TMA4305 Partial Differential Equations Spring 2009
Norwegian University of Science and Technology
Department of Mathematical Sciences

The exercises are from McOwen's book: Partial differential equations.

1 Exercise 1.2.2. We are going to solve Burgers' equation (we use variables x, t instead of x, y)

$$
u_{t}+u u_{x}=0,
$$

with initial condition

$$
u(x, 0)= \begin{cases}u_{0} & \text { if } x \leq 0 \\ u_{0}(1-x) & \text { if } 0 \leq x \leq 1 \\ 0 & \text { if } x \geq 1\end{cases}
$$

where $u_{0}>0$ is a constant.
Recall that if u_{l} and u_{r} are smooth solutions of Burgers' equation, defined, respectively, to the left and right of a curve $x=\xi(t)$, then they can be patched together to make a weak solution if and only if the Rankine-Hugoniot (R-H) condition is satisfied:

$$
\begin{equation*}
\xi^{\prime}(t)\left(u_{r}-u_{l}\right)=\frac{1}{2} u_{r}^{2}-\frac{1}{2} u_{l}^{2}, \tag{1}
\end{equation*}
$$

where u_{l} and u_{r} are evaluated at $(x=\xi(t), t)$. Note that if there is no discontinuity across $x=\xi(t)$, i.e., if $u_{l}=u_{r}$ along this curve, then R-H is trivially satisfied. If on the other hand $u_{l} \neq u_{r}$ (so there is a jump discontinuity), then R - H reduces to

$$
\xi^{\prime}(t)=\frac{u_{l}+u_{r}}{2} .
$$

Recall also that the characteristics are straight lines

$$
\begin{equation*}
x=x_{0}+u t \tag{2}
\end{equation*}
$$

where u is constant along each characteristic.
In the present case, we have characteristics $x=x_{0}+u_{0} t$ starting from points $x_{0} \leq 0$, and $x=x_{0}$ starting from points $x_{0} \geq 1$. If $0 \leq x_{0} \leq 1$, then $x=x_{0}+u_{0}\left(1-x_{0}\right) t$, which gives $x_{0}=\left(x-u_{0} t\right) /(1-$ $\left.u_{0} t\right)$, hence the value along the characteristic starting from x_{0} is $u=u_{0}\left(1-x_{0}\right)=u_{0}(1-x) /\left(1-u_{0} t\right)$. Thus,

$$
u(x, t)= \begin{cases}u_{0} & \text { if } x \leq u_{0} t, \tag{3}\\ \frac{u_{0}(1-x)}{1-u_{0} t} & \text { if } u_{0} t<x<1, \\ 0 & \text { if } x \geq 1 .\end{cases}
$$

Note that (1) is trivially satisfied along the curves $x=u_{0} t$ and $x=1$, since the solution is continuous across those curves (but not differentiable, so it is only a weak solution). However, at time $t=1 / u_{0}$ the two curves $x=u_{0} t$ and $x=1$ collide, so we have to start over, with initial condition coming from (3):

$$
u\left(x, 1 / u_{0}\right)= \begin{cases}u_{0} & \text { if } x<1 \tag{4}\\ 0 & \text { if } x>1\end{cases}
$$

We get a shock $x=\xi(t)$ for $t \geq 1 / u_{0}$, with $\xi\left(1 / u_{0}\right)=1, u=u_{0}$ to the left of the shock and $u=0$ to the right. R-H then gives $\xi^{\prime}(t)=u_{0} / 2$, hence $\xi(t)=u_{0} t / 2+1 / 2$. We conclude that for $t \geq 1 / u_{0}$,

$$
u(x, t)= \begin{cases}u_{0} & \text { if } x<1 / 2+u_{0} t / 2 \tag{5}\\ 0 & \text { if } x>1 / 2+u_{0} t / 2\end{cases}
$$

So (3) for $0 \leq t<1 / u_{0}$, and (5) for $t \geq 1 / u_{0}$, together describe the solution for all $t \geq 0$.

2 Exercise 1.2.7. The equation is simply $\rho_{t}+c \rho_{x}=0$, which we recognize as the transport equation.
a) $\frac{d}{d t}\left[\rho\left(x_{0}+c t, t\right)\right]=c \rho_{x}+\rho_{t}=0$.
b) $\rho(x, t)$ is supposed to be the density of cars on the highway at time t. One way to make this precise is to choose a reference length $L>0$ (much bigger than the length of a typical car) and define $\rho(x, t)$ to equal the number of cars in the interval $[x-L, x+L]$ at time t (and if a car is only partially inside the interval, we still count it as one car). Then if there is a single car on the road, which we may assume occupies the interval $0 \leq x \leq a$ at time $t=0$ (where $a \ll L)$, then $\rho(x, 0)$ will be zero except for $-L \leq x \leq a+L$, where $\rho(x, 0)=1$. By part (a), this density profile will shift to the right with speed c as time increases, giving $\rho(x, t)$.
c) A car alone on the road moves with speed c.

3 Exercise 1.2.8. Here we look at

$$
\begin{equation*}
\rho_{t}+[G(\rho)]_{x}=0 \quad \text { where } \quad G(\rho)=c \rho\left(1-\frac{\rho}{\rho_{\max }}\right) \tag{6}
\end{equation*}
$$

Here $c>0$ and $\rho_{\max }>0$ are constants.
To interpret this for traffic flow, rewrite it as a continuity equation $\rho_{t}+(\rho \nu)_{x}=0$, where $v=c(1-$ $\rho / \rho_{\max }$). Thus v is interpreted as the speed of the cars (since then ρv becomes the flux density for ρ). Note that if $\rho \ll \rho_{\text {max }}$, then $v \approx c$, which we interpret to mean that c is the free speed of the highway, in view of the previous exercise. The cars stop moving when ρ reaches the value $\rho_{\text {max }}$. Thus, $\rho_{\text {max }}$ represents the maximum density of cars (bumper to bumper traffic).
Now we take initial data

$$
\rho(x, 0)= \begin{cases}\frac{1}{2} \rho_{\max } & \text { if } x<0 \\ \rho_{\max } & \text { if } x>0\end{cases}
$$

Interpretation: medium traffic to the left of $x=0$, and bumper to bumper to the right of $x=0$, at time $t=0$.
Note that every constant is a solution of (6). Thus, we expect to have $\rho=\frac{1}{2} \rho_{\text {max }}$ to the left of a curve $x=\xi(t)$ and $\rho=\rho_{\text {max }}$ to the right of this curve. This will be a weak solution of (6) if and only if the Rankine-Hugoniot condition is satisfied, which in this case becomes:

$$
\xi^{\prime}(t)\left(\rho_{\max }-\frac{1}{2} \rho_{\max }\right)=G\left(\rho_{\max }\right)-G\left(\frac{1}{2} \rho_{\max }\right)=0-\frac{1}{4} c \rho_{\max } .
$$

This simplifies to $\xi^{\prime}(t)=-c / 2$, hence $\xi(t)=-c t / 2$. We conclude that the solution is

$$
\rho(x, t)= \begin{cases}\frac{1}{2} \rho_{\max } & \text { if } x<-c t / 2 \\ \rho_{\max } & \text { if } x>-c t / 2\end{cases}
$$

Interpretation: the back of the stopped traffic propagates with half the free speed of the highway, when the incoming traffic is at medium density.

4 Exercise 1.2.9. We consider the same equation as in the previous exercise, but now with initial condition

$$
\rho(x, 0)= \begin{cases}\rho_{\max } & \text { if } x<0 \\ 0 & \text { if } x>0\end{cases}
$$

Interpretation: bumper to bumper to the left of $x=0$, no traffic to the right of $x=0$, at time $t=0$. This corresponds to traffic stopped at a red light, turning green at time $t=0$.
We should now get a rarefaction solution (the cars gradually speed up out of the green light) instead of a shock solution. To find this solution, let us first observe that (6) says that ρ is constant along characteristics. The characteristic curves $x=x(t)$ are determined by

$$
\frac{d x}{d t}=G^{\prime}(\rho)=c\left(1-\frac{2 \rho}{\rho_{\max }}\right), \quad x(0)=x_{0},
$$

where ρ is constant. Thus,

$$
\begin{equation*}
x=x_{0}+c\left(1-\frac{2 \rho}{\rho_{\max }}\right) t . \tag{7}
\end{equation*}
$$

Referring to the initial condition, we first plug $\rho=\rho_{\text {max }}$ into (7), obtaining characteristics $x=$ $x_{0}-c t$, for $x_{0}<0$. Next, $\rho=0$ gives characteristics $x=x_{0}+c t$ for $x_{0}>0$. That leaves open the wedge $-c t<x<c t$. The characteristics inside this wedge must start at $x_{0}=0$, so we get from (7):

$$
x=c\left(1-\frac{2 \rho}{\rho_{\max }}\right) t \Longrightarrow \frac{x}{c t}=1-\frac{2 \rho}{\rho_{\max }} \Longrightarrow \rho=\frac{\rho_{\max }}{2}\left(1-\frac{x}{c t}\right) .
$$

We conclude that

$$
\rho(x, t)= \begin{cases}\rho_{\max } & \text { if } x<-c t, \\ \frac{\rho_{\max }}{2}\left(1-\frac{x}{c t}\right) & \text { if }-c t<x<c t, \\ 0 & \text { if } x>c t .\end{cases}
$$

