TMA4305 Partial Differential Equations Spring 2009
Norwegian University of Science and Technology

Solutions Week 16
Department of Mathematical Sciences

1 (Corrected version)
a) The easiest way to solve this problem is to check that (do it!) from the definitions of H_{0}^{2} and H_{0}^{1} that

$$
u \in H_{0}^{2}(\Omega) \quad \Longrightarrow \quad u, u_{x_{1}}, \ldots, u_{x_{n}} \in H_{0}^{1}(\Omega)
$$

and then use the Poincare inequality in $H_{0}^{1}(\Omega)$,

$$
\|u\|_{2}^{2} \leq C\|\nabla u\|_{2}^{2} \quad \forall v \in H_{0}^{1}(\Omega) .
$$

The result is the following inequality:

$$
\begin{aligned}
& \|u\|_{2}^{2}+\left\|u_{x_{1}}\right\|_{2}^{2} \cdots+\left\|u_{x_{n}}\right\|_{2} \leq(1+C)\left\|u_{x_{1}}\right\|_{2}^{2} \cdots+(1+C)\left\|u_{x_{n}}\right\|_{2} \\
& \leq C(1+C)\left(\left\|u_{x_{1} x_{1}}\right\|_{2}^{2}+\left\|u_{x_{1} x_{2}}\right\|_{2}^{2}+\cdots+\left\|u_{x_{1} x_{n}}\right\|_{2}^{2}\right)+ \\
& \quad \cdots+C(1+C)\left(\left\|u_{x_{n} x_{1}}\right\|_{2}^{2}+\left\|u_{x_{n} x_{2}}\right\|_{2}^{2}+\cdots+\left\|u_{x_{n} x_{n}}\right\|_{2}^{2}\right) \\
& =C(1+C)\left\|D^{2} u\right\|_{2}^{2} .
\end{aligned}
$$

Now we can conclude from the inequlity $\left\|D^{2} u\right\|_{2} \leq C\|\Delta u\|_{2}$.
b) The idea is to prove that $\left(H_{0}^{2}(\Omega),(\cdot, \cdot)\right)$ is a Hilbert space when

$$
(u, v)=\int_{\Omega} \Delta u \Delta v
$$

and that

$$
F(v)=\int_{\Omega} f v
$$

is a bounded linear functional on $\left(H_{0}^{2}(\Omega),(\cdot, \cdot)\right)$ when $f \in L^{2}(\Omega)$.
We can then use Riesz representation theorem to conclude that there is a unique $u \in H_{2}^{2}(\Omega)$ such that

$$
(u, v)=F(v) \text { for all } \quad v \in H_{0}^{2}(\Omega),
$$

and hence there is a unique weak solution of (1).

1) (\cdot, \cdot) is an inner product on $H_{0}^{2}(\Omega)$: Let $u, v, w \in H_{0}^{2}(\Omega), a, b \in \mathbb{R}$, then
i) $(u, u) \geq 0$
ii) $0=(u, u)=\|\Delta u\|_{2}^{2} \underset{\text { exercise } 1}{\Longrightarrow}\|u\|_{2}=0 \quad \Longrightarrow u=0$ a.e. in $\Omega \quad \Longrightarrow \quad u=0$ in $H_{0}^{2}(\Omega)$.
iii) $(a u+b v, w)=a(u, w)+b(v, w)$
iv) $(u, v)=(v, u)$
2) The induced norm $|u|^{2}=(u, u)$ is equivalent to the H^{2} norm $\|\cdot\|_{2,2}$, and hence $\left(H_{0}^{2}(\Omega), \mid \cdot\right.$ $\left.\right|_{2,2}$) is complete since ($\left.H_{0}^{2}(\Omega),\|\cdot\|_{2,2}\right)$ is complete:
It is obvious that

$$
|u|_{2,2} \leq\|u\|_{2,2} \quad \text { for } \quad u \in H_{0}^{2}(\Omega) .
$$

To prove the opposite inequality, we need the Poincare type inequalities from Exercise 1 and the Hint:

$$
\|u\|_{2}^{2}+\|\nabla u\|_{2}^{2}+\left\|D^{2} u\right\|_{2}^{2} \leq C\|\Delta u\|_{2}^{2} \quad \text { for } \quad u \in H_{0}^{2}(\Omega) .
$$

By these inequalities it follows that

$$
\|u\|_{2,2}^{2}=\|u\|_{2}^{2}+\|\nabla u\|_{2}^{2}+\left\|D^{2} u\right\|_{2}^{2} \leq C\|\Delta u\|_{2}^{2}=C|u|_{2,2}^{2},
$$

and hence the norms are equivalent.
3) F is a bounded linear functional: This is obvious e.g.

$$
|F(v)| \leq\|f\|_{2}\|v\|_{2} \leq K\|f\|_{2}|v|_{2,2} .
$$

2 Exercise 6.2.4. For a bounded domain $\Omega \subset \mathbb{R}^{n}$, we set

$$
\lambda_{1}=\inf _{u \in C_{0}^{\infty}(\Omega), u \neq 0} \frac{\int_{\Omega}|\nabla u(x)|^{2} d x}{\int_{\Omega} u(x)^{2} d x}
$$

a) We prove $\lambda_{1}>0$. In fact, by the Poincaré inequality,

$$
\int_{\Omega} u(x)^{2} d x \leq C \int_{\Omega}|\nabla u(x)|^{2} d x
$$

for all $u \in C_{0}^{\infty}(\Omega)$, where $C>0$ only depends on Ω. So if $u \neq 0$ (so that $\int_{\Omega} u(x)^{2} d x>0$), then we have

$$
\frac{1}{C} \leq \frac{\int_{\Omega}|\nabla u(x)|^{2} d x}{\int_{\Omega} u(x)^{2} d x}
$$

which implies $\lambda_{1} \geq 1 / C>0$.
b) We consider the Dirichlet problem

$$
\begin{cases}\Delta u+c u=f & \text { in } \Omega \tag{1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $f \in L^{2}(\Omega)$ is given and $c<\lambda_{1}$ is a constant.
We are asked to prove the existence of a weak solution $u \in H_{0}^{1}(\Omega)$. By definition, this must satisfy

$$
\underbrace{\int_{\Omega} \nabla u \cdot \nabla v-\operatorname{cuv} d x}_{=B(u, v)}=-\underbrace{\int_{\Omega} f v d x}_{=F_{f}(v)} \quad \text { for all } v \in C_{0}^{\infty}
$$

So the existence follows from the Riesz representation theorem, provided we can show that $B(u, v)$ is an inner product on $H_{0}^{1}(\Omega)$, whose associated norm $\sqrt{B(u, u)}$ is equivalent to the standard norms $\|\cdot\|_{1,2}$ and $|\cdot|_{1,2}$ on $H_{0}^{1}(\Omega)$ (recall that the latter two are equivalent by Poincaré's inequality).
Clearly, $B(u, v)$ is symmetric, and it is linear in both u and v. It remains to obtain upper and lower bounds on $B(u, u)$. By density, it suffices to do this for $u \in C_{0}^{\infty}(\Omega), u \neq 0$. Since

$$
-\int_{\Omega} u(x)^{2} d x \geq-\frac{1}{\lambda_{1}} \int_{\Omega}|\nabla u(x)|^{2} d x
$$

we have

$$
\begin{equation*}
B(u, u) \geq \varepsilon \int_{\Omega}|\nabla u|^{2} d x=\varepsilon|u|_{1,2}^{2}, \quad \text { where } \quad \varepsilon=\left(1-\frac{c}{\lambda_{1}}\right)>0 . \tag{2}
\end{equation*}
$$

On the other hand, it is obvious that

$$
\begin{equation*}
B(u, u) \leq(1+|c|)\|u\|_{1,2}^{2} . \tag{3}
\end{equation*}
$$

From (2) we conclude that B satisfies the positivity required of an inner product, and from (2) and (3) together we conclude that the norm $\sqrt{B(u, u)}$ is equivalent to the standard norms $\|\cdot\|_{1,2}$ and $|\cdot|_{1,2}$ on $H_{0}^{1}(\Omega)$.

3 Exercise 6.3.3. Suppose H is a Hilbert space, and that $x_{n} \rightarrow x$ weakly in H. Moreover, suppose that $\left\|x_{n}\right\| \rightarrow\|x\|$. We are going to prove that this implies strong convergence $x_{n} \rightarrow x$.

Indeed, we have

$$
\left\|x_{n}-x\right\|^{2}=\left\langle x_{n}-x, x_{n}-x\right\rangle=\left\|x_{n}\right\|^{2}-2\left\langle x_{n}, x\right\rangle+\|x\|^{2} .
$$

By assumption, the first term on the right hand side converges to $\|x\|^{2}$. By weak convergence, the second term converges to $-2\langle x, x\rangle=-2\|x\|^{2}$. We conclude that $\left\|x_{n}-x\right\|^{2} \rightarrow 0$, hence $\left\|x_{n}-x\right\| \rightarrow$ 0 , which means precisely that $x_{n} \rightarrow x$ strongly.

4 Exercise 6.3.7. If suffices to consider $H=l^{2}(\mathbb{N})$, since every separable Hilbert space is isometrically isomorphic to this space.
So assume $\left\{x_{j}\right\} \subset l^{2}(\mathbb{N})$ is bounded. I.e., writing $x_{j}=\left\{\alpha_{n}^{j}\right\}_{n=1}^{\infty} \in l^{2}(\mathbb{N})$, there exists a constant $C>0$ such that

$$
\begin{equation*}
\left\|x_{j}\right\|^{2}=\sum_{n=1}^{\infty}\left(\alpha_{n}^{j}\right)^{2} \leq C^{2} \tag{4}
\end{equation*}
$$

for all j. In particular, this implies that

$$
\left|\alpha_{n}^{j}\right| \leq C \quad \text { for all } j \text { and } n
$$

Therefore, starting with $n=1$, we can find a sequence

$$
\begin{equation*}
j_{1}^{1}<j_{2}^{1}<\cdots<j_{k}^{1}<\cdots \tag{5}
\end{equation*}
$$

in \mathbb{N} such that $\alpha_{1}^{j_{k}^{1}}$ converges to a number α_{1} as $k \rightarrow \infty$.
Next, take $n=2$. Since $\alpha_{2}^{j_{k}^{1}} \leq C$ for all k, we can then find a sequence

$$
\begin{equation*}
j_{1}^{2}<j_{2}^{2}<\cdots<j_{k}^{2}<\cdots \tag{6}
\end{equation*}
$$

which is a subsequence of (5), and such that $\alpha_{2}^{j_{k}^{2}}$ converges to a number α_{2} as $k \rightarrow \infty$.
Continuing in this way, we obtain an infinite matrix

$$
\begin{array}{cccc}
j_{1}^{1} & j_{2}^{1} & j_{3}^{1} & \ldots \\
j_{1}^{2} & j_{2}^{2} & j_{3}^{2} & \ldots \\
j_{1}^{3} & j_{2}^{3} & j_{3}^{3} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}
$$

with the properties: (i) each row is a subsequence of the previous row, and (ii) $\lim _{k \rightarrow \infty} \alpha_{n}^{j_{k}^{n}}=\alpha_{n}$. Now we apply the diagonal argument, defining $\beta_{n}^{k}=\alpha_{n}^{j_{k}^{k}}$. Then by the properties (i) and (ii),

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \beta_{n}^{k}=\alpha_{n} \tag{7}
\end{equation*}
$$

for all n.
Define

$$
y_{k}=\left\{\beta_{n}^{k_{1}}\right\}_{n=1}^{\infty} .
$$

Thus, $y_{k}=x_{j_{k}^{k}}$, so $\left\{y_{k}\right\}$ is a subsequence of $\left\{x_{j}\right\}$.
From (4) we get, letting $j \rightarrow \infty$ along the subsequence j_{k}^{k},

$$
\sum_{n=1}^{N} \alpha_{n}^{2} \leq C^{2}
$$

for all N, hence

$$
\sum_{n=1}^{\infty} \alpha_{n}^{2} \leq C^{2}
$$

Defining

$$
x=\left\{\alpha_{n}\right\},
$$

we then have $x \in l^{2}(\mathbb{N})$.
To finish up, we show that $y_{k} \rightarrow x$ weakly in $l^{2}(\mathbb{N})$. To this end, let $z=\left\{\gamma_{n}\right\} \in l^{2}(\mathbb{N})$. We have to prove that $\left\langle y_{k}, z\right\rangle \rightarrow\langle x, z\rangle$ as $k \rightarrow \infty$, i.e.,

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left[\beta_{n}^{k}-\alpha_{n}\right] \gamma_{n} \rightarrow 0 \quad \text { as } k \rightarrow \infty \tag{8}
\end{equation*}
$$

So let $\varepsilon>0$. For arbitrary N, we have by the Cauchy-Schwarz inequality and (4),

$$
\sum_{n=N+1}^{\infty} \beta_{n}^{k} \gamma_{n} \leq \sqrt{\sum_{n=N+1}^{\infty}\left(\beta_{n}^{k}\right)^{2}} \sqrt{\sum_{n=N+1}^{\infty} \gamma_{n}^{2}} \leq C \sqrt{\sum_{n=N+1}^{\infty} \gamma_{n}^{2}}
$$

Now choose N so large that

$$
\sqrt{\sum_{n=N+1}^{\infty} \gamma_{n}^{2}} \leq \frac{\varepsilon}{C}
$$

Then we get

$$
\begin{equation*}
\sum_{n=N+1}^{\infty} \beta_{n}^{k} \gamma_{n} \leq \varepsilon \quad \text { for all } k . \tag{9}
\end{equation*}
$$

Similarly we obtain

$$
\begin{equation*}
\sum_{n=N+1}^{\infty} \alpha_{n} \gamma_{n} \leq \varepsilon \tag{10}
\end{equation*}
$$

By (7) we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(\sum_{n=1}^{N}\left[\beta_{n}^{k}-\alpha_{n}\right] \gamma_{n}\right)=0 \tag{11}
\end{equation*}
$$

Combining (9), (10) and (11), we conclude that (8) holds.

