Problem 1 Find the global solution of

$$
u_{t}+u^{3} u_{x}=0
$$

with initial data

$$
u(0, x)= \begin{cases}1, & x \leq 0 \\ 0, & 0<x\end{cases}
$$

Is the solution a classical or a weak solution?

Problem 2 Consider the quasilinear equation

$$
\begin{equation*}
u_{t}+x u_{x}=f \tag{1}
\end{equation*}
$$

for a given function f.
a) Use the method of characteristics to solve (1) with initial data $u(0, x)=$ $u_{0}(x) \in C^{1}(\mathbb{R})$ and $f(t, x)=0$. Identify the largest domain on which a classical solution exists.
b) Use Duhamel's method/principle to solve (1) with initial data $u(0, x)=0$ and $f(t, x) \in C^{1}\left(\mathbb{R}^{2}\right)$ for $t>0$. Thereafter show that the obtained solution is indeed a solution to (1).

Problem 3 Consider the wave equation

$$
\begin{equation*}
u_{t t}-u_{x x}=0, \quad(t, x) \in(0, \infty) \times(-1,1) \tag{2}
\end{equation*}
$$

a) Show that if $v(t, x)$ such that $v(t, \cdot) \in H_{0}^{1}((-1,1))$ for all $t \in[0, \infty)$ satisfies

$$
\begin{equation*}
\int_{0}^{\infty} \int_{-1}^{1}\left[v \psi_{t t}+v_{x} \psi_{x}\right](t, x) d x d t=0 \quad \text { for all } \psi \in C_{\mathrm{cpt}}^{\infty}((0, \infty) \times(-1,1)) \tag{3}
\end{equation*}
$$

then also $u(t, x)=v(t, x)+a+b x$ satisfies (3).
b) A solution $u(t, x)$ to (2) is called a weak solution, if it satisfies (3) and $u(t, \cdot) \in H^{1}((-1,1))$ for all $t \geq 0$.
Find a candidate for a weak solution for the wave equation (2) with initial data

$$
u(0, x)=5+x+\left\{\begin{array}{ll}
1+x, & x \leq 0, \\
1-x, & 0 \leq x,
\end{array} \quad \text { and } \quad u_{t}(0, x)=0\right.
$$

and boundary values

$$
u(t,-1)=4 \quad \text { and } \quad u(t, 1)=6 \quad \text { for all } t \geq 0
$$

Problem 4 Consider the heat equation on $[0, \infty) \times \mathbb{R}^{n}$

$$
\begin{aligned}
u_{t}-\Delta u & =f \\
u(0, \mathbf{x}) & =\phi(\mathbf{x})
\end{aligned}
$$

for given functions f and ϕ and write $\mathbf{x}=\left(\mathbf{y}, x_{n}\right)$, where $\mathbf{y}=\left(x_{1}, x_{2}, \ldots, x_{n-1}\right) \in$ \mathbb{R}^{n-1}.

Show that if $f\left(t, \mathbf{y}, x_{n}\right)=f\left(t, \mathbf{y},-x_{n}\right)$ and $\phi\left(\mathbf{y}, x_{n}\right)=\phi\left(\mathbf{y},-x_{n}\right)$, then $u\left(t, \mathbf{y}, x_{n}\right)=$ $u\left(t, \mathbf{y},-x_{n}\right)$ for any bounded solution u.

Problem $5 \quad$ Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain and $c \in \mathbb{R}$. Assume that $u \in C^{2}\left(\Omega_{T}\right) \cap C^{0}\left(\overline{\Omega_{T}}\right)$ is a solution to

$$
u_{t}-\Delta u+c u=0
$$

and that $v \in C^{2}\left(\Omega_{T}\right) \cap C^{0}\left(\overline{\Omega_{T}}\right)$ satisfies

$$
v_{t}-\Delta v+c v \leq 0 .
$$

Show that if $v \leq u$ on Γ, the parabolic boundary, then $v \leq u$ on $\overline{\Omega_{T}}$.
Hint: Which equation does $w(t, \mathbf{x})=e^{\gamma t} u(t, \mathbf{x})$ satisfy?

Problem 6 Let u be harmonic in \mathbb{R}^{n} such that

$$
\int_{\mathbb{R}^{n}}|u(\mathbf{x})|^{2} d^{n} \mathbf{x}<\infty .
$$

Show that $u \equiv 0$.

Problem 7 Show that the sequence $n\left[\delta_{\frac{1}{n}}-\delta_{-\frac{1}{n}}\right]$ converges to $-2 \delta_{0}^{\prime}$ in $\mathcal{D}^{\prime}(\mathbb{R})$, as $n \rightarrow \infty$.

Problem $8 \quad$ Given $g \in C_{\text {cpt }}^{\infty}(\mathbb{R})$ and $u \in \mathcal{D}^{\prime}(\mathbb{R})$, define

$$
\nu(\phi)=u(g \phi) \quad \text { for all } \phi \in C_{\mathrm{cpt}}^{\infty}(\mathbb{R}) .
$$

Show that $\nu \in \mathcal{D}^{\prime}(\mathbb{R})$.

