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1 a) We solve
xux + yuy = 2u, u(x,1) = g (x),

by the method of characteristics. The ODEs for the characteristics are:

d x

d t
= x , x(0) = s,

d y

d t
= y , y(0) = 1,

d z

d t
= 2z , z(0) = g (s).

We solve these, obtaining

x = se t , y = e t , z = g (s)e2t ,

which gives s = x/y and e2t = y2, hence

u(x, y) = z = g

(
x

y

)
y2.

NB! Always check your answer by plugging it into the equation/initial condition.

b) Now consider
uux +uy = 1, u(x, x) = x/2.

The ODEs for the characteristics are:

d x

d t
= z, x(0) = s,

d y

d t
= 1, y(0) = s,

d z

d t
= 1, z(0) = s/2.

We solve (first for y and z, then x), obtaining

x = t 2 + st

2
+ s, y = t + s, z = t + s

2
.

Now we need to express z in terms of x and y only, so we need to express s and t as functions
of x and y . Let us observe that

x = t

2
(t + s)+ s,

so if we add t , we get

x + t =
(

t

2
+1

)
(t + s) =

(
t

2
+1

)
y,

hence

t = y −x

1− y/2
= 2x −2y

y −2
.
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Combining this with y = t + s gives

s = y − t = y − 2x −2y

y −2
= y2 −2x

y −2
,

and we conclude that

u(x, y) = z = 2x −2y

y −2
+ y2/2−x

y −2
= y

2
+ x − y

y −2
.

2 We are going to solve Burgers’ equation

ut +uux = 0

for t > 0, with initial condition

u(x,0) =


1 if x <−1,

0 if −1 < x < 0,

2 if 0 < x < 1,

0 if x > 1.

Moreover, we require that u satisfy the condition ul > ur across a shock.

It is important to draw a sketch of the initial function, call it h(x), and of the initial shocks and the
characteristic curves. Note that for Burgers’ equation, the characteristics are straight lines of the
form

(1) x = x0 + tu0,

where u0 = u(x0,0) denotes the constant value of u along the characteristic.

First look at x =−1, where h jumps from value ul = 1 (to the left of x =−1) to value ur = 0 (to the
right of x = −1). Therefore, a shock will emanate from this point, described by a curve x = ξ1(t ),
ξ1(0) =−1. By Rankine-Hugoniot (R-H) we get

ξ′1(t ) =
1
2 u2

r − 1
2 u2

l

ur −ul
= ur +ul

2
= 1

2
,

hence ξ1(t ) =−1+ t/2. To the left of this shock, u equals ul , and to the right u equals ur .

Then we look x = 0 where h jumps up from 0 to 2. Here we get a rarefaction wave (not a shock, in
view of the entropy condition!). To find the rarefaction solution we just use (1) with x0 = 0, which
gives u = x/t in the wedge between x = 0 and x = 2t .

Finally, at x = 1, h jumps down from 2 to 0. Here we get a shock x = ξ2(t ) emanating from x = 1.
R-H gives ξ′2(t ) = 1

2 (2+0) = 1, hence ξ2(t ) = 1+ t .

Let us summarize (remember to sketch!):

(2) u(x, t ) =



1 if x <−1+ t/2,

0 if −1+ t/2 < x ≤ 0,

x/t if 0 < x < 2t ,

2 if 2t ≤ x < 1+ t ,

0 if x > 1+ t .

This solution is valid up to time t = 1, where the shock x = 1+ t collides with the right edge x = 2t
of the rarefaction wedge. This creates a new shock, emanating from (x, t ) = (2,1). The shock curve
x = ξ4(t ), with ξ4(1) = 2, is found using R-H:

ξ′4(t ) = ur +ul

2
= 1

2
ul =

ξ4(t )

2t
,
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where we used that u = x/t to the left of the shock, and u = 0 to the right of the shock, by (2). Thus,
we have a separable ODE for ξ4. Solving this, we find ξ4(t ) = 2t 1/2. Hence, for t > 1,

(3) u(x, t ) =


1 if x <−1+ t/2,

0 if −1+ t/2 < x ≤ 0,

x/t if 0 < x < 2t 1/2,

0 if x > 2t 1/2.

This aolution is valid until t = 2, where the shock x =−1+ t/2 hits the left edge x = 0 of the rarefac-
tion wedge. This creates a new shock x = ξ5(t ), with ξ5(2) = 0. Since ul = 1 and ur = x/t , we get
from R-H:

ξ′5(t ) = ur +ul

2
= 1

2
+ ξ5(t )

2t
.

This we can solve using the integrating factor e−(1/2) log t = t−1/2: ξ5(t ) = t−(2t )1/2. Hence, for t > 2,

(4) u(x, t ) =


1 if x < t − (2t )1/2,

x/t if t − (2t )1/2 < x < 2t 1/2,

0 if x > 2t 1/2.

The two shock curves x = t −(2t )1/2 and x = 2t 1/2 collide when t = (2+p
2)2 [then x = 2(2+p

2)], at
which point a new shock develops. Since ul = 1 and ur = 0, by (3), we see from R-H that the shock
has speed 1/2, hence it is described by

x = 2(2+p
2)+ 1

2
[t − (2+p

2)2] = t

2
+ 1

2
(2+p

2)(2−p
2) = t

2
+1.

So for t > (2+p
2)2,

(5) u(x, t ) =
{

1 if x < 1+ t/2,

0 if x > 1+ t/2.

Together, (2), (3), (4) and (5) describe the solution for all t > 0! Figure 1 shows a sketch of the
xt-plane, showing the shocks and the rarefaction wedge.

3 a) We are asked to show that the following equation is hyperbolic:

(6) uxx +6ux y −16uy y = 0.

This is of the form auxx +bux y + cuy y = 0, with a = 1, b = 6 and c = −16. The condition for
hyperbolicity is b2−4ac > 0. Here b2−4ac = 36+64 = 100 > 0, so the equation is hyperbolic.

b) We transform the equation to canonical coordinates. To find the characteristic curves, in the
form of graphs y = f (x), we solve (see p. 50 of McOwen)

d y

d x
= b ±

p
b2 −4ac

2a
= 6±10

2
=

{
−2,

8,

which gives y = y0 −2x and y = y0 +8x. So the characteristic curves are y +2x = const and
y −8x = const. The canonical coordinates are therefore

(7) µ= y +2x, η= y −8x.

The chain rule gives

ux = uµµx +uηηx = 2uµ−8uη,

uy = uµµy +uηηy = uµ+uη,

uxx = 2uµµµx +2uµηηx −8uµηµx −8uηηηx = 4uµµ−32uµη+64uηη,

ux y = 2uµµµy +2uµηηy −8uµηµy −8uηηηy = 2uµµ−6uµη−8uηη,

uy y = uµµµy +uµηηy +uµηµy +uηηηy = uµµ+2uµη+uηη.
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x

t

−1 0 1 2 2(2+p
2)

1

2

(2+p
2)2

u = 1

u = 1

u = x
t

u = 0
u = 2

u = 0

Figure 1: The solution of exercise 2.
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Plugging this into (6), we get

4uµµ−32uµη+64uηη+6
(
2uµµ−6uµη−8uηη

)−16
(
uµµ+2uµη+uηη

)= 0,

which simplifies to −100uµη = 0, i.e.,

(8) uµη = 0.

c) We find the general solution u(x, y). The general solution of (8) is

u(µ,η) = F (µ)+G(η),

for arbitrary functions F and G . Substituting (7) into this gives

u(x, y) = F (y +2x)+G(y −8x).

d) Here we are asked to find a solution that satisfies u(−x,2x) = x and u(x,0) = sin2x. From
part (c) we get the equations

u(−x,2x) = F (0)+G(10x) = x,

u(x,0) = F (2x)+G(−8x) = sin2x.

Thus, G(s) = s/10−C , where C is a constant, and F (s) = sin s−G(−4s) = sin s+4s/10+C . This
gives u(x, y) = sin(y +2x)+ 4

10 (y +2x)+ 1
10 (y −8x), which simplifies to

u(x, y) = sin(y +2x)+ y

2
.

4 (Exercise 2.3.16 from McOwen.) Here we consider an m-th order operator

Lu = ∑
|α|≤m

aα(x)∂αu.

The principal symbol is
σ(x;ξ) = ∑

|α|=m
aα(x)ξα (x,ξ ∈Rn).

Now we assume that for a given x, L is elliptic, i.e.,

σ(x;ξ) 6= 0 for all ξ ∈Rn , ξ 6= 0.

We are asked to prove that this implies that m must be an even integer. Since x is fixed, let us set
cα = aα(x) and write σ(ξ) = ∑

|α|=m cαξα, to simplify the notation. Let us also restrict ξ to lie on
the unit sphere, so |ξ| = 1. Since σ(ξ) is a continuous function on the unit sphere, and it does not
vanish at any point on the unit sphere, then it must have a definite sign there. Without loss of
generality, we may therefore assume

σ(ξ) > 0 for all |ξ| = 1.

But this implies that

I :=
∫
|ξ|=1

σ(ξ)dS(ξ) > 0.

On the other hand,
I = ∑

|α|=m
cαIα,

where

Iα =
∫
|ξ|=1

ξαdS(ξ).

April 17, 2009 Page 5 of 15



Solutions forExtra problem set

However, it is a general fact that if we integrate any monomial ξα of odd order (i.e., if |α| is odd)
over the unit sphere, then we get zero! Therefore, if m were odd, we would have I = 0, which is a
contradiction. Therefore, m must be even.

It is a good exercise to prove the property of odd-powered monomials stated above. For example,
taking n = 3, and using coordinates x, y, z on the unit sphere, we consider Ipqr = ∫

S2 xp y q zr dS,
where p, q,r ≥ 0 are integers and p+q+r is odd. Then at least one of p, q,r must be odd. Without
loss of generality, assume p is odd. Then by symmetry (change variables x →−x; this leaves dS
unchanged!), we see that Ipqr =−Ipqr , hence Ipqr = 0.

5 We consider a linear k-th order ordinary differential operator with constant coefficients,

L =
k∑

j=0
c j

(
d

d x

) j

.

Here the c j are constants, and we assume ck 6= 0 (so L is genuinely k-th order).

Let v be the solution of Lv = 0 with v(0) = ·· · = v (k−2)(0) = 0 and v (k−1)(0) = c−1
k . (This solution

exists, by ODE theory.)

Now define F (x) = v(x) for x > 0 and F (x) = 0 for x < 0. We are asked to prove that (in the sense of
distributions)

(9) LF = δ,

i.e., F is a fundamental solution.

By the definition of distributional derivatives, (9) is equivalent to

(10)
k∑

j=0
c j (−1) j

〈
F,φ( j )

〉
=φ(0) for all φ ∈C∞

0 (R).

But by the definition of F ,

(11)
〈

F,φ( j )
〉
=

∫ ∞

−∞
F (x)φ( j )(x)d x =

∫ ∞

0
v(x)φ( j )(x)d x.

Using integration by parts, the compact support of φ, and the properties of v , we find that for
j = 1,2, · · · ,k −1,

(12)

∫ ∞

0
v(x)φ( j )(x)d x =−v(0)φ( j−1)(0)︸ ︷︷ ︸

=0

−
∫ ∞

0
v ′(x)φ( j−1)(x)d x

= (−1)2 v ′(0)φ( j−2)(0)︸ ︷︷ ︸
=0

+(−1)2
∫ ∞

0
v ′′(x)φ( j−2)(x)d x

= ·· ·
= (−1) j v ( j−1)(0)φ(0)︸ ︷︷ ︸

=0

+(−1) j
∫ ∞

0
v ( j )(x)φ(x)d x,

whereas for j = k, the same computation applies, but the last boundary does not vanish:

(13)
∫ ∞

0
v(x)φ(k)(x)d x = (−1)k v (k−1)(0)φ(0)︸ ︷︷ ︸

=c−1
k φ(0)

+(−1)k
∫ ∞

0
v (k)(x)φ(x)d x.

Combining (11)–(13), we see that

k∑
j=0

c j (−1) j
〈

F,φ( j )
〉
=

k∑
j=0

c j

∫ ∞

0
v ( j )(x)φ(x)d x +φ(0) =

∫ ∞

0
Lv(x)︸ ︷︷ ︸

=0

φ(x)d x +φ(0) =φ(0),

which proves (10).
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6 a) Here we are supposed to show that the characteristic function of the first quadrant in the
(x, y)-plane (i.e., F (x, y) = 1 if x, y > 0 and F (x, y) = 0 otherwise) is a fundamental solution for
∂x∂y in R2.

So we have to prove ∂x∂y F = δ, in the sense of distributions on R2. This is equivalent to
saying that

(14)
Ï
R2

F (x, y)φx y (x, y)d x d y =
∫ ∞

0

∫ ∞

0
φx y (x, y)d x d y =φ(0,0) for all φ ∈C∞

0 (R2).

But for all y , ∫ ∞

0
φx y (x, y)d x = lim

N→∞
[
φy (x, y)

]x=N
x=0 =−φy (0, y),

where we used the compact support. Integrating this in y , we get∫ ∞

0

∫ ∞

0
φx y (x, y)d x d y =−

∫ ∞

0
φy (0, y)d y =− lim

N→∞
[
φ(0, y)

]y=N
y=0 =φ(0,0),

where again we used the compact support. This proves (14).

b) Here we are going to show that K (x) =− e−c|x|

4π |x| is a fundamental solution for ∆− c2 on R3.

First write K = f g for f (x) =− 1

4π |x| and g (x) = e−c|x|. For x 6= 0, we can use the identity

(15) ∆( f g ) = (∆ f )g +2∇ f ·∇g + f ∆g .

Straightforward calculations (chain rule etc.) give

∇ f (x) = 1

4π |x|2
x

|x| , ∆ f (x) = 0, ∇g (x) =−c
x

|x|e−c|x|, ∆g (x) = c2e−c|x|− 2c

|x|e−c|x|.

Plugging this into (15) gives

(16) ∆K (x) = c2K (x) for x 6= 0.

Let us also note for later use that

(17) ∇K (x) = f (x)∇g (x)+ g (x)∇ f (x) = c

4π |x|
x

|x|e−c|x|+ 1

4π |x|2
x

|x|e−c|x|.

Now we need to prove that ∆K = c2K +δ in D′, or equivalently,

(18)
∫
R3

K (x)∆φ(x)d x = c2
∫
R3

K (x)φ(x)d x +φ(0) for every test function φ ∈C∞
0 (R3).

We fix φ, and choose M so large that
∣∣φ(x)

∣∣ ,
∣∣∇φ(x)

∣∣ ,
∣∣∆φ(x)

∣∣≤ M for all x.

We apply the usual trick of cutting out a small ball Bε(0), ε> 0, to the left hand side of (18):∫
R3

K (x)∆φ(x)d x =
∫
|x|≤ε

K (x)∆φ(x)d x +
∫
|x|>ε

K (x)∆φ(x)d x =: I + J .

Let ν denote the outward pointing unit normal on the surface |x| = ε, so ν= x/ |x|. Then by
Green’s second identity (see p. 107),

(19) J =
∫
|x|>ε

φ(x)∆K (x)d x −
∫
|x|=ε

K
∂φ

∂ν
dS +

∫
|x|=ε

φ
∂K

∂ν
dS =: J1 + J2 + J3.

By (18),

(20) J1 = c2
∫
|x|>ε

φ(x)K (x)d x.
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We estimate

(21) |J2| ≤ M
e |c|ε

4πε

∫
|x|=ε

1dS = Me |c|εε→ 0 as ε→ 0.

The term J3 can be written, using (17) and the fact that ν= x/ |x|:

J3 =
∫
|x|=ε

φ∇K ·νdS = ce−cε

4πε

∫
|x|=ε

φdS + e−cε

4πε2

∫
|x|=ε

φdS.

By the mean value theorem for integrals,
∫
|x|=εφdS = 4πε2φ(x∗) for some x∗ with |x∗| = ε,

so we conclude, letting ε→ 0, that

(22) lim
ε→0

J3 =φ(0).

For the term I we estimate

(23) |I | ≤ Me |c|ε
∫
|x|≤ε

1

4π |x| d x = Me |c|ε
ε2

2
→ 0 as ε→ 0,

where we used spherical coordinates to calculate the integral
∫
|x|≤ε

1
4π|x| d x. In the same way

we obtain

(24)

∣∣∣∣c2
∫
|x|≤ε

K (x)φ(x)d x

∣∣∣∣→ 0 as ε→ 0.

Combining (20), (21), (22), (23) and (24), we conclude that∫
R3

K (x)∆φ(x)d x = c2
∫
R3

K (x)φ(x)d x +φ(0)+o(ε),

where o(ε) denotes a term which tends to zero as ε tends to zero. We therefore obtain (18).

7 We are asked to solve the problem

ut t −4uxx = ex + sin t , u(x,0) = 0, ut (x,0) = 1

1+x2 ,

for x ∈R, t ∈R. By D’Alembert’s formula (p. 75), and Duhamel’s formula (Eq. (19) on p. 81),

u(x, t ) = I + J ,

where (observe that c = 2 in this case)

I = 1

4

∫ x+2t

x−2t

d y

1+ y2 ,

J = 1

4

∫ t

0

(∫ x+2(t−s)

x−2(t−s)

(
e y + sin s

)
d y

)
d s.

We solve:

I = 1

4
arctan(x +2t )− 1

4
arctan(x −2t ),

and

J = 1

4

∫ t

0

(
ex+2(t−s) −ex−2(t−s) +4(t − s)sin s

)
d s

= 1

4

[
−1

2
ex+2(t−s) − 1

2
ex−2(t−s) −4t cos s −4sin s +4s cos s

]s=t

s=0

= 1

4

(
−ex −4sin t + 1

2
ex+2t + 1

2
ex−2t +4t

)
.

Therefore,

u(x, t ) = 1

4

(
arctan(x +2t )−arctan(x −2t )+ 1

2
ex+2t + 1

2
ex−2t −ex −4sin t +4t

)
.
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8 a) We are asked to show that the general radial solution to the 3d wave equation (with c = 1) is

(25) u(x, t ) = 1

r

[
φ(r + t )+ψ(r − t )

]
(r = |x|),

where φ,ψ : R→ R are arbitrary. Recall that for a radial function f (x) = f (r ) (slight abuse of
notation here, but no confusion should arise), where r = |x| and x ∈R3, the Laplace operator
becomes∆ f (x) = f ′′(r )+(2/r ) f ′(r ), for r > 0. Therefore, if u(x, t ) is radial in x, i.e., u = u(r, t ),
then the wave equation

(26) ut t −∆u = 0

becomes

(27) ut t −ur r − 2

r
ur = 0.

(Let us remark that (27) only makes sense for r > 0, so it only implies that (26) holds for x 6= 0,
but if u is C 2 as a function of x ∈R3, then it follows by continuity that (26) holds also for x = 0.
Therefore, (26) and (27) really are equivalent, if we know that u is C 2.)

The trick one uses to solve (27) is to introduce v = r u. Then vr = u+r ur and vr r = 2ur +r ur r ,
hence (27) is equivalent to (multiply both sides of (27) by r )

(28) vt t − vr r = 0,

which is the 1d wave equation in the variables r and t . As we know, the general solution of
this is

v(r, t ) =φ(r + t )+ψ(r − t ),

where φ and ψ are arbitrary functions from R into R. Dividing by r , we then get (25).

b) We are supposed to solve the Cauchy problem for the 3d wave equation with radial data:

(29) ut t −∆u = 0, u(x,0) = f (|x|), ut (x,0) = g (|x|),

where f , g are defined on [0,∞). We extend f and g to even functions on R, so for r ≥ 0, we
set f (−r ) = f (r ) and g (−r ) = g (r ).

By part (a), we know the solution must be of the form (27). The initial conditions give

φ(r )+ψ(r ) = r f (r ),(30)

φ′(r )−ψ′(r ) = r g (r ).(31)

Integrating (31), we get

(32) φ(r )−ψ(r ) =
∫ r

0
sg (s)d s.

Adding or subtracting (30) and (32) gives

φ(r ) = 1

2

(
r f (r )+

∫ r

0
sg (s)d s

)
, ψ(r ) = 1

2

(
r f (r )−

∫ r

0
sg (s)d s

)
.

Plugging this into (27), we obtain

(33) u(x, t ) = 1

2r

[
(r + t ) f (r + t )+ (r − t ) f (r − t )

]+ 1

2r

(∫ r+t

0
sg (s)d s −

∫ r−t

0
sg (s)d s

)
and since

−
∫ r−t

0
sg (s)d s =

∫ 0

r−t
sg (s)d s

=
∫ 0

−(r−t )
(−y)g (−y) (−1)d y change variables to y =−s, d y =−d s

=
∫ 0

t−r
y g (y)d y, since g (−y) = g (y)
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we get

(34) u(x, t ) = 1

2r

[
(r + t ) f (r + t )+ (r − t ) f (r − t )

]+ 1

2r

∫ t+r

t−r
sg (s)d s,

which is the solution of (29). This is obviously C 2 for x 6= 0 (i.e., r > 0) if the even extensions
of f , g are C 2 on R; what happens at r = 0 is less clear, but this is investigated in part (c).

c) We are asked to find u(0, t ). Thus, we must take the limit as r → 0 in (34). The first term in
(34) we rewrite as

(t + r ) f (t + r )− (t − r ) f (t − r )

2r
using the fact that f (−r ) = f (r ), by the even extension. Clearly,

lim
r→0

(t + r ) f (t + r )− (t − r ) f (t − r )

2r
= d

d t

[
t f (t )

]= f (t )+ t f ′(t ).

Since sg (s) is a continuous function, the mean value theorem for integrals tells us that the
second term in (34) can be written as

s∗g (s∗) for some s∗ = s∗(r ) in (t − r, t + r ),

hence in the limit r → 0 we get t g (t ). Thus, we have shown that

u(0, t ) = f (t )+ t f ′(t )+ t g (t ).

This shows that u is generally no better than C k for t > 0 if f ∈ C k+1 and g ∈ C k ! (So going
from t = 0 to t > 0 we immediately “lose” one derivative; note that for the heat equation the
situation is quite different, in that non-smooth initial data are immediately smoothed out!)

9 a) Suppose first g = 0 and h ∈C∞
0 .

Note that h is bounded (say |h| ≤ M), and = 0 for |x| > R and R large enough. By Kirchhoff’s
formula,

u(x, t ) = t

4π

∫
|y |=1

h(x + ct y)dSy .

Changing variables to z = x + ct y , we have dSz = (ct )2dSy , we find

u(x, t ) = t

4π

∫
|z−x|=ct

h(z)
dSz

(ct )2 ,

hence, for t > 0, using the assumptions on h above,

|u(x, t )| ≤ 1

4πc2t

∫
{|z−x|=ct }∩{|x|≤R}

MdSy = M

4πc2t
Area

({|z −x| = ct
}∩{|x| ≤ R

})
,

But
{|z −x| = ct

}∩{|x| ≤ R
}

is a sphere “cap” whose area is bounded independently of x and
t (no larger than AR2 for some absolute constant A as can be calculated explicitly calculated
in spherical coordinates). Therefore,

|u(x, t )| ≤ C

t
,

where C is independent of x and t .

This shows the result for g = 0. If instead we assume h = 0, then by Kirchhoff s formula,

u(x, t ) = ∂

∂t

(
t

4π

∫
|y |=1

g (x + ct y)dSy

)
= 1

4π

∫
|y |=1

g (x + ct y)dSy + t

4π

∫
|y |=1

(∇g )(x + ct y) · (c y)dSy ,

and both terms are covered by the preceding analysis, if g ∈C∞
0 (R3).
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b) The result fails in 2d. Instead, one can then show that (if g ,h ∈C∞
0 )

|u(x, t )| ≤ Cp
t

,

but this is a little more tricky, and we leave it. Intuitively, the decay as t → ∞ in 3d (part
(a)) is due to the fact that the wave spreads out in space, on spheres expanding (with speed
c) as time increases, hence the amplitude of the wave attenuates. In 2d the wave has one
less direction to spread out in, therefore it will not attenuate as quickly. In 1d, there is no
attenutation at all as t →∞, as is clear from d’Alembert’s formula.

10 SupposeΩ is a bounded domain with smooth boundary, and suppose

u ∈C 2(Ω× (0,T )
)∩C 1(Ω× (0,T )

)
satisfies

ut =∆u (x ∈Ω,0 < t < T ),

with either u = 0 or ∂u/∂ν= 0 on the boundary ∂Ω, for all 0 < t < T . Define

f (t ) =
∫
Ω

u(x, t )2 d x (0 < t < T ).

We are asked to prove that f (t ) is nonincreasing. It would suffice to show that f ′(t ) ≤ 0 for all
0 < t < T . But

f ′(t ) =
∫
Ω
∂t

(
u2)d x.

Following the hint, we use the identity u(ut −∆u) = 1
2∂t

(
u2

)−div(u∇u)+|∇u|2 (we check this by
expanding the right hand side using the product rule for derivatives). Integrating this over Ω, we
get, since ut −∆u = 0,

0 = 1

2

∫
Ω
∂t

(
u2)d x︸ ︷︷ ︸

= f ′(t )

−
∫
Ω

div(u∇u)d x︸ ︷︷ ︸
=∫

∂Ωu∇u·νdS=0

+
∫
Ω
|∇u|2 d x︸ ︷︷ ︸

≥0

,

where for the middle term we use the divergence theorem and the assumption that either u = 0 or
∂u/∂ν=∇u ·ν= 0 on ∂Ω. It now follows that f ′(t ) ≤ 0.

11 a) (Exercise 4.1.8 from McOwen.) This exercise boils down to the following: Suppose u is non-

constant, C 2 and subharmonic (∆u ≥ 0) in a ball Br (0), and u is C 1 on the closed ball Br (0).
Then by the maximum principle (p. 109), we know that u attains its maximum at some point
x0 on the boundary of the ball. Moreover, we assume that x0 is the unique maximum point,
so

u(x) < u(x0) for all x ∈ Br (0), x 6= x0.

This implies (we shall need this later) that there exists ε> 0 such that

(35) u(x) ≤ u(x0)−ε for all x ∈ Br (0) with |x −x0| = r /2.

Without loss of generality, we may assume

(36) x0 = (r,0, . . . ,0).

We are asked to prove that

(37)
∂u

∂ν
(x0) > 0,
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where ν denotes the exterior unit normal of the ball.

Following the hint on p. 427, we introduce a function

v(x) = e−α|x|
2 −e−αr 2

(x ∈Rn),

where α> 0 is a constant. Notice that

(38) v(x) = 0 for all |x| = r ,

and that (recalling (36))

(39)
∂v

∂ν
(x0) = vx1 (r,0, . . . ,0) =−2αr e−αr 2

.

We calculate ∆v(x) = 2α
(
2α |x|2 −n

)
e−α|x|

2
. If x ∈ Br /2(x0), i.e., |x −x0| < r /2, then

|x| ≥ |x0|− |x −x0| = r −|x −x0| ≥ r − r

2
= r

2
,

and therefore ∆v(x) ≥ 2α
(
2α(r /2)2 −n

)
e−α|x|

2 > 0, provided α > 0 is chosen so large that
αr 2/2 > n, i.e., α> 2n/r 2. We summarize:

(40) ∆v(x) > 0 for all x ∈ Br /2(x0).

Now define w(x) = u(x)+ηv(x) for x ∈ Br (0), where η> 0 is chosen so small that

(41) ηv(x) ≤ ε for all |x| ≤ r ,

where ε is as in (35).

By (40), ∆w ≥ 0 in Br (0)∩Br /2(x0), so by the weak maximum principle, w attains its max-
imum at a point x∗ on the boundary of Br (0)∩Br /2(x0). Thus, either (i) |x∗| = r , in which
case w(x∗) = u(x∗), by (38), or (ii) |x∗| < r and|x∗−x0| = r /2, in which case we have w(x∗) ≤
u(x0), by (35) and (41). In either case, we conclude that w(x) ≤ u(x0) = w(x0) for all x in the
closure of Br (0)∩Br /2(x0), and hence

0 ≤ ∂w

∂ν
(x0) = ∂u

∂ν
(x0)+η∂v

∂ν
(x0).

But in view of (39), this implies

∂u

∂ν
(x0) ≥−η∂v

∂ν
(x0) ≥ η2αr e−αr 2

,

and this concludes the proof.

b) Let M = maxΩ̄u and define
Σ= {x ∈Ω : u(x) = M }.

We claim that either Σ=Ω or Σ=;. In the first case u is constant equal to M . In the second
case u < supΩu inΩ. Hence the strong maximum principle follows.

Proof of claim: Assume Σ 6= ; and Σ 6= Ω. Since u is continuous, Σ is relatively closed, and
henceΩ\Σ is open. Therefore there is a ball B and a point x0 ∈Σ such that

B ⊂Ω\Σ and ∂B ∩Σ= {x0}.

Since
∆u ≥ 0 and u < u(x0) in B ,

Hopf Lemma (part a)) implies that
∂u

∂ν
(x0) < 0.

On the other hand, since x0 is an interior maximum point we have Du(x0) = 0. This is a
contradiction so either Σ=Ω or Σ=;.
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c) Let w = u − v and note that this function belong to C 2(Ω)∪C (Ω̄) and solve{
∆w = 0 in Ω
∂w
∂ν +α(x)w = 0 on ∂Ω.

Now assume that
M = max

Ω̄
w ≥ 0,

(otherwise consider −w) and let x0 ∈ Ω̄ be such that w(x0) = M . By the strong maximum
principle

either x0 ∈ ∂Ω or w ≡ M .

The first case is not possible since the Hopf lemma implies that

∂w

∂ν
(x0)+α(x0)w(x0) > 0+α(x0)M ≥ 0,

contradicting the boundary condition. Hence we conclude that

u − v ≡ M = constant in Ω̄.

If α 6≡ 0, then α(x1) 6= 0 for some x1 ∈ ∂Ω. The boundary condition then implies

0 = ∂M

∂ν
+α(x1)M =α(x1)M ,

and hence M = 0.

12 In this exercise, A, B , C and R denote real n ×n-matrices.

We say that A = (ai j ) is positive semi-definite if

(42)
n∑

i , j=1
ai jξiξ j ≥ 0 for all ξ ∈Rn .

Note that the left side can be written
ξT Aξ

if we regard ξ as a column vector, and ξT denotes the transpose.

a) Suppose if A is positive semi-definite. Applying (42) with ξ equal to e1 = (1,0, . . . ,0), e2 =
(0,1,0, . . . ,0) etc., we get ai i ≥ 0 for i = 1, . . . ,n. Now assumeλ is an eigenvalue of A, associated
to an eigenvector x, so Ax =λx. We may assume |x| = 1. Then λ=λxT x = xT (λx) = xT Ax ≥
0.

b) Assume A and B are symmetric and positive semi-definite. We are asked to prove that tr(AB) ≥
0, where tr denotes the trace.

Since A is symmetric, there exists an orthonormal basis {v1, . . . , vn} forRn consisting of eigen-
vectors of A. Then the matrix P with rows v1, . . . , vn diagonalizes A:

P T AP = diag(λ1,λ2, . . . ,λn),

where λ j is the eigenvalue associated to v j (so Av j = λ j v j ). Diagonalize A using an or-
thonormal basis of eigenvectors. Using the general fact that tr(R t C R) = tr(C ) for all C if R is
an orthogonal matrix, we get (since P is orthogonal, so in particular, PP T = I )

tr(AB) = tr(P T ABP ) = tr(P T AI BP ) = tr([P T AP ][P T BP ]) =
n∑

j=1
λ j b′

j j ,

where the b′
i j ’s are the entries of the matrix B ′ = P T BP . But B ′ is positive semi-definite, since

B is, so by part (a), b′
j j ≥ 0. By part (a) we also get λ j ≥ 0, since A is positive semi-definite.

Therefore, tr(AB) ≥ 0.
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13 Let u :Ω→ R be C 2. We are asked to prove that if u has a local maximum at at point x0 ∈Ω, then
the symmetric n ×n-matrix D2u(x0) with entries ∂i∂ j u(x0) is negative semi-definite.

Given any ξ ∈Rn with ξ 6= 0, we define φ(t ) = u(x0 + tξ) for t in a sufficiently small interval around
0 (so that x0 + tξ stays insideΩ). By the chain rule (we write ∂i u = uxi )

φ′(t ) =∇u(x0 + tξ) ·ξ=
n∑

i=1
∂i u(x0 + tξ)ξi ,

and

φ′′(t ) =
n∑

i , j=1
∂ j∂i u(x0 + tξ)ξiξ j .

But φ has a local maximum at t = 0, hence φ′′(0) ≤ 0, by one-variable calculus. This proves that
D2u(x0) is negative semi-definite.

14 The purpose of this exercise is to prove the weak maximum principle (cf. (16) in Section 4.1 of
McOwen) for a more general elliptic operator than the Laplace operator. So let Ω be a bounded
domain in Rn , and let

L =
n∑

i , j=1
ai j (x)∂i∂ j +

n∑
i=1

bi (x)∂i ,

where a j k and b j are continuous functions on Ω and the matrix A = (ai j ) is symmetric (so ai j =
a j i ) and pointwise positive definite, i.e.,

(43) ξT A(x)ξ=
n∑

i , j=1
ai j (x)ξiξ j > 0 for all x ∈Ω and all ξ ∈Rn with ξ 6= 0.

(Thus, the operator L is elliptic.)

a) Assume v ∈ C 2(Ω) satisfies Lv > 0 in Ω. We are asked to prove that v cannot have a local
maximum inΩ.

To get a contradiction, we assume v does have a local maximum at some point x∗ ∈Ω. Then
∇v(x∗) =, so

Lv(x∗) =
n∑

i , j=1
ai j (x∗)∂i∂ j v(x∗) = tr

(
A(x∗)D2v(x∗)

)
,

where D2v is the symmetric matrix with entries ∂i∂ j v . But by the previous exercise, we
know that D2v(x∗) is negative semi-definite, hence −D2v(x∗) is positive semi-definite. Since
also A(x∗) is symmetric and positive semi-definite, it follows from part (b) of exercise 13
that tr

(
A(x∗)[−D2v(x∗)]

) ≥ 0, i.e., tr
(

A(x∗)D2v(x∗)
) ≤ 0. Thus, we have a contradiction to

Lv(x∗) > 0.

b) We are asked to show that if x0 ∈Rn \Ω and M > 0 is sufficiently large, then

w(x) = exp(−M |x −x0|2)

satisfies Lw > 0 inΩ. We calculate

∂i w(x) =−2M(x −x0)i exp(−M |x −x0|2),

where (x −x0)i denotes the i -th component of x −x0. Further,

∂ j∂i w(x) = (−2Mδi j +4M 2(x −x0)i (x −x0) j
)

exp(−M |x −x0|2),

where δi j = 0 if i 6= j and = 1 if i = j . Thus,

Lw(x) = 2M

(
− tr A(x)+2M(x −x0)T A(x)(x −x0)−

n∑
i=1

bi (x)(x −x0)i

)
exp(−M |x −x0|2),
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so we have to prove that by choosing M > 0 large enough, we can ensure that the expression
inside the parentheses is positive:

(44) 2M f (x)+ g (x) > 0 for all x ∈Ω,

where

f (x) = (x −x0)T A(x)(x −x0), g (x) =− tr A(x)−
n∑

i=1
bi (x)(x −x0)i .

To prove this, note first that since g is continuous on the compact set Ω, it is bounded, so
there exists K > 0 such that

∣∣g (x)
∣∣ ≤ K for all x ∈ Ω. Next, since f is continuous on the

compact set Ω, it attains its minimum m at some point x∗ ∈ Ω. But by (43), m > 0. Thus,
f (x) ≥ m > 0 for all x ∈Ω. We conclude that

2M f (x)+ g (x) ≥ 2Mm −K > 0

provided we choose M > K /2m. This concludes the proof that Lw > 0 inΩ.

c) Suppose u ∈ C 2(Ω)∩C
(
Ω

)
and that Lu = 0 in Ω. We are supposed to prove the weak maxi-

mum principle:
max
Ω

u = max
∂Ω

u.

Following the hint, we define v = u +εw , where w is as in part (b) (fix any point x0 not inΩ)
and ε> 0 is arbitrary. Since v is continuous on the compact set Ω, it attains its maximum at
some point x∗ ∈Ω. By linearity of L,

Lv = Lu +εLw = εLw > 0 inΩ,

where the last step follows from part (b). Thus, by part (a), we cannot have x∗ ∈ Ω, hence
x∗ ∈ ∂Ω. We conclude that

max
Ω

v = max
∂Ω

v.

But
max
Ω

u < max
Ω

v,

since w > 0, and
max
∂Ω

v ≤ max
∂Ω

u +εR,

where R > 0 is chosen so large that w(x) ≤ R for all x ∈ ∂Ω. We conclude that

max
Ω

u < max
∂Ω

u +εR

and letting ε→ 0, we obtain
max
Ω

u ≤ max
∂Ω

u.

Since the reverse inequality is obvious, we are done.
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