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Solutions for week 17

1 a) Consider g ∈ H 1(Ω). The set

A = {u ∈ H 1(Ω) : u − g ∈ H 1
0 (Ω)}

is weakly closed in H 1(Ω).

Proof. A weakly closed in H 1(Ω) means that

A 3 uk * u in H 1(Ω) ⇒ u ∈A .

Note that

A 3 uk * u in H 1(Ω)

⇓
H 1

0 (Ω) 3 (uk − g )* (u − g ) in H 1
0 (Ω)

⇓
H 1

0 (Ω) 3 (uk − g ), ‖uk − g‖1,2 ≤ M for all k

⇓
There exists {uk j − g } ⊂ {uk − g }, w ∈ H 1

0 (Ω) such that uk j − g *w

But, since (uk j − g )* (u − g ) and the weak limit is unique,

u − g = w ∈ H 1
0 (Ω) ⇒ u ∈A

b) Define

F (u) =
∫
Ω

(
1

2
|∇u|2 + f u)

Consider a function g ∈ H 1(Ω) and the set

A = {u ∈ H 1(Ω) : u − g ∈ H 1
0 (Ω)}

Then,
F (v) ≥C1‖v‖2

1,2 −C2

for all v ∈A and a C1 > 0.

Proof. Obs 1: For ε> 0 and a,b ∈R,

(a −b) ≥ 0 ⇔ 2ab ≤ a2 +b
2 ⇒ 2ab ≤ a2

ε
+εb2 when a = ap

ε
,b = εb2.

Obs 2: ‖u‖ ≤ ‖u − g‖+‖g‖ and ‖g‖ ≤ ‖u − g‖+‖u‖. So,

‖u − g‖2 ≥ (‖u‖−‖g‖)2 = ‖u‖2 −2‖u‖‖g‖+‖g‖2.

Hence by Obs 1 with ε= 1
2 ,

‖u − g‖2 ≥ 1

2
‖u‖2 −‖g‖2
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Therefore,∫
|∇u|2 ≥ 1

2

∫
|∇(u − g )|2 −

∫
|∇g |2 (Obs 2 with u + g instead of u)

≥ 1

2

1

1+CΩ
‖u − g‖2

1,2 −‖g‖1,2 (Poincare: ‖φ‖2
2 ≤CΩ‖∇φ‖2

2, φ ∈ H 1
0 (Ω))

≥ 1

4

1

1+CΩ
‖u‖2

1,2 −
(1

2

1

1+CΩ
+1

)
‖g‖2

1,2 (Obs 2 again).

Let

K = 1

4

1

1+CΩ
and K =

(1

2

1

1+CΩ
+1

)
,

and note that from Obs 1 with ε= K
2 we get∫

| f u| ≤ ‖ f ‖2
2

2ε
+ ε

2
‖u‖2

2 ≤
‖ f ‖2

2

2ε
+ ε

2
‖u‖2

1,2 =
K

4
‖u‖1,2 +

‖ f ‖2
2

K
.

Therefore, using the previous two relationships on
∫ |∇u|2 and

∫ | f u| and the fact that u ∈A ,

F (u) ≥ 1

2

∫
|∇u|2 −

∫
| f u|

≥ 1

2
K ‖u‖2

1,2 −K ‖g‖2
1,2 −

1

4
K ‖u‖2

1,2 −
1

K
‖ f ‖2

2

≥ 1

4
K ‖u‖2

1,2 − (K ‖g‖2
1,2 +

1

K
‖ f ‖2

2)

2 Exercise 7.1.6. Here Ω ⊂ Rn is a bounded domain, q : Ω→ R is a bounded function, with upper
bound η≥ 0, i.e., q(x) ≤ η for all x ∈Ω, and f ∈ L2(Ω). We consider the Dirichlet problem

(1)

{
∆u +qu = f inΩ,

u = 0 on ∂Ω.

We are asked to prove that there exists a unique weak solution.

By the usual integration by parts argument, the natural definition of a weak solution for this prob-
lem is the following:

u ∈ X := H 1
0 (Ω)

is a weak solution of (1) if∫
Ω
−∇u ·∇v +quv d x =

∫
Ω

f v d x for all v ∈C∞
0 (Ω).

Equivalently, in our standard notation,

(2) −(u, v)1 +
〈

qu, v
〉= 〈

f , v
〉

.

Note also that by density of C∞
0 (Ω) in X , saying that (2) holds for all v ∈ C∞

0 (Ω) is equivalent to
saying that it holds for all v ∈ X .

We now want to find a functional F : X → R such that the Euler-Lagrange equation Dv F (u) = 0
is equivalent to (2). Based on our experience with the standard Poisson equation, this is not too
difficult. We try

F (u) = 1

2
(u,u)1 − 1

2

〈
qu,u

〉+〈
f ,u

〉
.

Then

(3) F (u + v)−F (u) = (u, v)1 + 1

2
(v, v)1 +

〈
f , v

〉−〈
qu, v

〉− 1

2

〈
qv, v

〉
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for all u, v ∈ X , hence

(4) Dv F (u) = lim
ε→0

F (u +εv)−F (u)

ε
= (u, v)1 +

〈
f , v

〉−〈
qu, v

〉
,

so that Dv F (u) = 0 is indeed equivalent to (2).

Existence. It suffices to find a minimizer for F , i.e., a u ∈ X such that F (u) = I , where I = infX F .
We first prove that F is bounded below, so that I is a well-defined real number. Using the upper
bound q(x) ≤ η, and the inequalities of Cauchy-Schwarz and Poincaré, we have

(5)
〈

qu,u
〉≤ η‖u‖2

2 ≤C 2η‖∇u‖2
2 =C 2η(u,u)1,

where C =C (Ω) > 0. Similarly, and using also exercise 1 above,

(6)
∣∣〈 f ,u

〉∣∣≤ ∥∥ f
∥∥

2 ‖u‖2 ≤C
∥∥ f

∥∥
2 ‖∇u‖2 ≤

C 2

4ε

∥∥ f
∥∥2

2 +ε‖∇u‖2
2 .

By (5) and (14), we have for every ε> 0,

(7) F (u) ≥
(

1

2
− 1

2
C 2η−ε

)
‖∇u‖2

2 −
C 2

4ε

∥∥ f
∥∥2

2 ,

which proves that F is bounded below, provided η satisfies

(8) η< 1

C 2 .

(Then we can choose ε> 0 so small that (1/2)C 2η+ε< 1/2, hence the first term on the right hand
side of (7) is non-negative.)

Now let {u j } ⊂ X be a minimizing sequence for F , i.e., F (u j ) → I . We can also assume F (u j ) ≤ I +1
for all j . We show {u j } is bounded:∥∥∇u j

∥∥2
2 = 2F (u j )+〈

qu j ,u j
〉−2

〈
f ,u j

〉
by definition of F

≤ 2(I +1)+C 2η
∥∥∇u j

∥∥2
2 +

C 2

2ε

∥∥ f
∥∥2

2 +2ε
∥∥∇u j

∥∥2
2 , by (5) and (14)

whence (
1−C 2η−2ε

)∥∥∇u j
∥∥2

2 ≤ 2(I +1)+ C 2

4ε

∥∥ f
∥∥2

2 .

So assuming (8) holds, and choosing ε > 0 so small that C 2η+ 2ε < 1, we conclude that {u j } is
bounded in X (recall that |u|1,2 = ‖∇u‖2 is one of the equivalent norms that we use on X ).

By the theorem about weak compactness in a Hilbert space, we can therefore assume that

(9) u j → u weakly in X .

Moreover, by the compactness of the inclusion H 1
0 (Ω) ⊂ L2(Ω), we can assume that

(10) u j → u′ in L2(Ω).

We must have

(11) u = u′,

by uniqueness of weak limits in L2(Ω). To finish we must show F (u) ≤ I ; then it follows that F (u) =
I , i.e., u is a minimizer, hence a critical point, hence a weak solution of (1).

To this end, we need the following construction. Let us define, for all u, v ∈ X ,

B(u, v) = (u, v)1 −
〈

qu, v
〉

.
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We claim this is an inner product on X , whose associated norm is equivalent to the standard
norms on X . Clearly, B is symmetric, and linear in both u and v . By (5),

(12) B(u,u) ≥ (
1−C 2η

)‖∇u‖2
2 .

Let M be a bound for
∣∣q∣∣, so

∣∣q(x)
∣∣ ≤ M for all x ∈ Ω. Then using again Cauchy-Schwarz and

Poincaré as in the proof of (5), we have∣∣〈qu,u
〉∣∣≤ M ‖u‖2

2 ≤C 2M ‖∇u‖2
2 ,

whence

(13) B(u,u) ≤ (
1+MC 2)‖∇u‖2

2 .

From (12), (13) and (8), we conclude that B is positive definite, and the associated norm

‖u‖ =
√

B(u,u)

is equivalent to the standard norms on X .

With this knowledge, we can finish the proof that u is a minimizer. We write

F (u) = 1

2
B(u,u)+〈

f ,u
〉

by definition of F

≤ liminf
j→∞

(
1

2
B(u j ,u j )

)
+〈

f ,u
〉

by (9) and exercises 5 and 2 above

= liminf
j→∞

(
1

2
B(u j ,u j )

)
+ liminf

j→∞
〈

f ,u j
〉

by (10) and (11), and exercise 4(ii)

≤ liminf
j→∞

F (u j ) by exercise 3

= lim
j→∞

F (u j ) by exercise 4(ii)

= I .

This concludes the proof of weak existence.

Uniqueness. By (3), (5) and (12), and assuming (8) holds,

(14) F (u + v)−F (u)−Dv F (u) = B(v, v) ≥ (
1−C 2η

)‖∇v‖2
2 > 0

for all u, v ∈ X , v 6= 0. Thus, we have strict convexity, which implies uniqueness.

3 (McOwen 7.1:8 b)
LetΩ⊂R2 be bounded. Consider

F (u) =
∫
Ω

√
1+u2

x +u2
y d xd y

where u ∈ H 1(Ω).

A = {u ∈ H 1(Ω) : u − g ∈ H 1
0 (Ω)} = {u = g + v : v ∈ H 1

0 (Ω)}

The function u has a critical point of F on A if

0 = Dv F (u) = lim
t→0

F (u + t v)−F (u)

t

for all v ∈ H 1(Ω) such that u + t v ∈A for t small.

Obs: u + t v ∈A for t small implies u ∈ H 1
0 (Ω).
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Let

f (p, q) =
√

1+p2 +q2

and note that fp = p
f (p,q) , fq = q

f (p,q) , and f , fp , fq continuous. Formally:

Dv F (u) = d

d t
F (u + t v)

∣∣∣
t=0

=
∫
Ω

∂

∂t
f (ux + t vx ,uy + t vy )

∣∣∣
t=0

=
∫
Ω

( (ux + t vx )vx

f (ux + t vx ,uy + t vy )
+ (uy + t vy )vy

f (ux + t vx ,uy + t vy )

)∣∣∣
t=0

=
∫
Ω

ux vx +uy vy

f (ux ,uy )
=

∫
Ω

∇u ·∇v√
1+|∇u|2

These computations are correct if e.g. u, v ∈C∞(Ω) and then they hold by density for u, v ∈ H 1(Ω).
Hence: u ∈ H 1(Ω) critical point of F on A if the Euler-Lagrange equation holds:

0 = Dv (F ) =
∫
Ω

∇u ·∇v√
1+|∇u|2

for all v ∈ H 1
0 (Ω).

Assume u ∈C 2(Ω), integration by parts in the previous expression gives

0 =−
∫
Ω

div
( ∇u√

1+|∇u|2
)
v for all v ∈ H 1

0 (Ω).

The variational lemma then implies

div(
∇u√

1+|∇u|2
) = 0

Obs:

∂xi (
uxi√

1+|∇u|2
) = uxi xi√

1+|∇u|2
+uxi ∂xi

1√
1+|∇u|2

= uxi xi√
1+|∇u|2

−uxi

1

2

1

(1+|∇u|2)
3
2

∑
2ux j ux j xi

=
(1+|∇u|2)uxi xi −

∑
uxi ux j ux j xi

(1+|∇u|2)
3
2

Hence

0 = div(
∇u√

1+|∇u|2
) =

(1+|∇u|2)∆u −∑∑
uxi ux j ux j xi

(1+|∇u|2)
3
2

So, since we are in R2,

0 = (1+u2
x +u2

y )uxx −2ux uy ux y + (1+u2
x +u2

y )uy y

In other words, the abouve Euler Langrance equation is a weak formulation of a minimal surface
equation!
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