach space.

Proof.

1) $\|\cdot\|_{\infty}$ is well-defined, indeed:

$$f \in C(\overline{\Omega}) \Rightarrow \exists x_0 \in \overline{\Omega} \text{ such that } ||f||_{\infty} = |f(x_0)|$$

2) $\|\cdot\|_{\infty}$ is a norm on $C(\overline{\Omega})$. Trivial, for example,

$$||f||_{\infty} = 0 \Rightarrow |f(x)| = 0$$
 for all $x \Rightarrow f = 0$

3) Completeness:

$$\{f_i\} \subset C(\overline{\Omega})$$
 Cauchy $\Rightarrow f_i(x) \subset \mathbb{R}$ Cauchy,

since

$$|f_i(x) - f_j(x)| \le ||f_i - f_j||_{\infty}.$$

This implies that there exists $y_x \in \mathbb{R}$ (\mathbb{R} is complete) such that

$$f_i(x) \to y_x$$
 for all $x \in \overline{\Omega}$

Define the function f as

$$f(x) = y_x$$
 for all $x \in \overline{\Omega}$,

and note that

$$\{f_i\} \text{ Cauchy} \quad \Rightarrow \quad \|f_i\|_{\infty} \le M < \infty \ \forall \ i \quad \Rightarrow \quad |f(x)| \le M \ \forall \ x \quad \Rightarrow \quad \sup_{\overline{\Omega}} |f(x)| \le M,$$

and

$$\sup_{\overline{\Omega}} |f_j(x) - f(x)| = \sup_{\overline{\Omega}} |f_j(x) - \lim_k f_k(x)| = \lim_k \sup_{\overline{\Omega}} |f_j(x) - f_k(x)| = \lim_k ||f_j - f_k|| \to 0$$

as $j \to 0$. Hence, (i) $f_j \to f$ uniformly in $\overline{\Omega}$ implies $f \in C(\overline{\Omega})$ (ii) $||f_j - f||_{\infty} \to 0$ as $j \to 0$ and $C(\overline{\Omega})$ is complete.

b) Let Ω be a bounded set, then

$$\left(C^1(\overline{\Omega}); \|f\|_{1,\infty} := \sup_{x \in \Omega} \left\{ |f(x)| + |\nabla f(x)| \right\} \right)$$

is a Banach space.

Proof.

||·||_{1,∞} well defined and norm on C¹(Ω) as in the previous exercise.

$$\{f_i\} \text{ Cauchy} \Rightarrow \{f_i(x)\}, \{\nabla f_i(x)\} \text{ Cauchy} \Rightarrow \text{ exists } y_x \in \mathbb{R}, \ \overrightarrow{y}'_x \in \mathbb{R}^n \text{ such that } f_i(x), \nabla f_i(x) \rightarrow y_x, \ \overrightarrow{y}'_x$$

3) Def. $f(x) = y_x$, $\overrightarrow{g}(x) = \overrightarrow{y}'_x$, $x \in \Omega$. As in the previous exercise:

$$f \in C(\overline{\Omega}), \ \|f_i - f\|_{\infty} \to 0$$
$$\overrightarrow{g} \in [C(\overline{\Omega})]^n, \ \|\nabla f_i - \overrightarrow{g}\|_{\infty} \to 0$$

4) Check: $\nabla f = \overrightarrow{g}$. For any $\epsilon > 0$,

$$\left|\frac{f(x+he_j)-f(x)}{h}-g_j(x)\right|\leq |D_{e_j}f(x)-D_{e_j}f_k(x)|+|D_{e_j}f_k(x)-g_j(x)|<\epsilon$$

since the first term on the right-hand side is less than $\frac{\epsilon}{2}$ for k large enough and the second term is less than $\frac{\epsilon}{2}$ for h small enough.

- 5) Conclude $f_j \to f$ in $C^1(\overline{\Omega})$ and the space is complete.
- c) Let Ω be a bounded set,

$$\left(C(\overline{\Omega}); < f, g > = \int_{\Omega} fg\right)$$

is an inner product space which is not a Hilbert space.

Proof.

- 1) $\langle \cdot, \cdot \rangle$ well defined on $C(\overline{\Omega})$ (if Ω nice)
- 2) $\langle \cdot, \cdot \rangle$ inner product on $C(\overline{\Omega})$. Trivial, e.g.

$$\langle f, f \rangle = 0 \Rightarrow \int |f|^2 dx = 0 \Rightarrow f \equiv 0$$

2) Not complete. Counter-example in C([-1, 1]). Define

$$f(x) = \begin{cases} 0 & x < 0 \\ 1 & x \ge 0 \end{cases} \quad \text{and} \quad f_k(x) = \begin{cases} 0 & x < -\frac{1}{k} \\ x + \frac{1}{k} & -\frac{1}{k} \le x < 0 \\ 1 & x \ge 0, \end{cases}$$

and observe that

$$\|f - f_k\|^2 = \int_{-1}^1 |f - f_k|^2 = \int_{-\frac{1}{k}}^0 |f - f_k|^2 \le \frac{1}{k} \to \infty$$

since $|f - f_k|^2 \le 1$. Hence $||f_k - f|| \to 0$ but $f \notin C(\overline{\Omega})$, so $C(\overline{\Omega})$ is not complete.

3 (Young's inequality) Let a, b > 0, p > 1 $q < \infty, \frac{1}{p} + \frac{1}{q} = 1$. Then

$$a \cdot b \le \frac{a^p}{p} + \frac{b^q}{q}$$

Proof. Note that the function $f(x) = e^x$ is convex. Then,

$$ab = e^{\ln a + \ln b} = e^{\frac{1}{p}\ln(a^p) + \frac{1}{q}\ln(b^q)}$$

= $f(\lambda \ln a^p + (1 - \lambda) \ln a^q), \quad \lambda = \frac{1}{p},$
 $\leq \lambda f(\ln a^p) + (1 - \lambda) f(\ln a^q), \quad \text{by convexity,}$
 $= \frac{a^p}{p} + \frac{b^q}{q}.$

4 (McOwen 6.1:5) We set $\Omega = (0, 1)$.

a) Define $u: \Omega \to \mathbb{R}$ by

$$u(x) = \begin{cases} x & \text{for } 0 < x \le 1/2, \\ 1 - x & \text{for } 1/2 \le x < 1. \end{cases}$$

We compute the weak derivative u'(x). So let $v \in C_0^{\infty}(\Omega)$, and calculate, using integration by parts,

$$\int_0^1 u(x) v'(x) \, dx = \int_0^{1/2} x v'(x) \, dx + \int_{1/2}^1 (1-x) v'(x) \, dx$$
$$= -\int_0^{1/2} v(x) \, dx - \int_{1/2}^1 (-1) v(x) \, dx$$
$$= -\int_0^1 f(x) v(x) \, dx,$$

where

$$f(x) = \begin{cases} 1 & \text{for } 0 < x \le 1/2, \\ -1 & \text{for } 1/2 \le x < 1. \end{cases}$$

This shows that *f* is the weak derivative of u on Ω .

b) Now set $u(x) = x^{\alpha}$ for $x \in \Omega = (0, 1)$, where $\alpha \in \mathbb{R}$. We want to check for which α we have $u \in H^1(\Omega)$. To do this, let us use the fact that

$$H^{1}(\Omega) = W^{1,2}(\Omega) = \{ f \in L^{2}(\Omega) : f' \in L^{2}(\Omega) \},\$$

where f' denotes the distributional derivative (the weak derivative). First, we check for which α we have $u \in L^2(\Omega)$. We have

$$\int_0^1 u(x)^2 \, dx = \int_0^1 x^{2\alpha} \, dx,$$

and this integral converges if and only if $2\alpha > -1$, i.e., $\alpha > -1/2$. Next, we check for which α we have $u' \in L^2(\Omega)$. Since $u'(x) = \alpha x^{\alpha-1}$, we see as above that this is in $L^2(\Omega)$ if and only if $\alpha - 1 > -1/2$, i.e., $\alpha > 3/2$. So the answer is: $u \in H^1(\Omega)$ if and only if $\alpha > 3/2$.

5 (McOwen 6.1:15)

A bounded bilinear form on a Hilbert space *X* is a map $B: X \times X \to \mathbb{R}$ such that

- (i) B(ax + by, z) = aB(x, z) + bB(y, z)
- (ii) B(x, ay + bz) = aB(x, y) + bB(x, z)
- (iii) $|B(x, y)| \le C ||x|| ||y||$

for all $a, b \in \mathbb{R}$ and $x, y, z \in X$.

Thm 1. There exists a unique bounded linear operator $A: X \to X$ such that

$$B(x, y) = \langle Ax, x \rangle, \quad \langle \cdot, \cdot \rangle$$
 inner product in X,

for all $x, y \in X$.

Proof.

(i) Define $F_x : X \to \mathbb{R}$ as $F_x(y) = B(x, y)$ for all $y \in X$. Note that F_x is linear $F_x(ay + bz) = aF_x(y) + bF_x(z)$ (by (ii)) and bounded $|F_x(y)| = |B(x, y)| \le C ||x|| |||y||$ (by (iii)).

- (ii) Riesz representation theorem: There exists a unique $z_x \in X$ such that $F_x(y) = \langle z_x, y \rangle$ for all $y \in X$. Moreover, $||F_x|| = ||z_x||$.
- (iii) Define $A: X \to X$ by

$$Ax = z_x$$
.

A linear:

Take

(*)

$$\begin{split} z &= A(ax+by) - [aA_x+bA_y] \text{ in } (*) \quad \Rightarrow \quad \|A(ax+by) - [aA_x+bA_y]\| = 0 \\ &\Rightarrow \quad A(ax+by) = aA_x+bA_y \end{split}$$

A bounded:

$$||Ax|| = ||z_x|| = ||F_x|| = \sup_{y \neq 0} \frac{|F_x(y)|}{||y||} = \sup_{y \neq 0} \frac{|B(x, y)|}{||y||} \le C||x||$$
 by (*iii*).

A unique: Assume \widetilde{A} is such that $B(x, y) = \langle \widetilde{A}x, y \rangle$ for all $x, y \in X$. Then

$$\begin{split} 0 &= \langle Ax, y \rangle - \langle \widetilde{A}x, y \rangle = \langle (A - \widetilde{A})x, y \rangle \\ \Rightarrow 0 &= \|(\widetilde{A} - A)x\| \quad \text{for all } x \in X \quad (\text{take } y = (\widetilde{A} - A)x) \\ \Rightarrow (\widetilde{A} - A)x &= 0 \quad \text{for all } x \in X \\ \Rightarrow \widetilde{A} &= A \end{split}$$

-	-	-	
-	-	-	