TMA4305 Partial Differential Equations Spring 2009
Norwegian University of Science and Technology
Department of Mathematical Sciences

The exercises are from McOwen's book: Partial differential equations.

1 Exercise 3.2.2. We are given the Cauchy problem

$$
\left\{\begin{array}{l}
u_{t t}=u_{x x}+u_{y y}+u_{z z} \\
u(x, y, z, 0)=x^{2}+y^{2}, \quad u_{t}(x, y, z, 0)=0 .
\end{array}\right.
$$

By Kirchhoff's formula, the solution is given by (here we denote by (ξ, η, ζ) a point on the unit sphere S^{2}, and $d S$ is the surface area element on S^{2})

$$
\begin{aligned}
u(x, y, z, t) & =\frac{\partial}{\partial t}\left(\frac{t}{4 \pi} \int_{S^{2}}\left[(x+t \xi)^{2}+(y+t \eta)^{2}\right] d S\right) \\
& =\frac{\partial}{\partial t}\left(\frac{t}{4 \pi} \int_{S^{2}}\left[x^{2}+2 x t \xi+t^{2} \xi^{2}+y^{2}+2 y t \eta+t^{2} \eta^{2}\right] d S\right) \\
& =\frac{\partial}{\partial t}\left(\frac{t}{4 \pi}\left[4 \pi\left(x^{2}+y^{2}\right)+2 x t \int_{S^{2}} \xi d S+2 y t \int_{S^{2}} \eta d S+t^{2} \int_{S^{2}} \xi^{2}+t^{2} \int_{S^{2}} \eta^{2} d S\right]\right)
\end{aligned}
$$

But

$$
\int_{S^{2}} \xi d S=0
$$

as we can see by explicit calculation using spherical coordinates, or simply by symmetry (split S^{2} into the hemispheres $\xi \geq 0$ and $\xi \leq 0$; then the two integrals cancel out). Similarly, $\int_{S^{2}} \eta d S=0$. Further, by the rotational symmetry of the sphere we have

$$
\int_{S^{2}} \xi^{2} d S=\int_{S^{2}} \eta^{2} d S=\int_{S^{2}} \zeta^{2} d S \Longrightarrow \int_{S^{2}} \xi^{2} d S=\frac{1}{3} \int_{S^{2}}\left(\xi^{2}+\eta^{2}+\zeta^{2}\right) d S=\frac{1}{3} \int_{S^{2}} 1 d S=\frac{4 \pi}{3} .
$$

We conclude that

$$
u(x, y, z, t)=\frac{\partial}{\partial t}\left(\frac{t}{4 \pi}\left[4 \pi\left(x^{2}+y^{2}\right)+t^{2} \frac{8 \pi}{3}\right]\right)=x^{2}+y^{2}+2 t^{2} .
$$

(Remember: we can check our answer by plugging it into the equation; the data are certainly correct.)

For part (b) we are asked to calculate u using the 2 d formula. We can do this since the data are independent of z. Denoting by (ξ, η) a point in the unit disk $D=\left\{(\xi, \eta): \xi^{2}+\eta^{2}<1\right\}$ in the plane, we then have

$$
\begin{aligned}
u(x, y, z, t) & =\frac{\partial}{\partial t}\left(\frac{t}{2 \pi} \int_{D} \frac{(x+t \xi)^{2}+(y+t \eta)^{2}}{\sqrt{1-\xi^{2}-\eta^{2}}} d \xi d \eta\right) \\
& =\frac{\partial}{\partial t}\left(\frac{t}{2 \pi} \int_{D} \frac{x^{2}+y^{2}+2 x t \xi+2 y t \eta+t^{2}\left(\xi^{2}+\eta^{2}\right)}{\sqrt{1-\xi^{2}-\eta^{2}}} d \xi d \eta\right) \\
& =\frac{\partial}{\partial t}\left(\frac { t } { 2 \pi } \left[\left(x^{2}+y^{2}\right) \int_{D} \frac{d \xi d \eta}{\sqrt{1-\xi^{2}-\eta^{2}}}+2 x t \int_{D} \frac{\xi d \xi d \eta}{\sqrt{1-\xi^{2}-\eta^{2}}}\right.\right. \\
& \left.\left.\quad+2 y t \int_{D} \frac{\eta d \xi d \eta}{\sqrt{1-\xi^{2}-\eta^{2}}}+t^{2} \int_{D} \frac{\left(\xi^{2}+\eta^{2}\right) d \xi d \eta}{\sqrt{1-\xi^{2}-\eta^{2}}}\right]\right)
\end{aligned}
$$

But by symmetry,

$$
\int_{D} \frac{\xi d \xi d \eta}{\sqrt{1-\xi^{2}-\eta^{2}}}=\int_{D} \frac{\eta d \xi d \eta}{\sqrt{1-\xi^{2}-\eta^{2}}}=0
$$

Furthermore, switching to polar coordinates (r, θ) in the plane, we have

$$
\int_{D} \frac{d \xi d \eta}{\sqrt{1-\xi^{2}-\eta^{2}}} \int_{0}^{1} \int_{0}^{2 \pi} \frac{r d r d \theta}{\sqrt{1-r^{2}}}=2 \pi \int_{0}^{1} \frac{r d r}{\sqrt{1-r^{2}}}=\pi \int_{0}^{1} \frac{d s}{\sqrt{s}}=2 \pi
$$

and

$$
\int_{D} \frac{\left(\xi^{2}+\eta^{2}\right) d \xi d \eta}{\sqrt{1-\xi^{2}-\eta^{2}}}=\int_{0}^{1} \int_{0}^{2 \pi} \frac{r^{2}(r d r d \theta)}{\sqrt{1-r^{2}}}=2 \pi \int_{0}^{1} \frac{r^{3} d r}{\sqrt{1-r^{2}}}=\pi \int_{0}^{1} \frac{(1-s) d s}{\sqrt{s}}=\frac{4 \pi}{3}
$$

We conclude that

$$
u(x, y, z, t)=\frac{\partial}{\partial t}\left(\frac{t}{2 \pi}\left[2 \pi\left(x^{2}+y^{2}\right)+\frac{4 \pi}{3} t^{2}\right]\right)=\underline{\underline{x^{2}+y^{2}+2 t^{2}}}
$$

Moral: The 3d formula was easier to use (less calculations).

2 Exercise 3.2.3. We are asked to write the solution of the nonhomogeneous 3d wave equation

$$
u_{t t}-c^{2} \Delta u=f(x, t)
$$

with zero initial data at time $t=0$, using Duhamel's principle. As usual, we introduce the solution operator $S(t)$ by defining $S(t) h$ to be the solution $v(\cdot, t)$ of the homogeneous IVP

$$
v_{t t}-c^{2} \Delta u=0, \quad v(x, 0)=0, \quad v_{t}(x, 0)=h(x)
$$

So by Kirchhoff's formula (here $x \in \mathbb{R}^{3}$)

$$
(S(t) h)(x)=\frac{t}{4 \pi} \int_{|y|=1} h(x+c t y) d S(y)
$$

Therefore, Duhamel's principle takes the form

$$
\begin{aligned}
u(x, t) & =\int_{0}^{t}(S(t-s) f(\cdot, s))(x) d s \\
& =\int_{0}^{t} \frac{t-s}{4 \pi}\left(\int_{|y|=1} f(x+c(t-s) y, s) d S(y)\right) d s
\end{aligned}
$$

This defines u as a C^{2} function, provided that $f(x, t)$ is C^{2} in the x-variable and C^{0} in the t-variable (then we can differentiate the integral by the usual rules).
Notice that as s ranges from 0 to t and y ranges over the sphere S^{2}, the point

$$
\gamma(s, y)=(x+c(t-s) y, s) \in \mathbb{R}^{4}
$$

parametrizes a cone-shaped surface Γ (the "backwards light cone") with its vertex at the point (x, t). Thus, Γ is the domain of dependence for the point (x, t) : the value of the solution u at the point (x, t) depends only on the values of f on this cone Γ.

3 Exercise 3.2.5. We are asked to find a solution formula for the IVP for the 2d Klein-Gordon equation:

$$
\left\{\begin{array}{l}
v_{t t}-c^{2} \Delta v+m^{2} v=0, \quad[v=v(x, y, t)] \\
v(x, y, 0)=g(x, y), \quad v_{t}(x, y, 0)=h(x, y)
\end{array}\right.
$$

Following the hint in the back of the book, we define

$$
u(x, y, z, t)=\cos \left(\frac{m}{c} z\right) v(x, y, t) .
$$

A direct calculation shows that u satisfies the wave equation in 3d, so it is given by Kirchhoff's formula. Let us assume $g=0$ for simplicity. Then, letting (ξ, η, ζ) denote a point on the unit sphere $S^{2} \subset \mathbb{R}^{3}$, we have

$$
u(x, y, z, t)=\frac{t}{4 \pi} \int_{S^{2}} \cos \left(\frac{m}{c}(z+c t \zeta)\right) h(x+c t \xi, y+c t \eta) d S(\xi, \eta, \zeta)
$$

Setting $z=0$ we get

$$
\nu(x, y, t)=u(x, y, 0, t)=\frac{t}{4 \pi} \int_{S^{2}} \cos (m t \zeta) h(x+c t \xi, y+c t \eta) d S(\xi, \eta, \zeta)
$$

As in the derivation of the solution formula for the wave equation in 2d we now parametrize the hemispheres $\zeta \geq 0$ and $\zeta \leq 0$ of S^{2} as graphs

$$
\zeta= \pm \sqrt{1-\xi^{2}-\eta^{2}}
$$

over the unit disk $D=\left\{(\xi, \eta): \xi^{2}+\eta^{2} \leq 1\right\}$; then the integral transforms to (recall that the cosine function is even, so there is no difference between the integrals over the two hemispheres!)

$$
v(x, y, t)=\frac{t}{2 \pi} \int_{D} \frac{\cos \left(m t \sqrt{1-\xi^{2}-\eta^{2}}\right) h(x+c t \xi, y+c t \eta)}{\sqrt{1-\xi^{2}-\eta^{2}}} d \xi d \eta
$$

If we now drop the assumption that $g=0$, we get the general formula:

$$
\begin{array}{r}
\nu(x, y, t)=\frac{\partial}{\partial t}\left(\frac{t}{2 \pi} \int_{D} \frac{\cos \left(m t \sqrt{1-\xi^{2}-\eta^{2}}\right) g(x+c t \xi, y+c t \eta)}{\sqrt{1-\xi^{2}-\eta^{2}}} d \xi d \eta\right) \\
\quad+\frac{t}{2 \pi} \int_{D} \frac{\cos \left(m t \sqrt{1-\xi^{2}-\eta^{2}}\right) h(x+c t \xi, y+c t \eta)}{\sqrt{1-\xi^{2}-\eta^{2}}} d \xi d \eta .
\end{array}
$$

