TMA4305 Partial Differential Equations

Spring 2009
Norwegian University of Science and Technology

Solutions for Problem Set Week 6
Department of Mathematical Sciences

The exercises are from McOwen's book: Partial differential equations.

1 Exercise 2.2.1(b). The equation is

$$
x^{2} u_{x x}-y^{2} u_{y y}=0
$$

Then $a=x^{2}, b=0$ and $c=-y^{2}$, so $b^{2}-4 a c=4 x^{2} y^{2}>0$ if $x, y \neq 0$, so then the equation is hyperbolic.
We transform the equation to canonical coordinates. To find the characteristic curves, in the form of graphs $y=f(x)$, we solve (see p .50 of McOwen)

$$
\frac{d y}{d x}=\frac{b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{ \pm 2 x y}{2 x^{2}}= \pm \frac{y}{x} .
$$

This separates to

$$
\frac{d y}{y}= \pm \frac{d x}{x} .
$$

Integration gives $\ln |y|= \pm \ln |x|+C=\ln |x|^{ \pm 1}+C$, hence $y=A x$ or $y=A / x$, where A is an arbitrary constant. We can therefore choose canonical coordinates

$$
\begin{equation*}
\mu=\frac{x}{y}, \quad \eta=x y . \tag{1}
\end{equation*}
$$

The chain rule gives

$$
\begin{aligned}
& u_{x}=u_{\mu} \mu_{x}+u_{\eta} \eta_{x}=\frac{1}{y} u_{\mu}+y u_{\eta}, \\
& u_{y}=u_{\mu} \mu_{y}+u_{\eta} \eta_{y}=\left(-\frac{x}{y^{2}}\right) u_{\mu}+x u_{\eta}, \\
& u_{x x}=\frac{1}{y^{2}} u_{\mu \mu}+2 u_{\mu \eta}+y^{2} u_{\eta \eta}, \\
& u_{y y}=\frac{2 x}{y^{3}} u_{\mu}+\frac{x^{2}}{y^{4}} u_{\mu \mu}-\frac{2 x^{2}}{y^{2}} u_{\mu \eta}+x^{2} u_{\eta \eta} .
\end{aligned}
$$

This gives $x^{2} u_{x x}-y^{2} u_{y y}=4 x^{2} u_{\mu \eta}-\frac{2 x}{y} u_{\mu}$, so our transformed equation is

$$
u_{\mu \eta}=\frac{1}{2 x y} u_{\mu}=\frac{u_{\mu}}{2 \eta} .
$$

Integrating in μ gives

$$
\begin{equation*}
u_{\eta}=\frac{u}{2 \eta}+f(\eta) \tag{2}
\end{equation*}
$$

where f is arbitrary. This is a linear first order ODE in η, which we solve using the integrating factor (let us assume $\eta>0$ for the moment)

$$
\exp \left(-\int \frac{d \eta}{2 \eta}\right)=\eta^{-1 / 2}
$$

where we chose the constant $C=0$ in the indefinite integral. Thus, we obtain, using (2),

$$
\left(\eta^{-1 / 2} u\right)_{\eta}=-\frac{u}{\eta^{3 / 2}}+\eta^{-1 / 2} u_{\eta}=\eta^{-1 / 2} f(\eta)
$$

and integrating this in η, we get

$$
\eta^{-1 / 2} u=\int \eta^{-1 / 2} f(\eta) d \eta+G(\mu)
$$

for an arbitrary $G(\mu)$. Writing $F(\eta)=\eta^{1 / 2}\left(\int \eta^{-1 / 2} f(\eta) d \eta\right)$, we conclude:

$$
u=F(\eta)+\eta^{1 / 2} G(\mu)
$$

Substuting back the original variables x, y gives the general solution

$$
\underline{\underline{u(x, y)}=F(x y)+(x y)^{1 / 2} G(x / y)}
$$

for arbitrary functions F and G.

