TMA4305 Partial Differential Equations
 Spring 2009

Norwegian University of Science and Technology

Solutions for week 17
Department of Mathematical Sciences

1 a) Consider $g \in H^{1}(\Omega)$. The set

$$
\mathscr{A}=\left\{u \in H^{1}(\Omega): u-g \in H_{0}^{1}(\Omega)\right\}
$$

is weakly closed in $H^{1}(\Omega)$.
Proof. \mathscr{A} weakly closed in $H^{1}(\Omega)$ means that

$$
\mathscr{A} \ni u_{k}-u \quad \text { in } H^{1}(\Omega) \quad \Rightarrow \quad u \in \mathscr{A} .
$$

Note that

$$
\begin{aligned}
& \mathscr{A} \ni u_{k} \rightharpoonup u \text { in } H^{1}(\Omega) \\
& \quad \Downarrow \\
& H_{0}^{1}(\Omega) \ni\left(u_{k}-g\right) \rightharpoonup(u-g) \quad \text { in } H_{0}^{1}(\Omega) \\
& \quad \Downarrow \\
& H_{0}^{1}(\Omega) \ni\left(u_{k}-g\right), \quad\left\|u_{k}-g\right\|_{1,2} \leq M \text { for all } k \\
& \quad \Downarrow \\
& \text { There exists }\left\{u_{k_{j}}-g\right\} \subset\left\{u_{k}-g\right\}, w \in H_{0}^{1}(\Omega) \text { such that } u_{k_{j}}-g \rightharpoonup w
\end{aligned}
$$

But, since $\left(u_{k_{j}}-g\right) \rightharpoonup(u-g)$ and the weak limit is unique,

$$
u-g=w \in H_{0}^{1}(\Omega) \Rightarrow u \in \mathscr{A}
$$

b) Define

$$
F(u)=\int_{\Omega}\left(\frac{1}{2}|\nabla u|^{2}+f u\right)
$$

Consider a function $g \in H^{1}(\Omega)$ and the set

$$
\mathscr{A}=\left\{u \in H^{1}(\Omega): u-g \in H_{0}^{1}(\Omega)\right\}
$$

Then,

$$
F(\nu) \geq C_{1}\|v\|_{1,2}^{2}-C_{2}
$$

for all $v \in \mathscr{A}$ and a $C_{1}>0$.
Proof. Obs 1: For $\epsilon>0$ and $a, b \in \mathbb{R}$,

$$
(\bar{a}-\bar{b}) \geq 0 \quad \Leftrightarrow \quad 2 \bar{a} \bar{b} \leq \bar{a}^{2}+\bar{b}^{2} \quad \Rightarrow \quad 2 a b \leq \frac{a^{2}}{\epsilon}+\epsilon b^{2} \quad \text { when } \quad \bar{a}=\frac{a}{\sqrt{\epsilon}}, \bar{b}=\epsilon b^{2} .
$$

Obs 2: $\|u\| \leq\|u-g\|+\|g\|$ and $\|g\| \leq\|u-g\|+\|u\|$. So,

$$
\|u-g\|^{2} \geq(\|u\|-\|g\|)^{2}=\|u\|^{2}-2\|u\|\|g\|+\|g\|^{2} .
$$

Hence by Obs 1 with $\epsilon=\frac{1}{2}$,

$$
\|u-g\|^{2} \geq \frac{1}{2}\|u\|^{2}-\|g\|^{2}
$$

Therefore,

$$
\begin{aligned}
\int|\nabla u|^{2} & \geq \frac{1}{2} \int|\nabla(u-g)|^{2}-\int|\nabla g|^{2} \quad \text { (Obs } 2 \text { with } u+g \text { instead of } u \text {) } \\
& \left.\geq \frac{1}{2} \frac{1}{1+C_{\Omega}}\|u-g\|_{1,2}^{2}-\|g\|_{1,2} \quad \text { (Poincare: }\|\phi\|_{2}^{2} \leq C_{\Omega}\|\nabla \phi\|_{2}^{2}, \phi \in H_{0}^{1}(\Omega)\right) \\
& \geq \frac{1}{4} \frac{1}{1+C_{\Omega}}\|u\|_{1,2}^{2}-\left(\frac{1}{2} \frac{1}{1+C_{\Omega}}+1\right)\|g\|_{1,2}^{2} \quad \text { (Obs 2 again). }
\end{aligned}
$$

Let

$$
K=\frac{1}{4} \frac{1}{1+C_{\Omega}} \quad \text { and } \quad \bar{K}=\left(\frac{1}{2} \frac{1}{1+C_{\Omega}}+1\right),
$$

and note that from Obs 1 with $\epsilon=\frac{K}{2}$ we get

$$
\int|f u| \leq \frac{\|f\|_{2}^{2}}{2 \epsilon}+\frac{\epsilon}{2}\|u\|_{2}^{2} \leq \frac{\|f\|_{2}^{2}}{2 \epsilon}+\frac{\epsilon}{2}\|u\|_{1,2}^{2}=\frac{K}{4}\|u\|_{1,2}+\frac{\|f\|_{2}^{2}}{K} .
$$

Therefore, using the previous two relationships on $\int|\nabla u|^{2}$ and $\int|f u|$ and the fact that $u \in \mathscr{A}$,

$$
\begin{aligned}
F(u) & \geq \frac{1}{2} \int|\nabla u|^{2}-\int|f u| \\
& \geq \frac{1}{2} K\|u\|_{1,2}^{2}-\bar{K}\|g\|_{1,2}^{2}-\frac{1}{4} K\|u\|_{1,2}^{2}-\frac{1}{K}\|f\|_{2}^{2} \\
& \geq \frac{1}{4} K\|u\|_{1,2}^{2}-\left(\bar{K}\|g\|_{1,2}^{2}+\frac{1}{K}\|f\|_{2}^{2}\right)
\end{aligned}
$$

2 Exercise 7.1.6. Here $\Omega \subset \mathbb{R}^{n}$ is a bounded domain, $q: \Omega \rightarrow \mathbb{R}$ is a bounded function, with upper bound $\eta \geq 0$, i.e., $q(x) \leq \eta$ for all $x \in \Omega$, and $f \in L^{2}(\Omega)$. We consider the Dirichlet problem

$$
\begin{cases}\Delta u+q u=f & \text { in } \Omega \tag{1}\\ u=0 & \text { on } \partial \Omega .\end{cases}
$$

We are asked to prove that there exists a unique weak solution.
By the usual integration by parts argument, the natural definition of a weak solution for this problem is the following:

$$
u \in X:=H_{0}^{1}(\Omega)
$$

is a weak solution of (1) if

$$
\int_{\Omega}-\nabla u \cdot \nabla v+q u v d x=\int_{\Omega} f v d x \quad \text { for all } v \in C_{0}^{\infty}(\Omega) .
$$

Equivalently, in our standard notation,

$$
\begin{equation*}
-(u, v)_{1}+\langle q u, v\rangle=\langle f, v\rangle . \tag{2}
\end{equation*}
$$

Note also that by density of $C_{0}^{\infty}(\Omega)$ in X, saying that (2) holds for all $v \in C_{0}^{\infty}(\Omega)$ is equivalent to saying that it holds for all $v \in X$.
We now want to find a functional $F: X \rightarrow \mathbb{R}$ such that the Euler-Lagrange equation $D_{\nu} F(u)=0$ is equivalent to (2). Based on our experience with the standard Poisson equation, this is not too difficult. We try

$$
F(u)=\frac{1}{2}(u, u)_{1}-\frac{1}{2}\langle q u, u\rangle+\langle f, u\rangle .
$$

Then

$$
\begin{equation*}
F(u+v)-F(u)=(u, v)_{1}+\frac{1}{2}(v, v)_{1}+\langle f, v\rangle-\langle q u, v\rangle-\frac{1}{2}\langle q v, v\rangle \tag{3}
\end{equation*}
$$

for all $u, v \in X$, hence

$$
\begin{equation*}
D_{v} F(u)=\lim _{\varepsilon \rightarrow 0} \frac{F(u+\varepsilon v)-F(u)}{\varepsilon}=(u, v)_{1}+\langle f, v\rangle-\langle q u, v\rangle \tag{4}
\end{equation*}
$$

so that $D_{v} F(u)=0$ is indeed equivalent to (2).
Existence. It suffices to find a minimizer for F, i.e., a $u \in X$ such that $F(u)=I$, where $I=\inf _{X} F$. We first prove that F is bounded below, so that I is a well-defined real number. Using the upper bound $q(x) \leq \eta$, and the inequalities of Cauchy-Schwarz and Poincaré, we have

$$
\begin{equation*}
\langle q u, u\rangle \leq \eta\|u\|_{2}^{2} \leq C^{2} \eta\|\nabla u\|_{2}^{2}=C^{2} \eta(u, u)_{1} \tag{5}
\end{equation*}
$$

where $C=C(\Omega)>0$. Similarly, and using also exercise 1 above,

$$
\begin{equation*}
|\langle f, u\rangle| \leq\|f\|_{2}\|u\|_{2} \leq C\|f\|_{2}\|\nabla u\|_{2} \leq \frac{C^{2}}{4 \varepsilon}\|f\|_{2}^{2}+\varepsilon\|\nabla u\|_{2}^{2} \tag{6}
\end{equation*}
$$

By (5) and (14), we have for every $\varepsilon>0$,

$$
\begin{equation*}
F(u) \geq\left(\frac{1}{2}-\frac{1}{2} C^{2} \eta-\varepsilon\right)\|\nabla u\|_{2}^{2}-\frac{C^{2}}{4 \varepsilon}\|f\|_{2}^{2} \tag{7}
\end{equation*}
$$

which proves that F is bounded below, provided η satisfies

$$
\begin{equation*}
\eta<\frac{1}{C^{2}} \tag{8}
\end{equation*}
$$

(Then we can choose $\varepsilon>0$ so small that (1/2) $C^{2} \eta+\varepsilon<1 / 2$, hence the first term on the right hand side of (7) is non-negative.)
Now let $\left\{u_{j}\right\} \subset X$ be a minimizing sequence for F, i.e., $F\left(u_{j}\right) \rightarrow I$. We can also assume $F\left(u_{j}\right) \leq I+1$ for all j. We show $\left\{u_{j}\right\}$ is bounded:

$$
\begin{aligned}
\left\|\nabla u_{j}\right\|_{2}^{2} & =2 F\left(u_{j}\right)+\left\langle q u_{j}, u_{j}\right\rangle-2\left\langle f, u_{j}\right\rangle & & \text { by definition of } F \\
& \leq 2(I+1)+C^{2} \eta\left\|\nabla u_{j}\right\|_{2}^{2}+\frac{C^{2}}{2 \varepsilon}\|f\|_{2}^{2}+2 \varepsilon\left\|\nabla u_{j}\right\|_{2}^{2}, & & \text { by (5) and (14) }
\end{aligned}
$$

whence

$$
\left(1-C^{2} \eta-2 \varepsilon\right)\left\|\nabla u_{j}\right\|_{2}^{2} \leq 2(I+1)+\frac{C^{2}}{4 \varepsilon}\|f\|_{2}^{2}
$$

So assuming (8) holds, and choosing $\varepsilon>0$ so small that $C^{2} \eta+2 \varepsilon<1$, we conclude that $\left\{u_{j}\right\}$ is bounded in X (recall that $|u|_{1,2}=\|\nabla u\|_{2}$ is one of the equivalent norms that we use on X).
By the theorem about weak compactness in a Hilbert space, we can therefore assume that

$$
\begin{equation*}
u_{j} \rightarrow u \quad \text { weakly in } X \tag{9}
\end{equation*}
$$

Moreover, by the compactness of the inclusion $H_{0}^{1}(\Omega) \subset L^{2}(\Omega)$, we can assume that

$$
\begin{equation*}
u_{j} \rightarrow u^{\prime} \quad \text { in } L^{2}(\Omega) \tag{10}
\end{equation*}
$$

We must have

$$
\begin{equation*}
u=u^{\prime} \tag{11}
\end{equation*}
$$

by uniqueness of weak limits in $L^{2}(\Omega)$. To finish we must show $F(u) \leq I$; then it follows that $F(u)=$ I, i.e., u is a minimizer, hence a critical point, hence a weak solution of (1).
To this end, we need the following construction. Let us define, for all $u, v \in X$,

$$
B(u, v)=(u, v)_{1}-\langle q u, v\rangle .
$$

We claim this is an inner product on X, whose associated norm is equivalent to the standard norms on X. Clearly, B is symmetric, and linear in both u and v. By (5),

$$
\begin{equation*}
B(u, u) \geq\left(1-C^{2} \eta\right)\|\nabla u\|_{2}^{2} \tag{12}
\end{equation*}
$$

Let M be a bound for $|q|$, so $|q(x)| \leq M$ for all $x \in \Omega$. Then using again Cauchy-Schwarz and Poincaré as in the proof of (5), we have

$$
|\langle q u, u\rangle| \leq M\|u\|_{2}^{2} \leq C^{2} M\|\nabla u\|_{2}^{2},
$$

whence

$$
\begin{equation*}
B(u, u) \leq\left(1+M C^{2}\right)\|\nabla u\|_{2}^{2} \tag{13}
\end{equation*}
$$

From (12), (13) and (8), we conclude that B is positive definite, and the associated norm

$$
\|u\|=\sqrt{B(u, u)}
$$

is equivalent to the standard norms on X.
With this knowledge, we can finish the proof that u is a minimizer. We write

$$
\begin{aligned}
F(u) & =\frac{1}{2} B(u, u)+\langle f, u\rangle & & \text { by definition of } F \\
& \leq \liminf _{j \rightarrow \infty}\left(\frac{1}{2} B\left(u_{j}, u_{j}\right)\right)+\langle f, u\rangle & & \text { by (9) and exercises } 5 \text { and } 2 \text { above } \\
& =\liminf _{j \rightarrow \infty}\left(\frac{1}{2} B\left(u_{j}, u_{j}\right)\right)+\liminf _{j \rightarrow \infty}\left\langle f, u_{j}\right\rangle & & \text { by (10) and (11), and exercise 4(ii) } \\
& \leq \liminf _{j \rightarrow \infty} F\left(u_{j}\right) & & \text { by exercise 3 } \\
& =\lim _{j \rightarrow \infty} F\left(u_{j}\right) & & \text { by exercise 4(ii) } \\
& =I . & &
\end{aligned}
$$

This concludes the proof of weak existence.
Uniqueness. By (3), (5) and (12), and assuming (8) holds,

$$
\begin{equation*}
F(u+v)-F(u)-D_{\nu} F(u)=B(v, v) \geq\left(1-C^{2} \eta\right)\|\nabla v\|_{2}^{2}>0 \tag{14}
\end{equation*}
$$

for all $u, v \in X, v \neq 0$. Thus, we have strict convexity, which implies uniqueness.

3 (McOwen 7.1:8 b)
Let $\Omega \subset \mathbb{R}^{2}$ be bounded. Consider

$$
F(u)=\int_{\Omega} \sqrt{1+u_{x}^{2}+u_{y}^{2}} d x d y
$$

where $u \in H^{1}(\Omega)$.

$$
\mathscr{A}=\left\{u \in H^{1}(\Omega): u-g \in H_{0}^{1}(\Omega)\right\}=\left\{u=g+v: v \in H_{0}^{1}(\Omega)\right\}
$$

The function u has a critical point of F on \mathscr{A} if

$$
0=D_{\nu} F(u)=\lim _{t \rightarrow 0} \frac{F(u+t v)-F(u)}{t}
$$

for all $v \in H^{1}(\Omega)$ such that $u+t v \in \mathscr{A}$ for t small.
Obs: $u+t v \in \mathscr{A}$ for t small implies $u \in H_{0}^{1}(\Omega)$.

Let

$$
f(p, q)=\sqrt{1+p^{2}+q^{2}}
$$

and note that $f_{p}=\frac{p}{f(p, q)}, f_{q}=\frac{q}{f(p, q)}$, and f, f_{p}, f_{q} continuous. Formally:

$$
\begin{aligned}
D_{v} F(u) & =\left.\frac{d}{d t} F(u+t v)\right|_{t=0}=\left.\int_{\Omega} \frac{\partial}{\partial t} f\left(u_{x}+t v_{x}, u_{y}+t v_{y}\right)\right|_{t=0} \\
& =\left.\int_{\Omega}\left(\frac{\left(u_{x}+t v_{x}\right) v_{x}}{f\left(u_{x}+t v_{x}, u_{y}+t v_{y}\right)}+\frac{\left(u_{y}+t v_{y}\right) v_{y}}{f\left(u_{x}+t v_{x}, u_{y}+t v_{y}\right)}\right)\right|_{t=0} \\
& =\int_{\Omega} \frac{u_{x} v_{x}+u_{y} v_{y}}{f\left(u_{x}, u_{y}\right)}=\int_{\Omega} \frac{\nabla u \cdot \nabla v}{\sqrt{1+|\nabla u|^{2}}}
\end{aligned}
$$

These computations are correct if e.g. $u, v \in C^{\infty}(\bar{\Omega})$ and then they hold by density for $u, v \in H^{1}(\Omega)$. Hence: $u \in H^{1}(\Omega)$ critical point of F on \mathscr{A} if the Euler-Lagrange equation holds:

$$
0=D_{\nu}(F)=\int_{\Omega} \frac{\nabla u \cdot \nabla v}{\sqrt{1+|\nabla u|^{2}}} \quad \text { for all } \quad v \in H_{0}^{1}(\Omega)
$$

Assume $u \in C^{2}(\Omega)$, integration by parts in the previous expression gives

$$
0=-\int_{\Omega} \operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right) v \quad \text { for all } \quad v \in H_{0}^{1}(\Omega) .
$$

The variational lemma then implies

$$
\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=0
$$

Obs:

$$
\begin{aligned}
\partial_{x_{i}}\left(\frac{u_{x_{i}}}{\sqrt{1+|\nabla u|^{2}}}\right) & =\frac{u_{x_{i} x_{i}}}{\sqrt{1+|\nabla u|^{2}}}+u_{x_{i}} \partial_{x_{i}} \frac{1}{\sqrt{1+|\nabla u|^{2}}} \\
& =\frac{u_{x_{i} x_{i}}}{\sqrt{1+|\nabla u|^{2}}}-u_{x_{i}} \frac{1}{2} \frac{1}{\left(1+|\nabla u|^{2}\right)^{\frac{3}{2}}} \sum 2 u_{x_{j}} u_{x_{j} x_{i}} \\
& =\frac{\left(1+|\nabla u|^{2}\right) u_{x_{i} x_{i}}-\sum u_{x_{i}} u_{x_{j}} u_{x_{j} x_{i}}}{\left(1+|\nabla u|^{2}\right)^{\frac{3}{2}}}
\end{aligned}
$$

Hence

$$
0=\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=\frac{\left(1+|\nabla u|^{2}\right) \Delta u-\sum \sum u_{x_{i}} u_{x_{j}} u_{x_{j} x_{i}}}{\left(1+|\nabla u|^{2}\right)^{\frac{3}{2}}}
$$

So, since we are in \mathbb{R}^{2},

$$
0=\left(1+u_{x}^{2}+u_{y}^{2}\right) u_{x x}-2 u_{x} u_{y} u_{x y}+\left(1+u_{x}^{2}+u_{y}^{2}\right) u_{y y}
$$

In other words, the abouve Euler Langrance equation is a weak formulation of a minimal surface equation!

