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#libraries needed to run this module page
install.packages("lme4")
install.packages("devtools")
library(devtools)
install_github("romunov/AED")
install.packages("lattice")
install.packages("MEMSS")
install.packages("sjPlot")
install.packages("sjmisc")



Plan for this module
Aim: Present methods for analysing correlated responses in a
(normal/Gaussian) regression setting.

We will only consider two-level models and in particular focus on
random intercept and random slope models.

Textbook: Fahrmeir et al (2013): Chapter 2.4, 7.1-7.3, 7.7. In
greater detail: pages 349-354 (not “Alternative view on the random
intercept model”), 356-365 (not 7.1.5 “Stochastic Covariates”“),
368-377 (not”Bayesian Covariance Matrix“”), 379-380 (not “Testing
Random Effects or Variance Parameters”“, only last part on page
383), 383 (middle), 401-409 (orange juice). Note: Bayesian
solutions not on the reading list.

Alternative readings: Zuur et al. (2009): “Mixed Effects Models
and Extensions in Ecology with R”, chapter 5 (pages 101-142).
Available as free ebook from Springer for NTNU students. More
explanations and less mathematics than Fahrmeir et al (2013), more
focus on understanding. Link to ebook Chapter 5

https://link.springer.com/chapter/10.1007/978-0-387-87458-6_5


First week
Classnotes from first week (30.10.2017)

I correlated responses - when and why?
I example of clustered data from ecology: species richness

I notation
I random intercept models

I intra class correlation (ICC)

I measurement model and distributional assumptions
I conditional and marginal formulation
I parameter estimation

I with maximum likelihood for fixed effects

Jump to interactive (week 1)

https://www.math.ntnu.no/emner/TMA4315/2017h/M6Classnotesw1.pdf


Second week

I what did we do last week: beaches example
I parameter estimation (cont.)

I (restricted) maximum likelihood for random effects

I predicting random effects
I and plotting predicted random effects

I residuals: marginal and conditional
I example of longitudinal data: sleep study
I random slope models

I interpretation of random effects

I model selection
I fitting LMM with function lmer in package lme4
I what have we not covered?

Jump to interactive (week 2)



FIRST WEEK



Correlated responses

We may get correlated responses when we work with repeated
measurements on a set of units. The units may be:

I subjects, patients, participants
I animal, plants
I families, towns, schools, classes, beaches

We will consider two types of repeated measurements : clustered
and longitudinal



I Clustered data: The data are nested in the sense that a lower
level unit can only belong to one higher level unit (cluster), and
there is in general no natural ordering of the units within each
cluster.

I Two-level clustered - examples:
I patients in hospitals
I siblings in families
I pupils in schools

I Longitudinal data: The data for each individual are observed at
multiple points in time

I Two-level longitudinal data - examples:
I patients with drug A and drug B monitored over time
I metabolic rate for patients at fasting, then 15, 45, 75 and 135

minutes after a heavy meal

Why not only analyse using linear models? Assuming independent
responses when they are correlated does not give the correct
estimate for the standard error of the estimated parameters of
interest.



Example from ecology: beaches and species
This example is taken from Zuur et al. (2009, chapter 5, pages
101-142), and data are referred to as RIKZ because they were
collected by a Dutch institute with that name.
Data were collected on nine different beaches in the Netherlands
with the aim to investigate if there is a relationship between the

I richness of species (number of species observed) and
I NAP: the height of the sampling station compared to mean

tidal level.

Data: 45 observations, taken at 9 beaches:

I beach: the beach that the samples were taken, for each beach
5 different samples were taken.

In addition also

I exposure: an index composed of information about wave
action, length of the surf zone, grain size, depth of anaerobic
layer was measured, but we will not be used now.



We want to use the richness of species as the response in a
regression model. This is a count, so we could have used Poisson
regression, but to make things simpler we assume that the counts
are such that we instead can assume a normal distribution
(remember we also did that for our DOE experiment in TMA4267).



library("AED")
data(RIKZ)
summary(RIKZ)

## Sample Richness Exposure NAP
## Min. : 1 Min. : 0.000 Min. : 8.00 Min. :-1.3360
## 1st Qu.:12 1st Qu.: 3.000 1st Qu.:10.00 1st Qu.:-0.3750
## Median :23 Median : 4.000 Median :10.00 Median : 0.1670
## Mean :23 Mean : 5.689 Mean :10.22 Mean : 0.3477
## 3rd Qu.:34 3rd Qu.: 8.000 3rd Qu.:11.00 3rd Qu.: 1.1170
## Max. :45 Max. :22.000 Max. :11.00 Max. : 2.2550
## Beach
## Min. :1
## 1st Qu.:3
## Median :5
## Mean :5
## 3rd Qu.:7
## Max. :9



We first consider models with reponse Richness and one covariate
NAP, and analyse data from each beach separately.
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## 1 2 3 4 5 6
## (Intercept) 10.8218944 13.345694 3.400702 3.087716 12.782828 4.324634
## NAP -0.3718279 -4.175271 -1.755353 -1.248577 -8.900178 -1.388512
## 7 8 9
## (Intercept) 3.520626 4.951455 6.295053
## NAP -1.517613 -1.893066 -2.967530
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The intercepts differ but the slopes are not that different.

Q: What if we now want to combine the regression models for the
nine beaches into one model (for the population of beaches), so we
can answer the question about relationship between species richness
and NAP on the population level. What can we do then?



Possible solutions:

1. Use all 45 observations in a regression - with a common
intercept and linear effect in NAP. Problem: violation of
assumption of independent observations lead to wrong
estimates for variances of parameter estimates.

2. Add beach as covariate to regression - then we estimate one
regression coefficient for each beach (intercepts) in addition to
the linear effect in NAP. Problem: why do we want to add 8
extra parameters to estimate (why 8?) values for the 9
beaches? Loss of power and what would we use the beach
estimates for?

3. Add beach as a random covariate to the regression: this is
called random intercept models. Problem: new stuff - slightly
complicated. We do this because beaches not of interest in
themselves, only random sample from population of beaches,
and therefore we only need to account for beaches, not
estimate separate parameters.



Solution 1: all observations together - standard errors not correct
fitall=lm(Richness~NAP,data=RIKZ)
summary(fitall)

##
## Call:
## lm(formula = Richness ~ NAP, data = RIKZ)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0675 -2.7607 -0.8029 1.3534 13.8723
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.6857 0.6578 10.164 5.25e-13 ***
## NAP -2.8669 0.6307 -4.545 4.42e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.16 on 43 degrees of freedom
## Multiple R-squared: 0.3245, Adjusted R-squared: 0.3088
## F-statistic: 20.66 on 1 and 43 DF, p-value: 4.418e-05

—-
Solution 2: fixed effects for each beach - many estimates not so
much of interest when population is in focus.
RIKZ$beachfactor=as.factor(RIKZ$Beach)
fitbeach=lm(Richness~NAP+beachfactor,data=RIKZ,contrasts=list(beachfactor="contr.sum"))
summary(fitbeach)

##
## Call:
## lm(formula = Richness ~ NAP + beachfactor, data = RIKZ, contrasts = list(beachfactor = "contr.sum"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8518 -1.5188 -0.1376 0.7905 11.8384
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.5556 0.4885 13.421 2.30e-15 ***
## NAP -2.4928 0.5023 -4.963 1.79e-05 ***
## beachfactor1 3.2503 1.3554 2.398 0.0220 *
## beachfactor2 6.3284 1.2908 4.903 2.15e-05 ***
## beachfactor3 -3.1546 1.3020 -2.423 0.0207 *
## beachfactor4 -2.7826 1.2943 -2.150 0.0386 *
## beachfactor5 2.3520 1.2967 1.814 0.0783 .
## beachfactor6 -1.9728 1.2915 -1.528 0.1356
## beachfactor7 -2.1864 1.3167 -1.661 0.1057
## beachfactor8 -1.3027 1.2926 -1.008 0.3204
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.06 on 35 degrees of freedom
## Multiple R-squared: 0.7025, Adjusted R-squared: 0.626
## F-statistic: 9.183 on 9 and 35 DF, p-value: 5.645e-07

For the rest - we focus on solution 3!



Notation

We have ni repeated observations (j = 1, . . . , ni) from each of
i = 1, . . . ,m clusters (or individuals).

I Responses: Yi1,Yi2, . . . ,Yini (e.g. species richness at beach i
sample j)

I Covariates: xi1, xi1, . . . , xini (e.g. NAP for beach i sample j)

The covariates xij are p × 1 vectors (as before, k covariates and one
intercept so p = k + 1).



Random intercept models

We start with a single linear regression (one fixed effect):

First, only one covariate (in addition to the intercept), observed for
cluster (beach) i on occation j we have xij

Yij = β0 + β1xij + εij where εij i.i.d. N(0, σ2)

but, we know that Yi1 and Yi2 are observed for the same cluster
and should not be independent (i.e. from same beach), to fix that
we insert a random intercept



New: cluster-specific parameters γ0i :

Yij = β0 + β1xij + γ0i + εij where εij i.i.d.N(0, σ2)

I β0: population intercept (fixed)
I γ0i : deviation (for members of cluster i) from the population

intercept β0 - not a parameter but a random variable!
I β0 + γ0i : random intercept for cluster i
I β1: population slope (fixed), common to all clusters

Now, the clusters are assumed to be random samples from a large
population, and the cluster deviation intercept is assumed

γ0i ∼ N(0, τ2
0 )

and that the γ0is and the εijs are mutually independent random
variables.
So, we have now two error terms.
Q: What are now our unknown parameters? A: β0, β1, σ

2, τ2
0 .

Remark that the γ0is are not parameters but random variables.



Beach-example: Parameter estimates
(will talk about parameter estimation with ML and REML later)

## Linear mixed model fit by REML ['lmerMod']
## Formula: Richness ~ NAP + (1 | Beach)
## Data: RIKZ
##
## REML criterion at convergence: 239.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4227 -0.4848 -0.1576 0.2519 3.9794
##
## Random effects:
## Groups Name Variance Std.Dev.
## Beach (Intercept) 8.668 2.944
## Residual 9.362 3.060
## Number of obs: 45, groups: Beach, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 6.5819 1.0958 6.007
## NAP -2.5684 0.4947 -5.192
##
## Correlation of Fixed Effects:
## (Intr)
## NAP -0.157

Q: Try to identify β̂0, β̂1, σ̂
2, τ̂2

0 in the print-out. A: β̂0 =
6.5818929, β̂1 = -2.5683996 , σ̂2 = 9.3621916, and τ̂2

0 = 8.6675181



Intra class correlation (ICC)

The conditional distribution of Yij given the value of γ0i
(=regarding γ0i as known) is

Yij | γ0i ∼ N(β0 + β1xij + γ0i , σ
2)

One motivation for inserting this new random intercept was to make
sure that observations from the same cluster are dependent, but
between clusters are independent. This means that we need to look
at Cov(Yij ,Ykl ) when i = k and when i 6= k. To do that we need
the (joint) marginal distribution of the responses.

What is the marginal distribution for Yij?

Yij = β0 + β1xij + γ0i + εij

We consider Yij and Ykl :

Ykl = β0 + β1xkl + γ0k + εkl



Now to the covariance between Yij and Ykl .

Cov(Yij ,Ykl ) = E[(Yij − µij)(Ykl − µkl )]

⊕ derivations on the board in class

Cov(Yij ,Ykl ) =


τ2

0 + σ2 = Var(Yij) for i = k, j = l
τ2

0 for i = k, j 6= l
0 for i 6= k, j 6= l


If we put this into a covariance matrix for the vector of responses
for cluster i this type of structure is called compound symmetry.

⊕ write this out on the board in class

Cov(Yi ) = τ2
011T + σ2I



The correlation between Yij and Yil (two observations in the same
cluster that is - same beach) is called the within subject or within
cluster correlation coefficient, and is for our random intercept model

Corr(Yij ,Yil ) = Cov(Yij ,Yil )√
Var(Yij)Var(Yil )

= τ2
0

τ2
0 + σ2 for j 6= l

Inserted parameter estimates this is called the intra class correlation
(ICC) for the random intercept model.



Beach-example: ICC

## Linear mixed model fit by REML ['lmerMod']
## Formula: Richness ~ NAP + (1 | Beach)
## Data: RIKZ
##
## REML criterion at convergence: 239.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4227 -0.4848 -0.1576 0.2519 3.9794
##
## Random effects:
## Groups Name Variance Std.Dev.
## Beach (Intercept) 8.668 2.944
## Residual 9.362 3.060
## Number of obs: 45, groups: Beach, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 6.5819 1.0958 6.007
## NAP -2.5684 0.4947 -5.192
##
## Correlation of Fixed Effects:
## (Intr)
## NAP -0.157

Q: What is the ICC for our fit? Hint:
Corr(Yij ,Yil ) = τ2

0
τ2

0 +σ2 for j 6= l . A: 8.688/(8.688+9.362)=0.48.



Within vs. between cluster variability: See Figure 7.2 in Regression
textbook.



Summing up - so far

We have now looked at models with a random intercept, which is a
special case of linear mixed models (LMM). We have now see that
we have used two components in our model:

I fixed effects - like we have used so far in our GLM-course. This
can be gender, age, time, experimental condition.

I random effects - used to model correlated responses.
Remember the correlation (ICC) in the previous example.

We might imagine that the fixed effects can be of form Xiβ - as
before, but it is also possible to expand the random effects into a
similar form Uiγ. We do that now, and look particularily into the
random slope model in week 2.



Measurement model and distributional
For cluster i = 1, . . . ,m.
Measurement model

Yi = Xiβ + Uiγi + εi

I Yi : ni × 1 random vector of responses
I Xi : ni × p design matrix
I Ui : ni × (q + 1) design matrix for random effects
I β: p × 1 vector of fixed coefficients (common for all clusters)
I γi : (q + 1)× 1 random vector
I εi : ni × 1 random vector

Distributional assumptions
γi ∼ N(0,Q)
εi ∼ N(0, σ2I)

All elements of γ1, γ2, . . . , γm and ε1, ε2, . . . , εm are mutually
independent. The dimension of I is ni × ni , and Q is
(q + 1)× (q + 1).
Remark: one possible generalization is to assume εi ∼ N(0,Σ)
where Σ is general, but we will not look into that in our course.
This can be needed for example if time series structure (like AR1) is
present.



Questions:

Yi = Xiβ + Uiγi + εi

γi ∼ N(0,Q)

εi ∼ N(0, σ2I)

Q: What is Ui , γi and Q for the random intercept model? A: We
had Ui = 1 (ni × 1) and scalar γi = γ0i , and Q = τ2

0 .

Q: General: what is the marginal distribution of Yi? A:
Yi ∼ N(Xiβ,UiQUT

i + σ2I).



Conditional and marginal formulation
Conditional Gaussian model for the response Yi given the random
effect γi :

Yi | γi ∼ N(Xiβ + Uiγi , σ
2I)

Marginal Gaussian model for the response Yi (Laird and Ware
1982 formulation)

Yi = Xiβ + Uiγi + εi = Xiβ + ε∗
i

ε∗
i = Uiγi + εi

Vi = Cov(ε∗
i ) = Cov(Uiγi ) + Cov(εi ) = UiQUT

i + σ2I
ε∗

i ∼ N(0,Vi )

which gives

Yi ∼ N(µi = Xiβ,Vi = σ2I + UiQUT
i )



Linear Mixed Models: all clusters together
From

Yi = Xiβ + Uiγi + εi

into
Y = Xβ + Uγ + ε

where

Y =


Y1
Y2
...
Ym

 ,X =


X1
X2
...
Xm

 ,U =


U1 0 . . . 0
0 U2 . . . 0

0 0
. . . 0

0 0 . . . Um

 , γ =


γ1
γ2
...
γm

 , ε =


ε1
ε2
...
εm


Let N =

∑m
i=1 ni , then dimensions are:

I Y, ε: N × 1
I X N × p
I β: p × 1
I U is N ×m(q + 1)
I γ: m(q + 1)× 1



Conditional Gaussian model for the response Y given the random
effect γ:

Y | γ ∼ N(Xβ + Uγ, σ2I)

Now I is N × N where N =
∑m

i=1 ni .

Marginal Gaussian model for the response Y

Y = Xβ + Uγ + ε = Xβ + ε∗

ε∗ = Uγ + ε

V = Cov(ε∗) = Cov(ε) + Cov(Uγ) = σ2I + UGUT

ε∗ ∼ N(0,V)

Here G is a m(̇q + 1) block-diagonal matrix with Q m times on the
diagonal, which gives

Y ∼ N(Xβ,V = σ2I + UGUT )



Parameter estimation

I Fixed effects β: estimated using maximum likelihood
I Random effects parameters σ2 and Q (in V): estimated using

restricted maximum likelihood (REML).

For the random effects γi and εi we also provide predictions

I Predicted values for the random effects γi using best linear
unbiased predictors (BLUP).

I Prediction values for the random effects εi are our residuals.
Two types of residuals possible “response minus fixed effects”“,
or”response minus fixed and predicted random effects“.

REML, predicted random effects and residuals: week 2.



Parameter estimation with maximum likelihood for fixed effects

Y ∼ N(Xβ,V = σ2I + UGUT )

The log-likelihood function is then (± some constants)

l(β,V) = −1
2 ln|V| − 1

2(y− Xβ)TV−1(y− Xβ)

We assume that the parameters in V are known, and transform our
problem with V−1/2 to get the standard multiple linear regression
model. This leads to the weighted least squares solution for β.

β̂ = (XTV−1X)−1XTV−1Y

Since we have independence between clusters, we had
block-diagonal V and then

β̂ = (
m∑

i=1
XT

i V−1
i Xi )−1

m∑
i=1

XT
i V−1

i Yi

But, we really don’t know V so an estimate must be inserted (week
2 with REML).



Beach-example: parameter estimation for fixed effects

## Linear mixed model fit by REML ['lmerMod']
## Formula: Richness ~ NAP + (1 | Beach)
## Data: RIKZ
##
## REML criterion at convergence: 239.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4227 -0.4848 -0.1576 0.2519 3.9794
##
## Random effects:
## Groups Name Variance Std.Dev.
## Beach (Intercept) 8.668 2.944
## Residual 9.362 3.060
## Number of obs: 45, groups: Beach, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 6.5819 1.0958 6.007
## NAP -2.5684 0.4947 -5.192
##
## Correlation of Fixed Effects:
## (Intr)
## NAP -0.157

Q: Where is the parameter estimat for effect of NAP, with standard
deviation? What is the interpretation of “Correlation of Fixed
Effects”? A:“Fixed effects, NAP, Estimate and Std. Error”.
Correlation of fixed effects is the off-diagonal elements of Cov(β̂)
which here is only Cov(β̂0, β̂1).



Properties of parameters estimators

I Since E(Yi ) = Xiβ then β̂ is unbiased.
I Since β̂ is a linear function of Yi it has a multivariate normal

distribution with variance-covariance matrix

Cov(β̂) = (
m∑

i=1
XT

i V−1
i Xi )−1

I Also, if we insert V̂ as an estimate for V then

β̂ = (
m∑

i=1
XT

i V̂−1
i Xi )−1

m∑
i=1

XT
i V̂−1

i Yi

is still asymptotic multivariate normal (under regularity conditions).

Remark: this is only asymptotically, so we need large samples for
this to hold. And, we do not arrive at a t-distribution here -
however approximations for t (and F) exists, but the problem is the
number of degrees of freedom (in particular when we have time
varying fixed effects). In this course we will only use the asymptotic
normality for confidence intervals (and when a Wald type test is
desired). We will consider hypothesis testing with likelihood ratio
test under “Model selection” in the end of this module.



Beach-example: confidence interval for fixed effects

## 2.5 % 97.5 %
## .sig01 1.484204 5.100814
## .sigma 2.435429 3.877572
## (Intercept) 4.324560 8.824909
## NAP -3.566901 -1.599779

Q: Interpret! First the last two rows. The first two we have not
covered yet - since we don’t know how to estimate the parameters
in V but what do you think this is? A: Estimate ± 1.96 times
standard error of estimate.



Interactive session week 1

Plan: work in randomly assigned groups.

I 12.15: short intro to Problem 1
I 12.15-12.55: work with Problem 1abcd (not ef - covered in

week 2).
I 12.55-13.00: summarize findings.
I Then 15 minutes break.
I 13.15: short intro to Problem 2.
I 13.15-13.55: work with Problem 2abe (not cd - covered in

week 2).
I 13.55-14.00: summarize findings



Exercise 1: Taken from UiO, STK3100, 2011, problem 1

We will in this exercise look at the following model:

Yij = xT
ij βββ + γ0i + εij , εij ∼ N(0, σ2)

γ0i ∼ N(0, τ2
0 )

where i ∈ {1, . . . ,m} is the group index, and j ∈ {1, . . . , ni} is the
index for repeated measurements in each group (cluster). We
assume that all random variables are independent.

a) What is this model called? Discuss where and when such models
are useful.

b) What is the marginal model for Yi = (Yi1, . . . ,Yini )? Show how
you arrive at your answer and write with vectors and matrices (for
cluster i).

New: also write down the formula for Y (all clusters together).

What are the advantages of having an expression for the marginal
distribution of Yi when doing estimation?

In the rest of the exercise we will look at a dataset consisting of
observations of cod from the year 2000. The dataset is from
Havforskningsinstitutten in Bergen, and we use only a subset of a
large dataset with information about fish in Barentshavet. The
following variables are available on a random sample within each
catch (a draft of trawl (trål)):

I length: the length of fish (in cm)
I weight: the weight of fish (in grams)
I age: the age of fish (in years)
I haulsize: the size of the total catch (in ton (1000 kg))

Let i be the index for catch, and j be the index for an individual fish
in a catch. We will not use the age variable in this exercise, but it
will probably be used in Module 7 Generalized linear mixed models.

We start by looking at the model

log(weightij) = β0+β1 log(lengthij)+β2 log(haulsizei )+γ0i +εij

where γ0i ∼ N(0, τ2
0 ), εij ∼ N(0, σ2), and all random effects are

independent. Below is an excerpt from the output from fitting this
model in R.

library(lme4)

filepath <- "https://www.math.ntnu.no/emner/TMA4315/2017h/fishdata.dat"
fish <- read.table(filepath, header = TRUE)

fit1 <- lmer(log(weight) ~ log(length) + log(haulsize) + (1 | haul), data = fish)

summary(fit1)

c) Write down the estimates for all the parameters in the model.
What is the correlation between two weight-variables from the same
catch (haul)?

d) We are now interested in
θ = exp(β0 + β1 log(66) + β2 log(0.46)). The standard deviation of
β̂0 + β̂1 log(66) + β̂2 log(0.46) is 0.007. Explain how you can
calculate this value (you do not have to do the calculation). Then
create and calculate a 95 % confidence interval for θ.

Remark: skip (e), we will not focus so much on model selection.
However, a top-down-strategy (which this exam question points to)
will be explained in the end of this module page (week 2)

e) Assume that you want to compare different models with respect
to which random effects and fixed effects that should be included in
the model. Write down a general strategy for doing model
evaluation on these kinds of models.

New: f) Below is a (horizontal version of a) catepillarplot of the
random effects with confidence intervals, and a density plot for the
random effects and a qq-plot for the random effects. Explain what
you see.

library(sjPlot)
sjp.lmer(fit1,y.offset=0.5)
ggplot() + geom_density(aes(x = ranef(fit1)$haul[[1]])) + labs(x = "x", y = "y", title = "Density")
sjp.lmer(fit1,type="re.qq")



Exercise 2: Taken from UiO, STK3100, 2013, problem 2

The data in this problem is part of a longitudinal study of income in
the US, the Panel Study of Income Dynamics, begun in 1968. The
subset consists of 42 heads of household who were aged 25-39 in
1968. The variables included are

I annual nominal income, which is the response variable
I age, age in 1968
I cyear, coded as -10 in 1968, 0 in 1978 and 10 in 1988
I educ, years of education in 1968
I sex, M = male, F = female
I person, containing information on person id

Below is an excerpt from the output from fitting a linear mixed
model (LMM) with the function lmer in R. The log income (lincm)
is the response,

lincmij = β0 + β1agei + β2cyearij + β3educi + β4sexi + γ0i + εij

i = 1, . . . , 42, j = 1968, 1978, 1988

where γ0i represent the random effects.

## Linear mixed model fit by REML ['lmerMod']
## Formula: lincm ~ age + cyear + educ + sex + (1 | person)
## Data: psid2
##
## REML criterion at convergence: 306
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.4411 -0.4003 0.1071 0.5602 1.6038
##
## Random effects:
## Groups Name Variance Std.Dev.
## person (Intercept) 0.001757 0.04192
## Residual 0.563294 0.75053
## Number of obs: 126, groups: person, 42
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 7.386823 0.631710 11.693
## age -0.020930 0.015207 -1.376
## cyear 0.084163 0.008189 10.278
## educ 0.116343 0.027582 4.218
## sexM 1.311661 0.142247 9.221
##
## Correlation of Fixed Effects:
## (Intr) age cyear educ
## age -0.831
## cyear 0.000 0.000
## educ -0.685 0.201 0.000
## sexM 0.003 -0.217 0.000 0.041

a) Formulate the model on matrix form and explain the meaning of
the different parts. State the model assumptions.

b) Determine an approximate 95 % interval for the coefficient of
cyear. Do you think the nominal income has been constant in the
period covered by the survey?

e) Use the values in the R-output to calculate the estimated
covariance matrix for the response (Yi1,Yi2,Yi3)T by hand. Hint:
compound symmetry due to random intercept model.

Remark Skip (c), which will be lectured in week 2.

c) Explain how one can test the simultaneous significance of two
fixed effects (e.g. age and educ) in LMMs.

d) Describe how the random effects γ0i can be predicted/estimated.
What information is missing for you to calculate these.

In part c) and d) it was not necessary to do any numerical
calculations at the exam.

f) New: do c) and d) in R (after you have done c) and d) by
hand!!!, i.e., do numerical calculations (choose i = 2 in d)). The
rmd-file of this module contains necessary code to download the
dataset, modify it, and fit the full model. Alternatively use purl to
extract the code.



SECOND WEEK



So far: notation and linear mixed model
I In the first week we started with models with a random

intercept, using the beach-example - which we saw was a
special case of linear mixed models (LMM).

I We looked at observations from clusters (family, beach) and
will now also look at longitudinal data (repeated measurements
on the same units).

I For cluster i we wrote the LMM model in a measurement
model part and a distributional assumptions part:

Yi = Xiβ + Uiγi + εi

γi ∼ N(0,Q)
εi ∼ N(0, σ2I)

I which we called
I fixed effects: β
I random effects - used to model correlated responses: γi ,
I errors: εi .



This gave the marginal model for each cluster:

Yi ∼ N(µi = Xiβ,Vi = σ2I + UiQUT
i )



Beach-example: Parameter estimation

## Linear mixed model fit by REML ['lmerMod']
## Formula: Richness ~ NAP + (1 | Beach)
## Data: RIKZ
##
## REML criterion at convergence: 239.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4227 -0.4848 -0.1576 0.2519 3.9794
##
## Random effects:
## Groups Name Variance Std.Dev.
## Beach (Intercept) 8.668 2.944
## Residual 9.362 3.060
## Number of obs: 45, groups: Beach, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 6.5819 1.0958 6.007
## NAP -2.5684 0.4947 -5.192
##
## Correlation of Fixed Effects:
## (Intr)
## NAP -0.157



I For all cluster together (even more letters now)
Y = Xβ + Uγ + ε

Y =


Y1
Y2
...
Ym

 ,X =


X1
X2
...
Xm

 ,U =


U1 0 . . . 0
0 U2 . . . 0

0 0
. . . 0

0 0 . . . Um

 , γ =


γ1
γ2
...
γm

 , ε =


ε1
ε2
...
εm



Y = Xβ + Uγ + ε = Xβ + ε∗

ε∗ = Uγ + ε

V = Cov(ε∗) = Cov(ε) + Cov(Uγ) = σ2I + UGUT

ε∗ ∼ N(0,V)

Here G is a m(̇q + 1) block-diagonal matrix with Q m times on the
diagonal, which gives

Y ∼ N(Xβ,V = σ2I + UGUT )



Parameter estimation
Fixed effects β: estimated using maximum likelihood, with the
marginal distribution as starting point:

Y ∼ N(Xβ,V = σ2I + UGUT )

We assume that the parameters in V are known, then we get the
weighted least squares solution for β.

β̂ = (XTV−1X)−1XTV−1Y = (
m∑

i=1
XT

i V−1
i Xi )−1

m∑
i=1

XT
i V−1

i Yi

β̂ ∼ N(β, (
m∑

i=1
XT

i V−1
i Xi )−1)

We insert estimates for Vi (which we will find next), and the same
distribution - but only asymptotically - to be used for inference for
the fixed effects.

β̂ = (

m∑
i=1

XT
i V̂−1

i Xi )
−1

m∑
i=1

XT
i V̂−1

i Yi ≈ N(β,

m∑
i=1

XT
i V̂−1

i Xi )
−1)



Now follows:

I Random effects parameters σ2 and Q (in V): estimated using
restricted maximum likelihood (REML). We denote all
parameters for random effect for ϑ. For the random intercept
model this is ϑ = (σ2, τ2

0 ).

For the random effects γi and εi we also provide predictions

I Predicted values for the random effects γi using best linear
unbiased predictors (BLUP).

I Prediction values for the random effects εi are our residuals.



Parameter estimation with restricted maximum likelihood
(REML) for random effects

There are two ways to explain the REML - a transformation method
(we start with this), and an integration method (to come next).

Transformation method
To aid in our understanding we start by looking at the REML
solution for multippel linear regression (Module 2),

Y = Xβ + ε with ε ∼ N(0, σ2I)

where X is a n × p design matrix. Remember that
SSE = YT (I−H)Y where the hat matrix is H = X(XTX)−1XT .

I We found that the maximum likelihood estimator for σ2 was
σ̂2 = SSE

n , which is found from maximizing the likelihood
inserted our estimate of β̂ (i.e. disregarding the uncertainty in
the estimation).



I This estimator is biased, and has mean E(σ̂2) = n−p
n σ2 (to

small= biased downwards), where n is the number of
observations and p the number of parameters estimated.

I It is possible to find a n × (n − p) matrix A such that ATY
follows a multivariate normal distribution with mean vector 0
and covariance matrix ATAσ2.

I This means that we have eliminated β as unknown parameter
and we can proceed to use maximum likelihood with σ2 as the
only unknown parameter, which will give the parameter
estimator

σ̂2 = SSE/(n − p) = YT (I−H)Y/(n − p)

This is called the REML estimate for σ2.

Remark: There are many solutions to A but to get
E(ATY) = ATXβ = 0 then A need to be chosen have linearly
independent columns orthogonal to columns space of the design
matrix.



Now, move to our linear mixed effects model. We have the model

Y = Xβ + Uγ + ε

with the marginal distribution

Y ∼ N(Xβ,V = σ2I + UGUT )

I The REML estimator for the parameters in V (called ϑ, and for
the random intercept model that is σ2 and τ2

0 ) - and also then
V(ϑ) - are now

I found by maximizing the likelihood for ATY
I where A is any N × (N − p) full-rank matrix with columns

orthogonal to the columns of the design matrix X.
I Again ATY follows a multivariate normal distribution with

mean vector 0 and now covariance matrix ATV(ϑ)A, which is
independent of β.



I The maximization does not give a closed form solution, but we
get a new V̂ - which now will be less biased (sadly only
unbiased in “simple and unbalanced cases”).

I Even if β is not estimated in this optimization we already know
that

β̂ = (XTV−1X)−1XTV−1Y

and now we have a new V̂ which we insert in this equation,
and thus get a new REML-estimator for β:

β̂ = (XT V̂−1X)−1XT V̂−1Y

I This means, that when using REML-estimation for our linear
mixed effects model this will influence both the fixed effects
and the random effects parameters. However, asymptotically
we will still have the same asymptotic distribution for the fixed
effects as with ML estimation.



In addition the main justification for using REML is that in the
absence of information on β then no information about the
parameters in ϑ is lost when likelihood estimation is based on ATY
instead of on Y. In statistical inference this is referred to as ATY is
marginally sufficient for ϑ (but this is way beyond the scope of this
course).

Further reading: Theoretical explanation for REML (beyond the
scope of this course) by Inge Helland, UiO and also by Verbeke and
Molenberghs (2000), Section 5.3 (free ebook from Springer for
NTNU students).

http://www.uio.no/studier/emner/matnat/math/STK4070/v05/reml.pdf
http://www.uio.no/studier/emner/matnat/math/STK4070/v05/reml.pdf
https://link.springer.com/book/10.1007%2F978-1-4419-0300-6
https://link.springer.com/book/10.1007%2F978-1-4419-0300-6


Comparing ML and REML estimation for the beaches example

fitREML=lmer(Richness~NAP +(1|Beach),data=RIKZ)
fitML=lmer(Richness~NAP +(1|Beach),data=RIKZ,REML=FALSE)
REMLest=c(fixef(fitREML),as.data.frame(VarCorr(fitREML))[,4])
MLest=c(fixef(fitML),as.data.frame(VarCorr(fitML))[,4])
df=data.frame("REML"=REMLest,"ML"=MLest)
rownames(df)=c("$\\beta_0$","$\\beta_1$","$\\tau_0$","$\\sigma$")
kable(df, digits = 4)

REML ML

β0 6.5819 6.5844
β1 -2.5684 -2.5757
τ0 8.6675 7.5068
σ 9.3622 9.1110

Q: Comment on what you see.



Integration method

Y ∼ N(Xβ,V(ϑ) = σ2I + UGUT )

For the fixed effects we started log-likelihood function and
maximized to get estimator for β dependent on ϑ. If we now
assume that we have found β(ϑ) then the profile log-likelihood is

lP(ϑ) = −1
2 ln|V(ϑ)| − 1

2(y− Xβ(ϑ))TV(ϑ)−1(y− Xβ(ϑ))

The integration method (can be motivated from the Bayesian
perspective by assuming a flat prior on β) constructs a marginal or
restricted log-likelihood by integrating β out of the likelihood

lREML(ϑ) = ln
∫

L(β, ϑ)dβ



It can be shown that the REML log-likelihood is

lREML(ϑ) = lP(ϑ)− 1
2 ln|

m∑
i=1

XT
i V(ϑ)−1

i Xi |

Maximizing of lREML(ϑ) provides the REML estimator for ϑ.



What do you need to know about REML?

I That REML is used to get a better estimator (less downwards
biased) for the random effects parameters than using ML,

I so REML is the default choice in the lmer function for fitting
LMMs in the lme4-package in R.

I Two ways of motivating this: by transformation or by
integration.

I But sadly, for LMM this does not in general give unbiased
estimates for the parameters ϑ in V - but less biased.



REML estimation for the beaches example

## Linear mixed model fit by REML ['lmerMod']
## Formula: Richness ~ NAP + (1 | Beach)
## Data: RIKZ
##
## REML criterion at convergence: 239.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4227 -0.4848 -0.1576 0.2519 3.9794
##
## Random effects:
## Groups Name Variance Std.Dev.
## Beach (Intercept) 8.668 2.944
## Residual 9.362 3.060
## Number of obs: 45, groups: Beach, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 6.5819 1.0958 6.007
## NAP -2.5684 0.4947 -5.192
##
## Correlation of Fixed Effects:
## (Intr)
## NAP -0.157

Q: What have we covered so far, and what is missing? Explain the
elements of the print-out!



ML estimation for the beaches example

## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: Richness ~ NAP + (1 | Beach)
## Data: RIKZ
##
## AIC BIC logLik deviance df.resid
## 249.8 257.1 -120.9 241.8 41
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4258 -0.5010 -0.1791 0.2452 4.0452
##
## Random effects:
## Groups Name Variance Std.Dev.
## Beach (Intercept) 7.507 2.740
## Residual 9.111 3.018
## Number of obs: 45, groups: Beach, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 6.5844 1.0321 6.380
## NAP -2.5757 0.4873 -5.285
##
## Correlation of Fixed Effects:
## (Intr)
## NAP -0.164

Q: Look for differences between the REML and ML output.



Predicted values for random effects γ

Why do we want a prediction? To rank the beaches (or schools,
patients?). Small-area-estimations.

Model check can also use this to check that γ is normal is in
agreement with our fitted model (same as when using residuals to
check distribution of errors).

Best Linear Unbiased Predictor (BLUP): γ̂i

I linear function in Y (linear)
I E(γ̂i ) = 0 (unbiased)
I for any linear combination aTγi of random effects

[E(aT γ̂i − aTγi )]2 is minimized among all such linear unbiased
predictors (best)



Beaches random intercept - predicted intercept and estimated
fixed effects
library(spcadjust)
data(RIKZ)
library(lme4)
fit=lmer(Richness~NAP +(1|Beach),data=RIKZ)
plot_model(fit, type="slope")
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The joint distribution of Y and γ is:(
Y
γ

)
∼ N(

(
Xβ
0

)
,

(
V = UGUT + σ2I UG

GUT G

)
)

This is maximized with respect to β and γ, to give

γ̂ = GUTV−1(Y− Xβ̂)

But, here the elements of G and V needs to be estimated, and we
get:

γ̂ = ĜUT V̂−1(Y− Xβ̂)

γ̂i = Q̂UT
i V̂−1

i (Yi − Xi β̂)

Remark: For details on this calculation - involving the Henderson’s
mixed model equations, see pages 371-372 of Fahrmeir et al (2013),
or pages 98-99 in Verbeke and Molenberghs (2000), Section 5.3
(free ebook from Springer for NTNU students).

https://link.springer.com/book/10.1007%2F978-1-4419-0300-6


Conditional mean:

This can also be found as the mean of the conditional distribution
of γ given Y. If we also calculate the covariance of the estimated γ
we can make approximate prediction intervals for the predicted
random effects.

The general formula for the conditional multivariate normal X
(known from TMA4267) is:

X ∼ N(µ,Σ)

X2 | (X1 = x1) ∼ N(µ2 + Σ21Σ−1
11 (x1 − µ1),Σ22 − Σ21Σ−1

11 Σ12)

If we use the formula for the mean with X1 = Y and X2 = γ, then

E(γ | Y) = 0 + GUTV−1(Y− Xβ)

which can be used (inserted parameter estimates) to give our
estimated random effects.



We may find the covariance matrix of GUTV−1(Y− Xβ̂) (directly),
and for each γ̂i this is given as

QUT
i

(
V−1

i − V−1
i Xi (

m∑
i=1

XT
i V−1

i Xi )−1XT
i V−1

i

)
UiQ

(according to Verbeke and Molenberghs (2000), page 78). We insert
estimates Q and Vi (thus underestimating the variability) and get
the estimated covariance matrix for the random effect. Such an
estimate is used in the catepillar plot below.



Random intercept models: γ̂i

For i = 1, . . . ,m:
Yi = Xiβ + Uiγ0i + εi

where
εi ∼ N(0, σ2I) and γ0i ∼ N(0, τ2

0 )

and Ui is a ni × 1 vector of ones. Further, the ni × ni marginal
covariance matrix for Yi is

Vi = σ2I + τ2
011T with inverse V−1

i = 1
σ2 (I− τ2

0
σ2 + niτ2

0
11T )

which means that the elements on the main diagonal for V−1 are

1
σ2(σ2 + niτ2

0 )

and the off-diagonal entries are −τ2
0 .



The fixed effect estimate use this inverse matrix as the weighting
matrix V−1

i in

β̂ = (
m∑

i=1
XT

i V̂−1
i Xi )−1

m∑
i=1

XT
i V̂−1

i Yi

The predicted random intercepts are

γ̂0i = Q̂UT
i V̂−1

i (Yi − Xi β̂) = · · · = ni τ̂
2
0

σ̂2 + ni τ̂2
0
ei

where ei is the average (raw, level 0 - see below) residual

ei = 1
ni

ni∑
j=1

(Yij − xT
ij β̂)



Interpretation:

γ̂0i = ni τ̂
2
0

σ̂2 + ni τ̂2
0
ei

Remember
E(γ | Y) = 0 + GUTV−1(Y− Xβ)

The formula for γ̂i0 can be seen as a weighted sum between the
conditional expectation 0 and the average residual ei , with
weighting factor ni τ̂2

0
σ̂2+ni τ̂2

0
for the average residual (and 1-this for 0).

The larger the ni the closer the weight is to 1 and the smaller the
shrinkage. Shrinkage is also high if the error variance σ2 is large
compared to the random effect variance τ2

0 . The latter gives a very
small ICC, so then it makes sense to have random effects close to 0.



Plotting predictions of random effects

We can also use the R package sjPlot to produce plots and
outputs from fitting linear mixed effects models with function lmer
in the R package lme4. This plotting package can also be used to
produce nice plots for lm and glm. The package uses ggplot2 and
other tidyverse packages.

For details see

I sjPlot and more specifically
I sjPlot on CRAN - for vignettes and
I vignette on plotting random effects in LMM

For our beach-example: First the predicted values for the estimated
random effect for each Beach - with confidence intervals. Unsorted
and sorted version. (horisontal version of catepillar plot). Then
QQ-plots for the estimated random effects.

http://cran.revolutionanalytics.com/web/packages/sjPlot/sjPlot.pdf
https://cran.r-project.org/web/packages/sjPlot/index.html
https://cran.r-project.org/web/packages/sjPlot/vignettes/sjplmer.html


plot_model(fit,type="re",y.offset=0.4)
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plot_model(fit,type="re",sort.est="(Intercept)",y.offset=0.4)
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Q: comment on what you see.



Q: which assumption can be assessed with this plot, and what is the
conclusion?



Predicted values for random effects εi (residuals)

Let µi denote E(Yi ). Fitted values for the LMM can be made on
two levels:

Level 0, marginal : µ̂i = Xi β̂

Level 1, conditional : µ̃i = Xi β̂ + Ui γ̂i

For lmer the function fitted gives the level 1 fitted values (for our
two-level models). This means that raw residuals can also be made
on two levels, and the default is level 1 for lmer.

In addition to raw residuals, also Pearson residuals (standardized)
are popular.

The residuals can be used in the same way as for the Multiple linear
model (module 2).



fit=lmer(Richness~NAP +(1|Beach),data=RIKZ)
df=data.frame(fitted=fitted(fit),resid=residuals(fit,scaled=TRUE))
ggplot(df, aes(fitted,resid)) +

geom_point(pch = 21) +
geom_hline(yintercept = 0, linetype = "dashed") +
geom_smooth(se = FALSE, col = "red", size = 0.5, method = "loess") +
labs(x = "Fitted values", y = "Residuals", title = "Residuals vs Fitted values")
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Q: any trend? homoscedastic?



ggplot(df, aes(sample=resid)) +
stat_qq(pch = 19) +
geom_abline(intercept = 0, slope = 1, linetype = "dotted") +
labs(x = "Theoretical quantiles", y = "Standardized residuals", title = "Normal Q-Q")
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Q: normally distributed?



Example: Sleep deprivation study
In a study on the effect of sleep deprivation the average reaction
time per day were measured. On day 0 the subjects had their
normal amount of sleep. Starting that night they were restricted to
3 hours of sleep per night. The observations represent the average
reaction time on a series of tests given each day to each subject.
This was measured for 18 subjects for 10 days (days 0-9).
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We observe that each subject’s reaction time increases
approximately linearly with the number of sleepdeprived days. But,
it appears that subjects have different slopes and intercepts.

As a first model we may assume that there is a common intercept
and slope for the population - called fixed effects, but allow for
random deviations for the intercept and slope for each individual.
This is called a random intercept and slope model.



fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
summary(fm1)

## Linear mixed model fit by REML ['lmerMod']
## Formula: Reaction ~ Days + (Days | Subject)
## Data: sleepstudy
##
## REML criterion at convergence: 1743.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.9536 -0.4634 0.0231 0.4634 5.1793
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## Subject (Intercept) 612.09 24.740
## Days 35.07 5.922 0.07
## Residual 654.94 25.592
## Number of obs: 180, groups: Subject, 18
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 251.405 6.825 36.838
## Days 10.467 1.546 6.771
##
## Correlation of Fixed Effects:
## (Intr)
## Days -0.138

Q: What are our parameter estimates and their interpretation?



library(sjPlot)
sjp.lmer(fm1, y.offset = .4,sort.est="Days")
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sjp.lmer(fm1, type="rs.ri")
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Random intercept and slope models

Measurement model

Yij = β0 + β1xij + γ0i + γ1ixij + εij

I β0: population intercept (fixed)
I γ0i : deviation (for members of cluster i) from the population

intercept β0 - not a parameter but a random variable!
I β0 + γ0i : random intercept for cluster i
I β1: population slope (fixed), common to all clusters
I γ1i : deviation (for members of cluster i) from the population

slope β0 - not a parameter but a random variable!
I β1 + γ1i : random slope for cluster i .



Distributional assumptions

εi ∼ N(0, σ2I)

γi =
(
γ0i
γ1i

)
∼ N

((
0
0

)
,Q =

(
τ2

0 τ01
τ01 τ2

1

))

The parameter τ01 gives the covariance beween the random
intercept and random slope.



Marginal covariances for Yi

Cov(Yij ,Ykl ) = E[(Yij − µij)(Ykl − µkl )]

Cov(Yij ,Ykl ) =


τ2

0 + 2τ01xij + τ2
1 x2

ij + σ2 = Var(Yij) for i = k, j = l
τ2

0 τ01xij + τ01xil + τ2
i xijxil for i = k, j 6= l

0 for i 6= k, j 6= l


The correlation between Yij and Yil (two observations in the same
cluster, that is, same beach) dependes in a complicated way on the
observed values for x and is rather difficult to interpret.

Corr(Yij ,Yil ) = Cov(Yij ,Yil )√
Var(Yij)Var(Yil )



Model selection methods

There are two main strategies:

I Hypothesis testing
I asymptotic Wald tests for fixed effects
I likelihood ratio test for fixed effects and parameters for random

effects

I Information criteria: AIC and BIC



Testing fixed effects

β̂ = (
m∑

i=1
XT

i V̂−1
i Xi )−1

m∑
i=1

XT
i V̂−1

i Yi ≈ N(β, (
m∑

i=1
XT

i V̂−1
i Xi )−1)

Approximate Wald tests for fixed effects

Cβ = d vs. Cβ 6= d

where C is a r × p constant matrix and d a r × 1 constant vector.
Then:

(β̂ − β)TCT [C(
m∑

i=1
XT

i V̂−1
i Xi )−1CT ]−1C(β̂ − β)

asymptotically follows a χ2-distribution with r -degrees of freedom.



Beach-example: Hypothesis testing with normal approximation
fit=lmer(Richness~NAP +(1|Beach),data=RIKZ,REML=FALSE)
summary(fit)
1-pchisq((summary(fit)$coefficients[2,3])^2,1)

## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: Richness ~ NAP + (1 | Beach)
## Data: RIKZ
##
## AIC BIC logLik deviance df.resid
## 249.8 257.1 -120.9 241.8 41
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4258 -0.5010 -0.1791 0.2452 4.0452
##
## Random effects:
## Groups Name Variance Std.Dev.
## Beach (Intercept) 7.507 2.740
## Residual 9.111 3.018
## Number of obs: 45, groups: Beach, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 6.5844 1.0321 6.380
## NAP -2.5757 0.4873 -5.285
##
## Correlation of Fixed Effects:
## (Intr)
## NAP -0.164
## [1] 1.254807e-07



Likelihood ratio tests for fixed effects
Notation:

I A: the larger model and
I B: the smaller model (under H0), and the smaller model is

nested within the larger model (that is, B is a submodel of A).

The random effects parts of these models are assumed to be the
same, while the changes are only to the fixed effects part.

The likelihood ratio statistic is defined as

−2 lnλ = −2(ln L(β̂B)− ln L(β̂A))

which under the null is asymptotically χ2-distributed with degrees of
freedom equal the difference in the number of parameters in the
large and the small model. Again, p-values are calculated in the
upper tail of the χ2-distribution.

Remark: this is the log-likelihood, not the REML version.



Remark: this result is not valid if the the models are fitted using
REML istead of ML. The reason for this is that the mean structure
of the model fitted under the null hypothesis is not the sam mean
structure under the alternative hypothesis, which leads to that
different matrices A must be used for the REML method. Therefore
these REML log-likelihoods are based on different observations and
are therefore not comparable.



Beach-example: Hypothesis testing with likelihood ratio test

fit=lmer(Richness~NAP +(1|Beach),data=RIKZ,REML=FALSE)
fit0=lmer(Richness~1+(1|Beach),data=RIKZ,REML=FALSE)
anova(fit0,fit)

## Data: RIKZ
## Models:
## fit0: Richness ~ 1 + (1 | Beach)
## fit: Richness ~ NAP + (1 | Beach)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## fit0 3 269.30 274.72 -131.65 263.30
## fit 4 249.83 257.06 -120.92 241.83 21.474 1 3.586e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Q: Which is model A (large) and model B (small)? What do we
conclude? Compare to the Wald test result (previous page).



Testing parameters for random effects

In most situations the fixed effects model is of prime interest,
however, a good choice of covariance structure is useful for
interpreting the data and essential to be able to perform valid
inference for the fixed effects.

I Overparameterization: gives inefficient estimation.
I Too restrictive specification: invalid inference about the fixed

effects.

Wald test can also be used for random effects parameters ϑ in Q
and σ2, and

I asymptotically also ϑ̂ follows a multivariate normal distribution
(under regularity conditions) with

I mean ϑ and covariance matrix given by the inverse of the
Fisher information matrix.

I We may use the negative of the second order partial derivatives
(Hessian) of the log-likelihood (ML or REML) wrt. ϑ.



But there is a problem: the performance of the normal
approximation depends strongly on the true value of ϑ and large
samples are needed for values of ϑ that are close to the boundary of
the parameter space (for the hyptothesis tested), and when on the
boundary the normal approximation fails.

We will not dive deep into this matter in this course, but report that
the solution to this - both for the Wald and the likelihood ratio test
(preferably using the REML log-likelihood) is to use a mixture of χ2

distributions in these cases.



Likelihood ratio test for random effexts

I A: the larger model and
I B: the smaller model (under H0), and the smaller model is

nested within the larger model (that is, B is a submodel of A).

The fixed effects parts of these models are assumed to be the same,
while the changes are only to the random effects part - and the
changes gives nested models.

The likelihood ratio statistic is defined as

−2 lnλ = −2(ln L(ϑ̂B)− ln L(ϑ̂A))

and the REML-likelihood is preferred.



For testing a random intercept model vs. no random intercept (need
for this random effect) then

H0 : Q = 0 vs. H1 : Q = τ2
0

asymptotically −2 lnλ is a mixture of χ2
1 and χ2

0 with equal weights.
Here χ2

0 is the distribution that gives probability mass 1 to the value
0.

If we instead had used the classical null distribution (χ2
1) then the

p-values would be too large and the null hypotheses kept to often.

Similar strategies for other situations - see Verbeke and
Molenberghs (2000) pages 69-72.



AIC and BIC for Maximum likelihood estimation (ML)

AIC = −2 · l(β̂, ϑ̂) + 2 · p

BIC = −2 · l(β̂, ϑ̂) + ln(N) · p

I p: number of parameters in the model, both the βs and the
parameters in the variance of the random effects, i.e. the σ2

from our error and then all variances and covariances for the
random effects in Q.

I N =
∑m

i=1 ni
I l(β̂, ϑ̂) is the maximum log-likelihood inserted the parameter

estimates

This can be used directly in the ML estimation, and as before BIC
will give a smaller model than AIC.



AIC and BIC for Restricted Maximum likelihood estimation
(REML)

AIC = −2 · l(β̂, ϑ̂) + 2 · p

BIC = −2 · l(β̂, ϑ̂) + ln(N − p) · p

I p: number of parameters in the model, both the βs and the
parameters in the variance of the random effects, i.e. the σ2

from our error and then all variances and covariances for the
random effects in Q.

I l(β̂, ϑ̂) is now the restricted maximum log-likelihood inserted
the parameter estimates

Remember:

lREML(ϑ) = lP(ϑ)− 1
2 ln|

m∑
i=1

XT
i V(ϑ)−1

i Xi |



Sleep study - comparing random effects models

fm1=lmer(Reaction~Days+(Days|Subject),data=sleepstudy)# random slope and intercept, correlated
fm2=lmer(Reaction~Days+((1|Subject)+(0+Days|Subject)),data=sleepstudy)# random slope and intercept, uncorrelated
fm3=lmer(Reaction~Days+(1|Subject),data=sleepstudy)# random intercept
AIC(fm1,fm2,fm3)

## df AIC
## fm1 6 1755.628
## fm2 5 1753.669
## fm3 4 1794.465

Q: Which model to choose?



Top-down strategy for model selection

1. Start with model with all explanatory variables and possible
interactions for the fixed effects - called a beyond optimal
model. (Nothing is really done her, just decide on the fixed
part).

2. With this beyond optimal fixed effects model we now focus on
the random effects. The idea is that since we have many
explanatory variables in the fixed effects the random
component should not contain information that we would
prefer to have in the fixed effect. To do this we may either use
testing or AIC or BIC. Testing is problematic due to that the
null hypotheses tested is on the boundary of the parameter
values tested (τ2 = 0). REML must be used (to get as
unbiased estimates as possible).



3. Now we have the optimal random effect, so we focus on the
optimal fixed effect model. ML must be used because different
fixed effects will give incomparable REML-log-likelihoods.
Testing or AIC or BIC can be used.

4. The final model is then presented with REML estimates.



Top-down strategy for the beach-data

This example is taken from Zuur et al. (2009), pages 127-128.

1. We deside on fixed model with intercept, main effect of NAP
and Exposure and the interaction thereof.

2. Fit the fixed model from 1 to “no random effect”, “random
intercept” and random interept and slope for NAP. Use REML.

B1=gls(Richness~1+NAP*fExp,data=RIKZ,method="REML")
B2=lmer(Richness~1+NAP*fExp+(1|Beach),data=RIKZ)
B3=lmer(Richness~1+NAP*fExp+(1+NAP|Beach),data=RIKZ)
AIC(B1,B2,B3)

## df AIC
## B1 5 238.5329
## B2 6 236.4925
## B3 8 237.1331

Conclusion: choose the random intercept model (lowest AIC).



3. With the random intercept, now compare the different fixed
effects models. Use ML.

F2=lmer(Richness~1+NAP*fExp+(1|Beach),data=RIKZ,REML=FALSE)
confint(F2)

## 2.5 % 97.5 %
## .sig01 0.0000000 3.145294
## .sigma 2.3114668 3.681773
## (Intercept) 6.9045813 10.804288
## NAP -4.7299177 -2.275315
## fExp11 -8.1969707 -2.303772
## NAP:fExp11 0.1919491 3.877650

F2a=lmer(Richness~1+NAP+fExp+(1|Beach),data=RIKZ,REML=FALSE)
confint(F2a)

## 2.5 % 97.5 %
## .sig01 0.000000 3.297744
## .sigma 2.435935 3.879425
## (Intercept) 6.562780 10.630777
## NAP -3.578864 -1.644351
## fExp11 -7.563508 -1.505626



F2b=lmer(Richness~1+NAP+(1|Beach),data=RIKZ,REML=FALSE)
confint(F2b)

## 2.5 % 97.5 %
## .sig01 1.484204 5.100814
## .sigma 2.435429 3.877572
## (Intercept) 4.324560 8.824909
## NAP -3.566901 -1.599779

F2c=lmer(Richness~1+fExp+(1|Beach),data=RIKZ,REML=FALSE)
confint(F2c)

## 2.5 % 97.5 %
## .sig01 0.000000 3.95707
## .sigma 3.178126 5.05812
## (Intercept) 5.385254 10.29475
## fExp11 -8.522119 -1.15788

AIC(F2,F2a,F2b,F2c)

## df AIC
## F2 6 242.1135
## F2a 5 244.7589
## F2b 4 249.8291
## F2c 4 265.4332



Conclusion: keep the full model. No confidence intervals cover 0,
and the AIC supports the full model.
summary(B2)

## Linear mixed model fit by REML ['lmerMod']
## Formula: Richness ~ 1 + NAP * fExp + (1 | Beach)
## Data: RIKZ
##
## REML criterion at convergence: 224.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4849 -0.4161 -0.0770 0.1521 3.7313
##
## Random effects:
## Groups Name Variance Std.Dev.
## Beach (Intercept) 3.307 1.819
## Residual 8.660 2.943
## Number of obs: 45, groups: Beach, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 8.8611 1.0208 8.680
## NAP -3.4637 0.6279 -5.517
## fExp11 -5.2556 1.5452 -3.401
## NAP:fExp11 2.0005 0.9461 2.114
##
## Correlation of Fixed Effects:
## (Intr) NAP fExp11
## NAP -0.181
## fExp11 -0.661 0.120
## NAP:fExp11 0.120 -0.664 -0.221

Remark: In Zuur et al (2009), page 128, the conclusion was to use
the additive model (model F2a above), based on asymptotic
p-values (but this was smaller than 0.05) using the nlme package.



Fitting LMM with function lmer in package lme4

This is based on the article Fitting Linear Mixed-Effects Models
Using lme4 by Bates, Bolker, Mächler and Walker (2015) in Journal
of Statistical Software, and in particular pages 30 and onwards.

We use a data set called the ergonometrics experiment data set
ergoStool for illustration.

I effort: the effort required (socalled Borg scale) to arise from
a stool (krakk) - this is our response

I Type: the type of stool - types T1, T2, T3 and T4 studied.
I Subject: each of nine different subjects tested the four

different stools (in random order?). Subjects

Was there any clear winner among the stools, when the goal was to
minimize effort?

https://www.jstatsoft.org/index.php/jss/article/view/v067i01/v67i01.pdf
https://www.jstatsoft.org/index.php/jss/article/view/v067i01/v67i01.pdf
https://www.jstatsoft.org/index.php/jss/article/view/v067i01/v67i01.pdf


The ergoStool data set

is found in the MEMSS package.

library(MEMSS)
summary(ergoStool)
table(ergoStool$Subject)
contrasts(ergoStool$Type) #default contrast used

## effort Type Subject
## Min. : 7.00 T1:9 A : 4
## 1st Qu.: 8.00 T2:9 B : 4
## Median :10.00 T3:9 C : 4
## Mean :10.25 T4:9 D : 4
## 3rd Qu.:12.00 E : 4
## Max. :15.00 F : 4
## (Other):12
##
## A B C D E F G H I
## 4 4 4 4 4 4 4 4 4
## T2 T3 T4
## T1 0 0 0
## T2 1 0 0
## T3 0 1 0
## T4 0 0 1

Observe that the type of stool is coded as dummy variable, with T1
as reference category.



Fit a LMM with lmer: summary

library(lme4)
fit=lmer(effort~Type + (1|Subject), data=ergoStool)
summary(fit)

## Linear mixed model fit by REML ['lmerMod']
## Formula: effort ~ Type + (1 | Subject)
## Data: ergoStool
##
## REML criterion at convergence: 121.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.80200 -0.64317 0.05783 0.70100 1.63142
##
## Random effects:
## Groups Name Variance Std.Dev.
## Subject (Intercept) 1.775 1.332
## Residual 1.211 1.100
## Number of obs: 36, groups: Subject, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 8.5556 0.5760 14.853
## TypeT2 3.8889 0.5187 7.498
## TypeT3 2.2222 0.5187 4.284
## TypeT4 0.6667 0.5187 1.285
##
## Correlation of Fixed Effects:
## (Intr) TypeT2 TypeT3
## TypeT2 -0.450
## TypeT3 -0.450 0.500
## TypeT4 -0.450 0.500 0.500

The model formula gives first the fixed effects, which here is an
intercept and then type of stool (with T1 as reference, so estimate
difference from T1). We use a random intercept for each Subject,
given as (1|Subject).

From the print-out from summary we see that REML is used to fit
the model, and quantiles of scaled Pearson residuals. Could also
have used:

formula(fit)
REMLcrit(fit)
quantile(residuals(fit,"pearson",scaled=TRUE))

## effort ~ Type + (1 | Subject)
## [1] 121.1308
## 0% 25% 50% 75% 100%
## -1.80200345 -0.64316591 0.05783115 0.70099706 1.63142054

Then there is a part on the fitted random effects and residual
variation. The intra class correlation could also be calculated from
VarCorr(fit) (an object of class VarCorr.merMod). Observe the
very high ICC of 0.6.

vc=VarCorr(fit)
print(vc,comp="Variance")
df=as.data.frame(vc)
print(df)
print(vc)
nobs(fit)
ngrps(fit)
sigma(fit)
ICC=df[4][[1]][1]/sum(df[4][[1]])
ICC

## Groups Name Variance
## Subject (Intercept) 1.7755
## Residual 1.2106
## grp var1 var2 vcov sdcor
## 1 Subject (Intercept) <NA> 1.775463 1.332465
## 2 Residual <NA> <NA> 1.210648 1.100295
## Groups Name Std.Dev.
## Subject (Intercept) 1.3325
## Residual 1.1003
## [1] 36
## Subject
## 9
## [1] 1.100295
## [1] 0.5945736

Then to the fitted fixed effects, which is interpreted as for lm with
treatment contrast (dummy effect coding), but without any
p-values, and anova gives the analysis of variance table. See
help("pvalues") to explore your options to find p-values for
testing fixed effects.

fixef(fit)
coef(summary(fit))
anova(fit)
help("pvalues")

## (Intercept) TypeT2 TypeT3 TypeT4
## 8.5555556 3.8888889 2.2222222 0.6666667
## Estimate Std. Error t value
## (Intercept) 8.5555556 0.5760123 14.853079
## TypeT2 3.8888889 0.5186838 7.497610
## TypeT3 2.2222222 0.5186838 4.284348
## TypeT4 0.6666667 0.5186838 1.285304
## Analysis of Variance Table
## Df Sum Sq Mean Sq F value
## Type 3 81.194 27.065 22.356

It is easiest to rise from the stool of Type T1, followed by Type T4
and the Type T3 and finally Type T2.

We may also get confidence intervals for the fixed effects (and
random effects variances), based on the profile likelihood, which
might be thought of as analogues to p-values. However, keep in
mind our coding of Type (dummy), so if the intervals contain 0 the
Type is not different from the reference Type T1 (the best type wrt
effort to arise). The confidence intervals are made using the Wald
approximation for the fixed effects. A bootstrap confidence interval
can also be provided.

confint(fit)

## 2.5 % 97.5 %
## .sig01 0.7342354 2.287261
## .sigma 0.8119798 1.390104
## (Intercept) 7.4238425 9.687269
## TypeT2 2.8953043 4.882473
## TypeT3 1.2286377 3.215807
## TypeT4 -0.3269179 1.660251

Finally, there is a part on the correlation between estimated fixed
effects, here we have the estimated correlation between the three
levels of type of stool. We can get the variance-covariance matrix
with vcov, and can calculated correlations from that matrix.

vcov(fit)

## 4 x 4 Matrix of class "dpoMatrix"
## (Intercept) TypeT2 TypeT3 TypeT4
## (Intercept) 0.3317901 -0.1345165 -0.1345165 -0.1345165
## TypeT2 -0.1345165 0.2690329 0.1345165 0.1345165
## TypeT3 -0.1345165 0.1345165 0.2690329 0.1345165
## TypeT4 -0.1345165 0.1345165 0.1345165 0.2690329



Diagnostic plots

Fitted vs. residuals and normal qq-plot (from lattice). Not ggplot
- see below for more plotting.

plot(fit, type=c("p","smooth"))
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library(lattice)
qqmath(fit,id=0.05)
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Comparing models
We may also use anova to compare models. Assume that we want
to compare to the (probably very bad) model where type of stool is
not taken into account (which is stupic if we want to investigate the
types) - so just go show (better example for sleep study).

fit0=lmer(effort~1 + (1|Subject), data=ergoStool)
anova(fit0,fit)

## Data: ergoStool
## Models:
## fit0: effort ~ 1 + (1 | Subject)
## fit: effort ~ Type + (1 | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## fit0 3 164.15 168.90 -79.075 158.15
## fit 6 134.14 143.65 -61.072 122.14 36.006 3 7.468e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The comparison is based on the likelihood ratio test with ML (not
REML), and also gives p-values.



p-values in lme4

Excerpt from Fitting Linear Mixed-Effects Models Using lme4 by
Bates, Bolker, Mächler and Walker (2015) in Journal of Statistical
Software page 35: Computing p values One of the more
controversial design decisions of lme4 has been to omit the output
of p values associated with sequential ANOVA decompositions of
fixed effects. The absence of analytical results for null distributions
of parameter estimates in complex situations (e.g., unbalanced or
partially crossed designs) is a long-standing problem in mixed-model
inference. While the null distributions (and the sampling
distributions of non-null estimates) are asymptotically normal, these
distributions are not t distributed for finite size samples – nor are
the corresponding null distributions of differences in scaled deviances
F distributed. Thus approximate methods for computing the
approximate degrees of freedom for t distributions, or the
denominator degrees of freedom for F statistics (Satterthwaite 1946;
Kenward and Roger 1997), are at best ad hoc solutions. However,
computing finite-size-corrected p values is sometimes necessary.
Therefore, although the package does not provide them (except via
parametric bootstrapping, Section 5.1), we have provided a help
page to guide users in finding appropriate methods: R>
help("pvalues")

https://www.jstatsoft.org/index.php/jss/article/view/v067i01/v67i01.pdf
https://www.jstatsoft.org/index.php/jss/article/view/v067i01/v67i01.pdf
https://www.jstatsoft.org/index.php/jss/article/view/v067i01/v67i01.pdf


What have we not covered?

I Multi-level models: we have only considered two levels
I Structures for the covariance matrix of εi : we have only

considered σ2I.
I Effective sample size.
I Details about testing random effects with mixtures of
χ2-distributions.

I External effects and the extended random intercept model to
give different scales for the within and between cluster effects.
See pages 353-354 in Fahrmeir et al (2013).

I Penalized least squares view.
I Bayesian view.



Interactive session week 2

Plan: work in randomly assigned groups.

I 12.15: short intro to Problem 1
I 12.15-12.55: work with Problem 1, if you finish go back to

interactive 1 and work with Problem 1ef that we skipped last
week.

I 12.55-13.00: summarize findings.
I Then 15 minutes break.
I 13.15: short intro to Problem 2.
I 13.15-13.40: work with Problem 2, if you finish go back to

interactive 1 and work with Problem 2cdf that we skipped last
week.

I 13.40-13.45: summarize findings
I 13.45-14.00: team Kahoot!



Exercise 1: Taken from UiO, STK3100, 2016, problem 3

The data in this problem is based on four measurements of a
particular bone for 20 boys. The meaurements were taken at 8, 8.5,
9 and 9.5 years of age. The variables in the dataset are

I bone: length of bone in millimeters
I redage: centered age (i.e. age - 8.75)

Below is an excerpt from the output from fitting a linear mixed
model (LMM) with the procedure lmer in R where the length of the
bone, bone, is the response,

boneij = β0+β1redageij+γ0i +γ1iredageij+εij i = 1, . . . , 20, j = 1, 2, 3, 4

where γi = (γ0i , γ1i )T , i = 1, . . . , 20 represent the random effects.

filepath <- "https://www.math.ntnu.no/emner/TMA4315/2017h/bonedata.txt"
bone <- read.table(filepath, header = TRUE)

library(lme4)
fit2 <- lmer(bone ~ redage + (1 + redage | boy), data = bone)
summary(fit2)

a) Formulate the model on matrix form and explain the meaning
and interpretation of the different parts. State the usual model
assumptions carefully.

b) Describe the distribution of the response yi = (yi1, yi2, yi3, yi4)T ,
i = 1, . . . , 20, and explain how you can find numerical values using
the R-output.

Remark: c is be a bit go technical for us without access to our
textbook/module pages.

c) Find the conditional expectation of a random effect γγγ i ,
i = 1, . . . , 20 given the observations, i.e. E(γγγ i |y1, . . . , y20). Describe
how the random effects, γγγ i , i = 1, . . . , 20, can be
predicted/estimated.

In the exam, no numerical calculations was necessary in b) and c).

d) New: do b) and c) in R (after you have done b) and c) by
hand!!!, i.e. do numerical calculations). The R markdown file of this
module contains necessary code to download the dataset, and fit
the full model. In addition, plot the distribution of (γ0i , γ1i )T (this
is a multivariate distribution).



Exercise 2: Taken from UiO, STK3100, 2015, problem 3

The data used in this problem conserns expenses in the the social
security system Medicare in US. Average expenses per
hospitalization, denoted as ccpd, were in six years recorded for 54
regions: the fifty US states, Puerto Rico, Virgin Islands, District of
Columbia and an unspecified other. Thus there are 6× 54 = 324
observations. The expenses are treated as response. The covariates
are j = YEAR which can take values 1, . . . , 6 and a factor indicating
the average length of stay at hospital, AVETD, in each region and
year. This factor has tree levels, 1 = six days or less, 2 = 7-9 days,
3 = 10 days or more. “Six days or less”" is the reference level and
the others are denoted as AVETD2 and AVETD3.

Below you find the output from fitting the linear mixed effects model

yij = β0 + j × β1 + β2AVETD2ij + β3AVETD3ij + γ0i + j × γ1i + εij

j = 1, . . . , ni , $i = 1, . . . , 54 $ and N =
∑m

i=1 ni = 324.

filepath <- "https://www.math.ntnu.no/emner/TMA4315/2017h/medicare.dat"
medicare <- read.table(filepath, header = TRUE, colClasses = c("numeric", "numeric", "factor", "factor"))

library(lme4)
fit1 <- lmer(ccpd ~ YEAR + AVETD + (1 + YEAR | fstate), data = medicare)

summary(fit1)

a) Formulate the model in matrix form and explain the what the
usual assumptions are.

b) Compute a 95 % confidence interval for the fixed effect
coefficient for YEAR.

Remark: for c we have not focus on testing random effects in our
course. c) Explain how we can find out if we can simplify the model
by removing the random effect γ1i .

d) What is the expectation and covariate matrix in the marginal
model of the response (Yi1,Yi2,Yi3,Yi4,Yi5,Yi6)T ?

e) Explain how the null hypothesis H0 : β3 = 2× β2 versus the
alternative hypothesis H1 : β3 6= 2× β2 can be tested? In this part
no numerical calculations are expected.

f) New: Do c) and e) in R. The R Markdown file of this module
contains necessary code to download the dataset, and fit the full
model.


