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The exercises are from McOwen’s book: Partial differential equations.

Exercise 1.2.2. We are going to solve Burgers’ equation (we use variables x, ¢ instead of x, y)
Ur+ uu, =0,

with initial condition

Lto ifoO,
u(x,0) =1 uy(l—x) ifo<x<1,
0 ifx=1,

where 1 > 0 is a constant.

Recall that if #; and u, are smooth solutions of Burgers’ equation, defined, respectively, to the left
and right of a curve x = {(¢), then they can be patched together to make a weak solution if and
only if the Rankine-Hugoniot (R-H) condition is satisfied:

/ 1 1
(1) ¢ (t)(ur—ul)zguf_gu%’

where u; and u, are evaluated at (x = ¢(t), t). Note that if there is no discontinuity across x = ¢(#),
i.e., if u; = u, along this curve, then R-H is trivially satisfied. If on the other hand u; # u, (so there
is a jump discontinuity), then R-H reduces to

u;+ uy

108 —
¢ = >

Recall also that the characteristics are straight lines

(2) X = Xo+ ut,

where u is constant along each characteristic.

In the present case, we have characteristics x = xo + ug ¢ starting from points xyp < 0, and x = xp
starting from points xp = 1. If 0 < xp < 1, then x = xp + up(1 — xp) ¢, which gives xp = (x —up#)/(1 -
upt), hence the value along the characteristic starting from xg is u« = ug(1—xp) = up(1-x)/(1—up?).

Thus,
U if x <upt,

3) u(x, ) =4 WE= it ugr<x <1,
0 ifx=1.

Note that (1) is trivially satisfied along the curves x = upt and x = 1, since the solution is contin-
uous across those curves (but not differentiable, so it is only a weak solution). However, at time
t = 1/ugp the two curves x = ugt and x = 1 collide, so we have to start over, with initial condition
coming from (3):

Up ifx<l,

4 SUDE
@ ue o) {o if x> 1.
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We get a shock x = () for ¢ = 1/up, with {(1/ug) = 1, u = uyp to the left of the shock and u =0 to
the right. R-H then gives &'(f) = uy/2, hence &(t) = ugt/2 + 1/2. We conclude that for ¢ = 1/uy,
Up ifx<1/2+uyt/2,
5) u(x, ) = .
0 ifx>1/2+ugt/2.

So (3) for 0 < £ < 1/ug, and (5) for £ = 1/uy, together describe the solution for all £ = 0.

Exercise 1.2.7. The equation is simply p; + cpx = 0, which we recognize as the transport equation.
a) % [p(xo+ct, )] =cpx+p:=0.

b) p(x, 1) is supposed to be the density of cars on the highway at time ¢. One way to make this
precise is to choose a reference length L > 0 (much bigger than the length of a typical car)
and define p(x, t) to equal the number of cars in the interval [x — L, x + L] at time ¢ (and if a
car is only partially inside the interval, we still count it as one car). Then if there is a single
car on the road, which we may assume occupies the interval 0 < x < a at time ¢ = 0 (where
a < L), then p(x,0) will be zero except for —L < x < a+ L, where p(x,0) = 1. By part (a), this
density profile will shift to the right with speed c as time increases, giving p(x, 1).

¢) A car alone on the road moves with speed c.

Exercise 1.2.8. Here we look at

©) 0, +1G(P)]x=0  where G(p)ch(l—L).

Pmax

Here ¢ > 0 and pmax > 0 are constants.

To interpret this for traffic flow, rewrite it as a continuity equation p; + (ov), = 0, where v = ¢(1 —
p/pmax)- Thus v is interpreted as the speed of the cars (since then pv becomes the flux density for
p). Note that if p < pmax, then v = ¢, which we interpret to mean that c is the free speed of the
highway, in view of the previous exercise. The cars stop moving when p reaches the value ppax.
Thus, pmax represents the maximum density of cars (bumper to bumper traffic).

Now we take initial data
%pmax ifx<0,

p(x,0) ={

Pmax if x> 0.

Interpretation: medium traffic to the left of x = 0, and bumper to bumper to the right of x = 0, at
time £ =0.

Note that every constant is a solution of (6). Thus, we expect to have p = %pmax to the left of a
curve x = ¢(t) and p = pmax to the right of this curve. This will be a weak solution of (6) if and only
if the Rankine-Hugoniot condition is satisfied, which in this case becomes:

1 1 1
‘f’(t) (Pmax - zpmax) = G(Pmax) — G(Epmax) =0- Zcpmax

This simplifies to &'(#) = —c¢/2, hence é() = —ct/2. We conclude that the solution is

TPmax  ifx<—ct/2,
Pmax if x> —ct/2.

p(x, t)={

Interpretation: the back of the stopped traffic propagates with half the free speed of the highway,
when the incoming traffic is at medium density.
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Exercise 1.2.9. We consider the same equation as in the previous exercise, but now with initial
condition
Pmax ifx<0,

x,0) =
plx0) {0 if x > 0.

Interpretation: bumper to bumper to the left of x = 0, no traffic to the right of x = 0, at time ¢ = 0.
This corresponds to traffic stopped at a red light, turning green at time ¢ = 0.

We should now get a rarefaction solution (the cars gradually speed up out of the green light) in-
stead of a shock solution. To find this solution, let us first observe that (6) says that p is constant
along characteristics. The characteristic curves x = x(¢) are determined by

dx 2p
—=G'(p)=c|1-—/|, 0) = xo,
a7 (p) C( Pmax) x(0) = xo
where p is constant. Thus,
2
(7 x:x0+c(1— p )t.
Pmax

Referring to the initial condition, we first plug p = pmax into (7), obtaining characteristics x =
Xp — ct, for xg < 0. Next, p = 0 gives characteristics x = x + ct for xy > 0. That leaves open the
wedge —ct < x < ct. The characteristics inside this wedge must start at xy = 0, so we get from (7):

2 X 2 X
e e R )
Pmax ct Pmax 2 ct
We conclude that
Pmax if x<—ct,
px, )= 2 (1-X)  jf-cr<x<ct,
0 if x> ct.
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