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The exercises are from McOwen’s book: Partial differential equations.

Exercise 3.3.1. Let Q c R" be a bounded domain with smooth boundary 6Q, and let v denote the
outward pointing unit normal on 0Q. We consider solutions of the wave equation

ey Uy = c*Au, u=u(x1, xeQ, t>0,
with either a Dirichlet boundary condition:
(2) ulx,)=0 forallxeoQ, t=0,

or a Neumann boundary condition:

0
3) 0_: (x,)=0 forall xedQ, t=0.

~—~—~
=Vu-v

Here we assume . .
ue C*(Qx (0,00) N CH(Qx[0,00)).

(Remark: This assumption can be weakened to u € C*(Q x (0,00))n H2(Qx (0,00)) NC* (2% [0,00)).)
The object is to show that the energy

1
éag(t):—f u%+02|Vu|2 dx
2Ja

is conserved.

By the usual integration by parts argument we have
&L = f Uity + ¢*Vu-Vu; dx
Q

=f u[(un—czAu) dx+f us(Vu-v)dS
QNY—— 0Q
=0,by (1)

ou
= —ds,
faQ “ov

and the last integral vanishes under either of the assumptions (2) or (3); for the latter it is obvious,
while if (2) holds, then we just have to note that u, = 0 on 6Q in that case. Thus, &, (¢) = 0, proving
that &q (¢) is constant.

Exercise 3.3.2. Here we are asked to prove uniqueness of solutions the boundary/initial value prob-
lem (note that in the book the initial data have been forgotten)

u”—czAu:f(x,t), xeQ, t>0,
(4) u(x, 1) =y(x, 1), x€eo0Q, t=0,
u(x,0) = g(x), us(x,0) = h(x), x€Q,
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where f,7, g, h are given functions, and u is assumed to belong to the space
ue C*(Qx (0,00) N C(Qx[0,00)).

So now assume u, v are both in this space, and solve (4). Then w = u — v also solves (4), but with
f=0,v=0,g=0and k=0, so by the previous exercise, the energy in Q must be zero for all ¢ = 0:

éa(t) =Eq(0)=0.

But &q() = %fQ w? + ¢?|Vw|? dx, so it follows that w; = 0 and Vw = 0 in Q x [0,00), hence w =
const, and this constant must be zero, since w =0 at time ¢ =0. Thus w =0, i.e., u=v.

The same argument applies if we replace the Dirichlet boundary condition with a Neumann con-
dition.

Exercise 3.4.2. We are asked to find dispersive solutions

u= ei(kxfwt)

of various PDEs. In other words, we need to determine in each case a dispersion relation and solve
this to find w = w(k). Note that
u=U(kx—wt),

where U(s) = ¢S, hence U' = iU, U" =-U, U" = —iU and U® = U.

a) The flexible beam equation u;; + }/2 Uxxxx = 0. Plugging the above u into this equation, we
get
—0® +7’k' =0 = 0 = +yk°.

b) The linearized KdV equation u; + cuy + xx = 0. With u as above we get
—iw+ick-ik®=0 = w=ck-K= k(c—kz).
c) The Boussinesq equation u;; — gy = yzunxx. Now we get

, C°k? ck

T ¢ V1+ k2

—0? + P =0’k = w

d) The Schrodinger equation u; = iuyy. Then

—iw=-ik® = w=K.

Exercise 3.4.3. We proceed as in the previous exercise, but now for the heat equation u; = uiyy.

Then

2

—iw=—-k* = w=—-ik%

Hence ) ) )
U= ez(kxﬂk n_ ez(kxﬂk n_ efk tezkx,

so the solution decays exponentially as t — co. This is therefore called a diffusive wave.
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