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Solutions for Problem Set Week 9

The exercises are from McOwen’s book: Partial differential equations.

1 Exercise 3.2.2. We are given the Cauchy problem{
ut t = uxx +uy y +uzz ,

u(x, y, z,0) = x2 + y2, ut (x, y, z,0) = 0.

By Kirchhoff’s formula, the solution is given by (here we denote by (ξ,η,ζ) a point on the unit
sphere S2, and dS is the surface area element on S2)

u(x, y, z, t ) = ∂

∂t

(
t

4π

∫
S2

[
(x + tξ)2 + (y + tη)2] dS

)
= ∂

∂t

(
t

4π

∫
S2

[
x2 +2xtξ+ t 2ξ2 + y2 +2y tη+ t 2η2] dS

)
= ∂

∂t

(
t

4π

[
4π(x2 + y2)+2xt

∫
S2
ξdS +2y t

∫
S2
ηdS + t 2

∫
S2
ξ2 + t 2

∫
S2
η2 dS

])
But ∫

S2
ξdS = 0

as we can see by explicit calculation using spherical coordinates, or simply by symmetry (split S2

into the hemispheres ξ ≥ 0 and ξ ≤ 0; then the two integrals cancel out). Similarly,
∫

S2 ηdS = 0.
Further, by the rotational symmetry of the sphere we have∫

S2
ξ2 dS =

∫
S2
η2dS =

∫
S2
ζ2 dS =⇒

∫
S2
ξ2 dS = 1

3

∫
S2

(ξ2 +η2 +ζ2)dS = 1

3

∫
S2

1dS = 4π

3
.

We conclude that

u(x, y, z, t ) = ∂

∂t

(
t

4π

[
4π(x2 + y2)+ t 2 8π

3

])
= x2 + y2 +2t 2.

(Remember: we can check our answer by plugging it into the equation; the data are certainly
correct.)

For part (b) we are asked to calculate u using the 2d formula. We can do this since the data are
independent of z. Denoting by (ξ,η) a point in the unit disk D = {(ξ,η) : ξ2 +η2 < 1} in the plane,
we then have

u(x, y, z, t ) = ∂

∂t

(
t

2π

∫
D

(x + tξ)2 + (y + tη)2√
1−ξ2 −η2

dξdη

)

= ∂

∂t

(
t

2π

∫
D

x2 + y2 +2xtξ+2y tη+ t 2(ξ2 +η2)√
1−ξ2 −η2

dξdη

)

= ∂

∂t

(
t

2π

[
(x2 + y2)

∫
D

dξdη√
1−ξ2 −η2

+2xt
∫

D

ξdξdη√
1−ξ2 −η2

+2y t
∫

D

ηdξdη√
1−ξ2 −η2

+ t 2
∫

D

(ξ2 +η2)dξdη√
1−ξ2 −η2

])
.
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But by symmetry, ∫
D

ξdξdη√
1−ξ2 −η2

=
∫

D

ηdξdη√
1−ξ2 −η2

= 0.

Furthermore, switching to polar coordinates (r,θ) in the plane, we have∫
D

dξdη√
1−ξ2 −η2

∫ 1

0

∫ 2π

0

r dr dθp
1− r 2

= 2π
∫ 1

0

r drp
1− r 2

=π

∫ 1

0

d sp
s
= 2π,

and ∫
D

(ξ2 +η2)dξdη√
1−ξ2 −η2

=
∫ 1

0

∫ 2π

0

r 2(r dr dθ)p
1− r 2

= 2π
∫ 1

0

r 3 drp
1− r 2

=π

∫ 1

0

(1− s)d sp
s

= 4π

3
.

We conclude that

u(x, y, z, t ) = ∂

∂t

(
t

2π

[
2π(x2 + y2)+ 4π

3
t 2

])
= x2 + y2 +2t 2.

Moral: The 3d formula was easier to use (less calculations).

2 Exercise 3.2.3. We are asked to write the solution of the nonhomogeneous 3d wave equation

ut t − c2∆u = f (x, t )

with zero initial data at time t = 0, using Duhamel’s principle. As usual, we introduce the solution
operator S(t ) by defining S(t )h to be the solution v(·, t ) of the homogeneous IVP

vt t − c2∆u = 0, v(x,0) = 0, vt (x,0) = h(x).

So by Kirchhoff’s formula (here x ∈R3)(
S(t )h

)
(x) = t

4π

∫
|y|=1

h(x + ct y)dS(y).

Therefore, Duhamel’s principle takes the form

u(x, t ) =
∫ t

0

(
S(t − s) f (·, s)

)
(x)d s

=
∫ t

0

t − s

4π

(∫
|y|=1

f
(
x + c(t − s)y, s

)
dS(y)

)
d s.

This defines u as a C 2 function, provided that f (x, t ) is C 2 in the x-variable and C 0 in the t-variable
(then we can differentiate the integral by the usual rules).

Notice that as s ranges from 0 to t and y ranges over the sphere S2, the point

γ(s, y) = (
x + c(t − s)y, s

) ∈R4

parametrizes a cone-shaped surface Γ (the “backwards light cone”) with its vertex at the point
(x, t ). Thus, Γ is the domain of dependence for the point (x, t ): the value of the solution u at the
point (x, t ) depends only on the values of f on this cone Γ.

3 Exercise 3.2.5. We are asked to find a solution formula for the IVP for the 2d Klein-Gordon equa-
tion: {

vt t − c2∆v +m2v = 0, [v = v(x, y, t )],

v(x, y,0) = g (x, y), vt (x, y,0) = h(x, y).

Following the hint in the back of the book, we define

u(x, y, z, t ) = cos
(m

c
z
)

v(x, y, t ).
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A direct calculation shows that u satisfies the wave equation in 3d, so it is given by Kirchhoff’s
formula. Let us assume g = 0 for simplicity. Then, letting (ξ,η,ζ) denote a point on the unit sphere
S2 ⊂R3, we have

u(x, y, z, t ) = t

4π

∫
S2

cos
(m

c
(z + ctζ)

)
h(x + ctξ, y + ctη)dS(ξ,η,ζ).

Setting z = 0 we get

v(x, y, t ) = u(x, y,0, t ) = t

4π

∫
S2

cos(mtζ)h(x + ctξ, y + ctη)dS(ξ,η,ζ).

As in the derivation of the solution formula for the wave equation in 2d we now parametrize the
hemispheres ζ≥ 0 and ζ≤ 0 of S2 as graphs

ζ=±
√

1−ξ2 −η2

over the unit disk D = {(ξ,η) : ξ2 +η2 ≤ 1}; then the integral transforms to (recall that the cosine
function is even, so there is no difference between the integrals over the two hemispheres!)

v(x, y, t ) = t

2π

∫
D

cos
(
mt

√
1−ξ2 −η2

)
h(x + ctξ, y + ctη)√

1−ξ2 −η2
dξdη.

If we now drop the assumption that g = 0, we get the general formula:

v(x, y, t ) = ∂

∂t

 t

2π

∫
D

cos
(
mt

√
1−ξ2 −η2

)
g (x + ctξ, y + ctη)√

1−ξ2 −η2
dξdη


+ t

2π

∫
D

cos
(
mt

√
1−ξ2 −η2

)
h(x + ctξ, y + ctη)√

1−ξ2 −η2
dξdη.
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