Norwegian University of Science and Technology
Department of Mathematical Sciences

TMA4305 Partial Differential Equations
 Spring 2009

Solutions for Problem Set Week 7

The exercises are from McOwen's book: Partial differential equations.

1 Exercise 2.3.8. We define, for each $n \in \mathbb{N}$, a function $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f_{n}(x)=\left\{\begin{array}{lll}
\frac{n}{2} & \text { for } & |x|<\frac{1}{n} \\
0 & \text { for } & |x| \geq \frac{1}{n}
\end{array}\right.
$$

We are asked to show that $f_{n} \rightarrow \delta$ in $\mathscr{D}^{\prime}(\mathbb{R})$ as $n \rightarrow \infty$. In other words, we have to show that for every $\phi \in C_{0}^{\infty}(\mathbb{R})$,

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n}(x) \phi(x) d x=\langle\delta, \phi\rangle=\phi(0)
$$

But

$$
\int_{\mathbb{R}} f_{n}(x) \phi(x) d x=\frac{n}{2} \int_{-1 / n}^{1 / n} \phi(x) d x
$$

and by the mean value theorem for integrals, ${ }^{1}$ there exists $x_{n} \in[-1 / n, 1 / n]$ such that

$$
\int_{-1 / n}^{1 / n} \phi(x) d x=\phi\left(x_{n}\right) \frac{2}{n} .
$$

Putting this information together, we conclude that

$$
\int_{\mathbb{R}} f_{n}(x) \phi(x) d x=\phi\left(x_{n}\right) \longrightarrow \phi(0) \quad \text { as } n \rightarrow \infty
$$

and the proof is complete.

2 Exercise 2.3.10. Let $a \in \mathbb{R}, a \neq 0$.
a) We are asked to find a fundamental solution for $L=d / d x-a$ on \mathbb{R}, i.e., to solve

$$
\frac{d F}{d x}-a=\delta
$$

We proceed in the usual way to solve this linear first-order ODE: The integrating factor is $e^{-a x}$, and multiplying by this we rewrite the ODE as

$$
\frac{d}{d x}\left(e^{-a x} F\right)=e^{-a x} \delta
$$

But $e^{-a x} \delta=\delta$ (why?), so we simply have to solve

$$
\frac{d}{d x}\left(e^{-a x} F\right)=\delta
$$

[^0]Since $H^{\prime}=\delta$, where H is the Heaviside function, one solution of the above ODE is clearly $e^{-a x} F=H$, i.e.,

$$
F(x)=e^{a x} H(x)
$$

should be a fundamental solution.
One way to check our answer is by using the fact that, by definition,

$$
L F=\delta \Longleftrightarrow\left\langle F, L^{\prime} \phi\right\rangle=\phi(0) \text { for all } \phi \in C_{0}^{\infty}(\mathbb{R}) .
$$

But $L^{\prime}=-d / d x-a$, so defining F as above we have

$$
\begin{aligned}
\left\langle F, L^{\prime} \phi\right\rangle & =\int_{\mathbb{R}} e^{a x} H(x)\left[-\phi^{\prime}(x)-a\right] d x=\int_{0}^{\infty} e^{a x}\left[-\phi^{\prime}(x)-a\right] d x \\
& =-\int_{0}^{\infty} \frac{d}{d x}\left(e^{a x} \phi(x)\right) d x=-\left[e^{a x} \phi(x)\right]_{x=0}^{x=\infty}=\phi(0),
\end{aligned}
$$

since ϕ has compact support.
b) Now $L=d^{2} / d x^{2}-a^{2}$ on \mathbb{R}, and we are asked to show that $L F=\delta$, where

$$
F(x)=\left\{\begin{array}{lll}
\frac{1}{a} \sinh a x & \text { for } & x>0 \\
0 & \text { for } & x<0
\end{array}\right.
$$

We know that $L F=\delta$ is equivalent to

$$
\begin{equation*}
\left\langle F, L^{\prime} \phi\right\rangle=\phi(0) \quad \text { for all } \phi \in C_{0}^{\infty}(\mathbb{R}) \tag{1}
\end{equation*}
$$

but in the present case, $L^{\prime}=L$, so the left side is equal to

$$
\begin{align*}
\int_{\mathbb{R}} F(x)\left(\phi^{\prime \prime}(x)-a^{2} \phi(x)\right) d x= & =\int_{0}^{\infty} \frac{1}{a} \sinh a x\left(\phi^{\prime \prime}(x)-a^{2}\right) d x \\
& =\int_{0}^{\infty} \frac{1}{a}(\sinh a x) \phi^{\prime \prime}(x) d x-\int_{0}^{\infty} a(\sinh a x) \phi(x) d x \tag{2}\\
& =I+J .
\end{align*}
$$

Integrating by parts, we find

$$
I=-\int_{0}^{\infty} \frac{1}{a} \frac{d}{d x}(\sinh a x) \phi^{\prime}(x) d x+\left[\frac{1}{a}(\sinh a x) \phi^{\prime}(x)\right]_{x=0}^{x=\infty}=-\int_{0}^{\infty}(\cosh a x) \phi^{\prime}(x) d x
$$

where the boundary terms vanish because $\sinh 0=0$ and $\phi^{\prime}(x)=0$ for all sufficiently large x. Integrating by parts once more, we get

$$
I=\int_{0}^{\infty} \frac{d}{d x}(\cosh a x) \phi(x) d x-[(\cosh a x) \phi(x)]_{x=0}^{x=\infty}=\int_{0}^{\infty} a(\sinh a x) \phi(x) d x+\phi(0)
$$

since $\cosh 0=1$ and $\phi(x)=0$ for all sufficiently large x. But the integral on the right hand side is nothing else than $-J$ (cf. (2)), so we conclude that (1) holds, and we are done.

3 Exercise 2.3.11.c. Assume $f \in C_{0}(\mathbb{R})$, and define $u=F * f$, where $F(x)=|x| / 2$, as in Example 2 on page 69. Thus,

$$
u(x)=\frac{1}{2} \int_{-\infty}^{\infty}|x-y| f(y) d y \quad \text { for } x \in \mathbb{R} .
$$

We are asked to prove that $u \in C^{2}(\mathbb{R})$ (so then u is a classical solution of $u^{\prime \prime}=f$).
But splitting the integral into $\int_{-\infty}^{x}(\cdots) d x+\int_{x}^{\infty}(\cdots) d x$, we get

$$
u(x)=\frac{1}{2} \int_{-\infty}^{x}(x-y) f(y) d y-\frac{1}{2} \int_{x}^{\infty}(x-y) f(y) d y
$$

and since $f \in C_{0}(\mathbb{R})$, we can differentiate these integrals to get 2

$$
u^{\prime}(x)=\frac{1}{2} \int_{-\infty}^{x} f(y) d y-\frac{1}{2} \int_{x}^{\infty} f(y) d y .
$$

(Note that the integrals can in fact be written as integrals over bounded intervals, since f by assumption has compact support; thus, there is an $R>0$ such that $f(x)=0$ for all x satisfying $|x| \geq R$.) Differentiating once more, we get

$$
u^{\prime \prime}(x)=\frac{1}{2} f(x)+\frac{1}{2} f(x)=f(x)
$$

Thus, $u \in C^{2}(\mathbb{R})$ and $u^{\prime \prime}=f$.

[^1]where $\alpha(x)$ and $\beta(x)$ are differentiable, and $f(x, y)$ and $f_{x}(x, y)$ are continuous, then
$$
F^{\prime}(x)=\beta^{\prime}(x) f(x, \beta(x))-\alpha^{\prime}(x) f(x, \alpha(x))+\int_{\alpha(x)}^{\beta(x)} f_{x}(x, y) d y
$$

[^0]: ${ }^{1}$ This states that if $g(x)$ is a continuous function on $[a, b]$, then there exists a point $c \in[a, b]$ such that

 $$
 \int_{a}^{b} g(x) d x=g(c)(b-a)
 $$

[^1]: ${ }^{2}$ Recall that if

 $$
 F(x)=\int_{\alpha(x)}^{\beta(x)} f(x, y) d y
 $$

