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a) Consider g € H'(Q). The set
o ={ue H'(Q): u-ge H ()}
is weakly closed in H' (Q).
Proof. <f weakly closed in H'(Q2) means that
A 3Ur—u in HY(Q) = ue .
Note that

d3ur—u in HY(Q

U

Hy Q)3 -8 —(w-g in HNQ)
U

H} Q)3 (ur—8), llur—glha<M forall k
U

There exists {uy;, — gt c{ur—ghwe H& (Q) suchthat wug-g—w
But, since (ur; — g) — (u— g) and the weak limit is unique,

u-g=weH Q) > ued

b) Define
F(u)=f(1|Vu|2+fu)
o 2

Consider a function g € H'(Q) and the set
of ={ue H'(Q):u-ge Hy(Q)}

Then,
Fw) = Cilvli, - C

forall ve o/ anda C; > 0.

Proof. Obs 1: Fore>0and a,beR,

2

(E—Z_J)ZO o 25}_7552+l_72 = Zabsa—+6b2 when a= ,I_o:€b2.
€

a
Ve
Obs2: lull < lu—gl +ligll and gl < llu— gl + llul. So,

lu—gl® = (lul - 1gH* = lul® - 2lulligl+ gl
Hence by Obs 1 with € = %,

1
lu-gl?= zuunz— lgl?
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Therefore,

1
fquI2 > Eflwu—g)lz—flVglz (Obs 2 with u + g instead of u)

>~ lu—gli,~ligl,  (Poincare: ¢l < CallVI3, ¢ e Hy ()
21+Cq ’
1 1 , 1 ) )
> Tre ||L¢||L2—(§m+1)||g||L2 (Obs 2 again).
Let 1 1 1 1
=-— and f:(— +1),
41+Cq 21+Cq
and note that from Obslwith€:§we get
IF12 e 5 IfI3 e , K 1713
Uls —=+-llul5 = —+=llu =—|ully2+—=.
flf | e 2” 5 e 2|I 172 4|I 1,2 e

Therefore, using the previous two relationships on f [Vu|? and f | ful and the fact that u € of,

1
F(u)zEfIVulz—flful

1 2 _Tror2. L 2 _ 1 o0
ZEKllulll,g—Kllglng—ZKIIMIILZ—I—(IIfIIZ

—

— 1
= < Klulf, - Kighi, + 2 1F13)

o~

Exercise 7.1.6. Here Q c R" is a bounded domain, g : Q — R is a bounded function, with upper
bound =0, i.e., g(x) <nforall x € Q, and f € L?(Q). We consider the Dirichlet problem

Au"l‘ u= in Qr
W { qu=f

u=0 on 0€).

We are asked to prove that there exists a unique weak solution.

By the usual integration by parts argument, the natural definition of a weak solution for this prob-
lem is the following:
ue X := Hy(Q)

is a weak solution of (1) if
/—Vu-Vv+quvdx:[fvdx forall v e C3°(Q).
Q Q

Equivalently, in our standard notation,

2 —(w, v +{qu,v)y={fv).
Note also that by density of C;°(€Q) in X, saying that (2) holds for all v € Cj°(Q) is equivalent to
saying that it holds for all v € X.

We now want to find a functional F : X — R such that the Euler-Lagrange equation D,F(u) =0
is equivalent to (2). Based on our experience with the standard Poisson equation, this is not too
difficult. We try

1 1
F(u) = E(u,u)1—§<qu,u>+<f,u>.

Then

1 1
3 F(u+v)-F(u) = (u, v)1+E(v,v)l+(f,v)—(qu,v)—§<qv,v>
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for all u, v € X, hence

@) D,,F(u):lii%w:(u,u)1+<f,v>—(qu,v>,

so that D, F(u) =0 is indeed equivalent to (2).

Existence. It suffices to find a minimizer for F, i.e., a u € X such that F(u) = I, where I = infx F.
We first prove that F is bounded below, so that I is a well-defined real number. Using the upper
bound g(x) <7, and the inequalities of Cauchy-Schwarz and Poincaré, we have

(5) {qu,u)<nluls < C*nlVuls = C*n(u,u);,

where C = C(Q) > 0. Similarly, and using also exercise 1 above,

2
® ()l = 7 Nl = € 1Vl = 5 L1+ et

By (5) and (14), we have for every € > 0,

11 c?
@) F(u)z(E—ECZU—E) 1vully == 171>,

which proves that F is bounded below, provided 7 satisfies

1

(Then we can choose £ > 0 so small that (1/2)C?n + ¢ < 1/2, hence the first term on the right hand
side of (7) is non-negative.)

Now let {uj} = X be a minimizing sequence for F, i.e., F(u;) — I. We can also assume F(u;) < I+1
for all j. We show {u;} is bounded:

HVuj”; =2F(uj)+(quj,uj)—2(f,u;) by definition of F
C2
<2(I+1)+Cp||Vu; |5+ > I£15+2¢|Vu;|3, by (5)and (14)

whence

CZ
(1= C*n—2¢) [Vuyfl; <20+ 1+ = | £

So assuming (8) holds, and choosing & > 0 so small that C?n + 2¢ < 1, we conclude that {u it is
bounded in X (recall that |ul; » = [[Vull, is one of the equivalent norms that we use on X).

By the theorem about weak compactness in a Hilbert space, we can therefore assume that
9) Uj—u weakly in X.

Moreover, by the compactness of the inclusion H& (Q) c L?(Q), we can assume that

(10) uj—u  inL*Q).

We must have

(11) u=u,

by uniqueness of weak limits in L2(Q). To finish we must show F(u) < I; then it follows that F(u) =
I,i.e., u is a minimizer, hence a critical point, hence a weak solution of (1).

To this end, we need the following construction. Let us define, for all u, v € X,

B(u,v) = (u, v)1 —{qu,v).

March 30, 2009 Page 3 of 5



Solutions for week 17

We claim this is an inner product on X, whose associated norm is equivalent to the standard
norms on X. Clearly, B is symmetric, and linear in both u and v. By (5),

(12) B(u,u) = (1-C*n) IVul3.

Let M be a bound for |q|, o) \q(x)\ < M for all x € Q. Then using again Cauchy-Schwarz and
Poincaré as in the proof of (5), we have

[(qu,u)| < Mllul; < C*M|Vulls,
whence
(13) B(u,w) < (1+MC?) | Vul3.
From (12), (13) and (8), we conclude that B is positive definite, and the associated norm
lull = VB,

is equivalent to the standard norms on X.

With this knowledge, we can finish the proof that u is a minimizer. We write

1
F(u) = EB(M’ w+{f,u) by definition of F
1
< liminf(EB(uJ-, uj)) +(f,u) by (9) and exercises 5 and 2 above
J—o0
1
= liminf(EB(uj, uj)) +liminf( f,u; ) by (10) and (11), and exercise 4(ii)
Jj—oo Jj—oo
<liminfF(u;) by exercise 3
j—oo
= lim F(u;) by exercise 4(ii)
J—0o0
=1

This concludes the proof of weak existence.

Uniqueness. By (3), (5) and (12), and assuming (8) holds,
(14) F(u+v)-Fw-D,F(u) =B(v,v) = (1-C*n) IVvl5 >0

forall u,v € X, v #0. Thus, we have strict convexity, which implies uniqueness.

(McOwen 7.1:8 b)
Let Q c R? be bounded. Consider

_ / 2., 2
F(u)—fQ 1+ux+uydxdy

where ue H (Q).
A ={ue H'(Q):u-ge Hy(Q}={u=g+v:ve Hy(Q)}
The function u has a critical point of F on « if

Fu+tv)—F(u)

=D, F(u) =li
0 vF(u) lim .

for all v € H'(Q) such that u + tv € o for ¢ small.
Obs: u+ tv € of for t small implies u € H& Q).
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Let
fp,q)=1\/1+p*+q*

and note that f, = %, fa= %, and f, f, fq continuous. Formally:

D, Fw) = +t)| —fi( +1 +1 )|
L P P Qal’fux oty T UV, o

_f( (Ux + tvx) Uy + (uy +tvy)vy )|
“Ja flux+tvg,uy+1tvy)  fuyx+tvy, uy+tvy)/11=0
uxe+uyVy_ Vu-Vv

a  fluy uy) Q1+|Vul?

These computations are correct if e.g. 1, v € C>°(Q) and then they hold by density for u, v € H' ().
Hence: u € H'(Q) critical point of F on «f if the Euler-Lagrange equation holds:

Vu-Vv

Q 1+|Vu?

Assume u € C?(Q), integration by parts in the previous expression gives

0=D,(F) = forall  ve Hy(Q).

v for all VE H& Q).

0= —f div(L)
Q V1+|Vul?

The variational lemma then implies

v
div(— ) =0

V1+|Vul?
Obs:

Uy; Uy, x; 1

6)6,‘( )= + uxl.axi—
V1+|Vul2 /14 |Vul? V1+|Vu?
Uy, x; 1 1
=T —Zzuxj uxjx,-

= z—uxl.é 2§
V1+|Vul (1 +1Vul9)2

(]- + |vu|2)uxix,- - Z ux,- ux]' uxjxi

(1+|Vul2)?

Hence 2
Vu )_ (1+|vu| )Au_zzuxiux]‘ux]‘xi

V1+ [Vul? 1+ [Vul2)2

0 =div(

So, since we are in R2,
2, 2 2, 2
0:(1+ux+uy)uxx—Zuxuyuxy+(1+ux+uy)uyy

In other words, the abouve Euler Langrance equation is a weak formulation of a minimal surface
equation!
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