Norwegian University of Science and Technology

Solutions for Problem Set Week 4
Department of Mathematical Sciences

TMA4305 Partial
 Differential Equations
 Spring 2009

The exercises are from McOwen's book: Partial differential equations.

1 Exercise 1.1.4(a) We solve

$$
x u_{x}+u_{y}=y, \quad u(x, 0)=x^{2}
$$

by the method of characteristics. The ODEs for the characteristics are:

$$
\begin{array}{ll}
\frac{d x}{d t}=x, & x(0)=s \\
\frac{d y}{d t}=1, & y(0)=0 \\
\frac{d z}{d t}=y, & z(0)=s^{2} .
\end{array}
$$

We solve these, obtaining

$$
x=s e^{t}, \quad y=t, \quad z=\frac{1}{2} t^{2}+s^{2},
$$

which gives $s=x e^{-y}$, hence

$$
\underline{\underline{u(x, y)}=z=\frac{1}{2} y^{2}+x^{2} e^{-2 y}},
$$

for all x, y.

Exercise 1.1.6(a) We solve

$$
u_{x}+u^{2} u_{y}=1, \quad u(x, 0)=1
$$

by the method of characteristics. The ODEs for the characteristics are:

$$
\begin{array}{ll}
\frac{d x}{d t}=1, & x(0)=s, \\
\frac{d y}{d t}=z^{2}, & y(0)=0, \\
\frac{d z}{d t}=1, & z(0)=1 .
\end{array}
$$

We solve these (solve first for x and z, then for y), obtaining

$$
x=s+t, \quad y=\frac{1}{3}(t+1)^{3}-\frac{1}{3}, \quad z=t+1,
$$

which gives $t+1=(3 y+1)^{1 / 3}$, hence

$$
\underline{\underline{u(x, y)=z=(3 y+1)^{1 / 3}}}
$$

Thus, u is defined and continuous for all $y \in \mathbb{R}$, but it is not differentiable at $y=-1 / 3$ (since the third root function $t^{1 / 3}$ is defined and continuous for all $t \in \mathbb{R}$, but is not differentiable at the origin).

