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Solutions for Problem Set Week 8

The exercises are from McOwen’s book: Partial differential equations.

1 Exercise 3.3.1. Let Ω ⊂ Rn be a bounded domain with smooth boundary ∂Ω, and let ν denote the
outward pointing unit normal on ∂Ω. We consider solutions of the wave equation

(1) ut t = c2∆u, u = u(x, t ), x ∈Ω, t > 0,

with either a Dirichlet boundary condition:

(2) u(x, t ) = 0 for all x ∈ ∂Ω, t ≥ 0,

or a Neumann boundary condition:

(3)
∂u

∂ν︸︷︷︸
=∇u ·ν

(x, t ) = 0 for all x ∈ ∂Ω, t ≥ 0.

Here we assume
u ∈C 2(Ω× (0,∞)

)∩C 1(Ω× [0,∞)
)
.

(Remark: This assumption can be weakened to u ∈C 2
(
Ω×(0,∞)

)∩H 2(Ω×(0,∞))∩C 1
(
Ω×[0,∞)

)
.)

The object is to show that the energy

EΩ(t ) = 1

2

∫
Ω

u2
t + c2 |∇u|2 d x

is conserved.

By the usual integration by parts argument we have

E ′
Ω(t ) =

∫
Ω

ut ut t + c2∇u ·∇ut d x

=
∫
Ω

ut (ut t − c2∆u)︸ ︷︷ ︸
= 0, by (1)

d x +
∫
∂Ω

ut (∇u ·ν)dS

=
∫
∂Ω

ut
∂u

∂ν
dS,

and the last integral vanishes under either of the assumptions (2) or (3); for the latter it is obvious,
while if (2) holds, then we just have to note that ut = 0 on ∂Ω in that case. Thus, E ′

Ω(t ) = 0, proving
that EΩ(t ) is constant.

2 Exercise 3.3.2. Here we are asked to prove uniqueness of solutions the boundary/initial value prob-
lem (note that in the book the initial data have been forgotten)

(4)


ut t − c2∆u = f (x, t ), x ∈Ω, t > 0,

u(x, t ) = γ(x, t ), x ∈ ∂Ω, t ≥ 0,

u(x,0) = g (x), ut (x,0) = h(x), x ∈Ω,
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where f ,γ, g ,h are given functions, and u is assumed to belong to the space

u ∈C 2(Ω× (0,∞)
)∩C 1(Ω× [0,∞)

)
.

So now assume u, v are both in this space, and solve (4). Then w = u − v also solves (4), but with
f = 0, γ= 0, g = 0 and h = 0, so by the previous exercise, the energy inΩmust be zero for all t ≥ 0:

EΩ(t ) = EΩ(0) = 0.

But EΩ(t ) = 1
2

∫
Ωw2

t + c2 |∇w |2 d x, so it follows that wt = 0 and ∇w = 0 in Ω× [0,∞), hence w =
const, and this constant must be zero, since w = 0 at time t = 0. Thus w = 0, i.e., u = v .

The same argument applies if we replace the Dirichlet boundary condition with a Neumann con-
dition.

3 Exercise 3.4.2. We are asked to find dispersive solutions

u = e i (kx−ωt )

of various PDEs. In other words, we need to determine in each case a dispersion relation and solve
this to find ω=ω(k). Note that

u =U (kx −ωt ),

where U (s) = e i s , hence U ′ = iU , U ′′ =−U , U ′′′ =−iU and U (4) =U .

a) The flexible beam equation ut t +γ2uxxxx = 0. Plugging the above u into this equation, we
get

−ω2 +γ2k4 = 0 =⇒ ω=±γk2.

b) The linearized KdV equation ut + cux +uxxx = 0. With u as above we get

−iω+ i ck − i k3 = 0 =⇒ ω= ck −k3 = k(c −k2).

c) The Boussinesq equation ut t − c2uxx = γ2ut t xx . Now we get

−ω2 + c2k2 =ω2k2 =⇒ ω2 = c2k2

1+k2 =⇒ ω=± ckp
1+k2

d) The Schrödinger equation ut = i uxx . Then

−iω=−i k2 =⇒ ω= k2.

4 Exercise 3.4.3. We proceed as in the previous exercise, but now for the heat equation ut = uxx .
Then

−iω=−k2 =⇒ ω=−i k2.

Hence
u = e i (kx+i k2t ) = e i (kx+i k2t ) = e−k2t e i kx ,

so the solution decays exponentially as t →∞. This is therefore called a diffusive wave.
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