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a) The easiest way to solve this problem is to check that (do it!) from the definitions of Hg and
Hj that
Uue H>(Q) = U, Uy,,..., Uy, € H) (Q),

and then use the Poincare inequality in H& (Q),
lul5 < ClIVuls  Vve Hy Q).
The result is the following inequality:

2 2 2
leells + Nluxy 15 + N, ll2 = A+ Ol 15 - + (1 + Oy, ll2
2 2 2
= C(l + C)(” Uy x, ”2 + ” Uy xy ”2 +teeet ” Uy xp, ”2)+
2 2 2
ct C(L+ COY Nty 15 + N2y 15 + 22+ + 2,y 0, 15)

=C(L+O)|D?ul;.
Now we can conclude from the inequlity | D? ||, < C||Aull,.

b) The idea is to prove that (HS (Q), (-,+)) is a Hilbert space when

(u, v):f Aulv,
Q

and that

F(v)zf fv
Q

is a bounded linear functional on (Hz(Q), (-,-)) when f € L*(Q).
We can then use Riesz representation theorem to conclude that there is a unique u € Hz2 Q)
such that
(w,v)=F(v) forall ve Hj(),
and hence there is a unique weak solution of (1).
1) () is an inner product on Hg (Q): Letu,v,we Hg (Q), a,b eR, then
D (u,u)=0

i) 0=(u,w)=Aul? e lul=0 =u=0aeinQ = u=0 in HZ(Q.

iii) (au+ bv, w) = a(u, w) + b(v, w)
iv) (u,v)=(v,u)
2) The induced norm |u|? = (u, ) is equivalent to the H* norm |- [l5,2, and hence (H; (Q), |-
l2,2) is complete since (Hg (), I - ll2,2) is complete:
It is obvious that
lulz2 < lullz2 for ue Hi(Q).
To prove the opposite inequality, we need the Poincare type inequalities from Exercise 1
and the Hint:
lul3 + IVl +I1D?ulls < ClAul for ue HZ(Q).

By these inequalities it follows that
lul3, = luls + IVul3 + I D*ul3 < ClAull3 = Clul3,,

and hence the norms are equivalent.
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3) Fisabounded linear functional: This is obvious e.g.

[F = fll2llvlz = Kl fll2lvl2,2.

Exercise 6.2.4. For abounded domain Q c R", we set

Jo |Vu(x)? dx

Ay =
! ueCP@Q),uz0 [ u(x)?dx

a) We prove A; > 0. In fact, by the Poincaré inequality,
f u(x)2 dx < Cf IVu(x)I2 dax,
Q Q

forall u e CSO(Q), where C > 0 only depends on Q. So if u # 0 (so that fQ u(x)%dx > 0), then

we have
1_ JoIVu(x)?> dx

c” Joux)?dx ’
which implies 1; =1/C > 0.
b) We consider the Dirichlet problem

1)

Au+cu=f inQ,
u=0 on 0Q,

where f € L?(Q) is given and ¢ < A, is a constant.

We are asked to prove the existence of a weak solution u € H& (Q). By definition, this must
satisfy

fVu-Vv—cuvdxz—f frdx  forallve Cg.
Q ) Q

=B(u,v) =Fr(v)

So the existence follows from the Riesz representation theorem, provided we can show that
B(u,v) is an inner product on H& (Q), whose associated norm v/B(u, u) is equivalent to the
standard norms ||-||; » and |-|;,2 on H& (Q) (recall that the latter two are equivalent by Poincaré’s
inequality).

Clearly, B(u, v) is symmetric, and it is linear in both © and v. It remains to obtain upper and
lower bounds on B(u, u). By density, it suffices to do this for u € C3°(Q), u # 0. Since

—f u(x)zdxz—if IVu(x)|? dx,
Q A Ja

we have

2) B(u,u)zsf IVul? dx:£|u|§2, where 82(1—%)>0.
Q ’ 1

On the other hand, it is obvious that
3) B(u,u) < (L+ch) lullf,.

From (2) we conclude that B satisfies the positivity required of an inner product, and from
(2) and (3) together we conclude that the norm v/B(u, u) is equivalent to the standard norms
I-ll1,2 and |-} 2 on Hy ().

Exercise 6.3.3. Suppose H is a Hilbert space, and that x,, — x weakly in H. Moreover, suppose that
llx, Il — llx|l. We are going to prove that this implies strong convergence x;, — x.

April 17, 2009 Page 2 of 4



Solutions Week 16

Indeed, we have

2
I

2 2
lxn = xII” =Xy — X, x5 — X) = X517 = 2{xp, x) + | x[I°.

By assumption, the first term on the right hand side converges to IlxII. By weak convergence, the
second term converges to —2(x,x) = -2 |l x|I2. We conclude that || x, — x||®> — 0, hence || x, — x|l —
0, which means precisely that x;,, — x strongly.

Exercise 6.3.7. If suffices to consider H = I?(N), since every separable Hilbert space is isometrically
isomorphic to this space.

So assume {x;} c 12(N) is bounded. Le., writing x; = {a{;}‘,’f’zl € I2(N), there exists a constant C > 0
such that

@ il = 2 @d® < 2,
n=1
for all j. In particular, this implies that

o

<=C forall jand n.

Therefore, starting with n = 1, we can find a sequence
(5) ]11<]21<<]/i<

il
. J
in N'such that a}* converges to a number ; as k — oco.

-1
Next, take n = 2. Since aé’“ < C for all k, we can then find a sequence

2
which is a subsequence of (5), and such that aék converges to a number a» as k — co.

Continuing in this way, we obtain an infinite matrix

i
i i
j3

i B

in
with the properties: (i) each row is a subsequence of the previous row, and (ii) limy_ ., ocff =ap.

-k
Now we apply the diagonal argument, defining ﬁ]fl = ai,’“. Then by the properties (i) and (ii),

@) lim X = a,
k—o0

for all n.

Define
Vi =1BRI).

Thus, y = X ik, SO {Yi} is a subsequence of {x;}.
k

From (4) we get, letting j — co along the subsequence j]’g,

N
Y a%=C?
n=1
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for all N, hence
o0
Z ai <%
n=1
Defining
x={an},
we then have x € I2(N).

To finish up, we show that y; — x weakly in I2(N)). To this end, let z = {y,} € I>(N). We have to
prove that { yx,z) — (x,z) as k — oo, i.e.,

8) >
n=1

ﬁﬁ—an]yn—w as k — oo.

So let € > 0. For arbitrary N, we have by the Cauchy-Schwarz inequality and (4),

5 ﬁ’fﬁnf\/ 5 ww $ yzscv $ .

n=N+1 n=N+1 n=N+1 =N+1

Now choose N so large that

\/ i Yis .
n=N+1 C
Then we get
) Y Bryn<e forallk.
n=N+1
Similarly we obtain
(10) Y apyn<e.
n=N+1
By (7) we have
N
(11) lim [ Y Bk —an|ya|=0.
k—oo| =1

Combining (9), (10) and (11), we conclude that (8) holds.
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