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Solutions for Problem Set Week 5

The exercises are from McOwen’s book: Partial differential equations.

1 Exercise 1.2.2. We are going to solve Burgers’ equation (we use variables x, t instead of x, y)

ut +uux = 0,

with initial condition

u(x,0) =


u0 if x ≤ 0,

u0(1−x) if 0 ≤ x ≤ 1,

0 if x ≥ 1,

where u0 > 0 is a constant.

Recall that if ul and ur are smooth solutions of Burgers’ equation, defined, respectively, to the left
and right of a curve x = ξ(t ), then they can be patched together to make a weak solution if and
only if the Rankine-Hugoniot (R-H) condition is satisfied:

(1) ξ′(t )(ur −ul ) = 1

2
u2

r −
1

2
u2

l ,

where ul and ur are evaluated at (x = ξ(t ), t ). Note that if there is no discontinuity across x = ξ(t ),
i.e., if ul = ur along this curve, then R-H is trivially satisfied. If on the other hand ul 6= ur (so there
is a jump discontinuity), then R-H reduces to

ξ′(t ) = ul +ur

2
.

Recall also that the characteristics are straight lines

(2) x = x0 +ut ,

where u is constant along each characteristic.

In the present case, we have characteristics x = x0 +u0t starting from points x0 ≤ 0, and x = x0

starting from points x0 ≥ 1. If 0 ≤ x0 ≤ 1, then x = x0 +u0(1− x0)t , which gives x0 = (x −u0t )/(1−
u0t ), hence the value along the characteristic starting from x0 is u = u0(1−x0) = u0(1−x)/(1−u0t ).
Thus,

(3) u(x, t ) =


u0 if x ≤ u0t ,
u0(1−x)
1−u0t if u0t < x < 1,

0 if x ≥ 1.

Note that (1) is trivially satisfied along the curves x = u0t and x = 1, since the solution is contin-
uous across those curves (but not differentiable, so it is only a weak solution). However, at time
t = 1/u0 the two curves x = u0t and x = 1 collide, so we have to start over, with initial condition
coming from (3):

(4) u(x,1/u0) =
{

u0 if x < 1,

0 if x > 1.
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We get a shock x = ξ(t ) for t ≥ 1/u0, with ξ(1/u0) = 1, u = u0 to the left of the shock and u = 0 to
the right. R-H then gives ξ′(t ) = u0/2, hence ξ(t ) = u0t/2+1/2. We conclude that for t ≥ 1/u0,

(5) u(x, t ) =
{

u0 if x < 1/2+u0t/2,

0 if x > 1/2+u0t/2.

So (3) for 0 ≤ t < 1/u0, and (5) for t ≥ 1/u0, together describe the solution for all t ≥ 0.

2 Exercise 1.2.7. The equation is simply ρt + cρx = 0, which we recognize as the transport equation.

a) d
d t

[
ρ(x0 + ct , t )

]= cρx +ρt = 0.

b) ρ(x, t ) is supposed to be the density of cars on the highway at time t . One way to make this
precise is to choose a reference length L > 0 (much bigger than the length of a typical car)
and define ρ(x, t ) to equal the number of cars in the interval [x −L, x +L] at time t (and if a
car is only partially inside the interval, we still count it as one car). Then if there is a single
car on the road, which we may assume occupies the interval 0 ≤ x ≤ a at time t = 0 (where
a ¿ L), then ρ(x,0) will be zero except for −L ≤ x ≤ a +L, where ρ(x,0) = 1. By part (a), this
density profile will shift to the right with speed c as time increases, giving ρ(x, t ).

c) A car alone on the road moves with speed c.

3 Exercise 1.2.8. Here we look at

(6) ρt + [G(ρ)]x = 0 where G(ρ) = cρ

(
1− ρ

ρmax

)
.

Here c > 0 and ρmax > 0 are constants.

To interpret this for traffic flow, rewrite it as a continuity equation ρt + (ρv)x = 0, where v = c(1−
ρ/ρmax). Thus v is interpreted as the speed of the cars (since then ρv becomes the flux density for
ρ). Note that if ρ ¿ ρmax, then v ≈ c, which we interpret to mean that c is the free speed of the
highway, in view of the previous exercise. The cars stop moving when ρ reaches the value ρmax.
Thus, ρmax represents the maximum density of cars (bumper to bumper traffic).

Now we take initial data

ρ(x,0) =
{

1
2ρmax if x < 0,

ρmax if x > 0.

Interpretation: medium traffic to the left of x = 0, and bumper to bumper to the right of x = 0, at
time t = 0.

Note that every constant is a solution of (6). Thus, we expect to have ρ = 1
2ρmax to the left of a

curve x = ξ(t ) and ρ = ρmax to the right of this curve. This will be a weak solution of (6) if and only
if the Rankine-Hugoniot condition is satisfied, which in this case becomes:

ξ′(t )

(
ρmax − 1

2
ρmax

)
=G(ρmax)−G(

1

2
ρmax) = 0− 1

4
cρmax.

This simplifies to ξ′(t ) =−c/2, hence ξ(t ) =−ct/2. We conclude that the solution is

ρ(x, t ) =
{

1
2ρmax if x <−ct/2,

ρmax if x >−ct/2.

Interpretation: the back of the stopped traffic propagates with half the free speed of the highway,
when the incoming traffic is at medium density.
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4 Exercise 1.2.9. We consider the same equation as in the previous exercise, but now with initial
condition

ρ(x,0) =
{
ρmax if x < 0,

0 if x > 0.

Interpretation: bumper to bumper to the left of x = 0, no traffic to the right of x = 0, at time t = 0.
This corresponds to traffic stopped at a red light, turning green at time t = 0.

We should now get a rarefaction solution (the cars gradually speed up out of the green light) in-
stead of a shock solution. To find this solution, let us first observe that (6) says that ρ is constant
along characteristics. The characteristic curves x = x(t ) are determined by

d x

d t
=G ′(ρ) = c

(
1− 2ρ

ρmax

)
, x(0) = x0,

where ρ is constant. Thus,

(7) x = x0 + c

(
1− 2ρ

ρmax

)
t .

Referring to the initial condition, we first plug ρ = ρmax into (7), obtaining characteristics x =
x0 − ct , for x0 < 0. Next, ρ = 0 gives characteristics x = x0 + ct for x0 > 0. That leaves open the
wedge −ct < x < ct . The characteristics inside this wedge must start at x0 = 0, so we get from (7):

x = c

(
1− 2ρ

ρmax

)
t =⇒ x

ct
= 1− 2ρ

ρmax
=⇒ ρ = ρmax

2

(
1− x

ct

)
.

We conclude that

ρ(x, t ) =


ρmax if x <−ct ,
ρmax

2

(
1− x

ct

)
if −ct < x < ct ,

0 if x > ct .
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