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Introduction
Aim of this module

▶ this course: expanding the linear regression framework
▶ short presentation of all course modules
▶ learning outcome
▶ student learning styles
▶ interactive lectures: what, why and how?
▶ practical details of the course (Blackboard)
▶ core concept: the exponential family of distributions
▶ learn about - and use - R, Rstudio, R Markdown, and get

familiar with related topics
▶ get up to speed on R (and writing reports in R markdown) to

be able to do the 3*10-points compulsory exercises by doing
recommended exercises



Expanding the linear regression framework



You know multiple linear regression (from TMA4267 Linear
statistical models or TMA4255 Applied Statistics or TMA4268
Statistical learning). We will stay with regression (for the whole
course) - but make expansions in several directions.
What will not change:

▶ our target is a random response Yi (from some statistical
distribution): continuous, binary, nominal or ordinal, we have

▶ fixed covariates (or explanatory variables) Xi (in a design
matrix): quantitative or qualitative, and

▶ unknown regression parameters β.

We will consider relationships between the conditional mean of Yi,
E(Yi | xi) = µi, and linear combinations of the covariates in a linear
predictor ηi = β0 + β1xi1 + · · · + βkxik = xT

i β.
For most of the course we will assume observation pairs (Yi, xi) are
independent i = 1, . . . , n, but we will also consider clustered pairs
(in Module 7+8: Linear mixed effects models LMM and
Generalized linear mixed effects models GLMM).



Course content and modules

Univariate exponential family. Multiple linear regression. Logistic
regression. Poisson regression. General formulation for generalised
linear models with canonical link. Likelihood-based inference with
score function and expected Fisher information. Deviance. AIC.
Wald and likelihood-ratio test. Linear mixed effects models with
random components of general structure. Random intercept and
random slope. Generalised linear mixed effects models. Strong
emphasis on programming in R.
Possible extensions: quasi-likelihood, over-dispersion, models for
multinomial data, analysis of contingency tables, quantile
regression.
H2018 extensions: categorical regression (models for multinomial
data) and contingency tables, score tests.



The modules - in short
Textbook: Fahrmeir, Kneib, Lang, Marx (2013): “Regression.
Models, Methods and Applications”
https://link.springer.com/book/10.1007%2F978-3-642-34333-9
(free ebook for NTNU students). Tentative reading list: main parts
of Chapters 2, 3 (repetition), 5, 6, 7, Appendix B.4.

https://link.springer.com/book/10.1007%2F978-3-642-34333-9


The modules of this course are:

1. Introduction (the module page you are reading now) [week 34]
2. Multiple linear regression (emphasis on likelihood) [week

35-36]
3. Binary regression (binary individual and grouped response)

[week 37-38]
4. Poisson and gamma regression (count, non-normal

continuous) [week 39-40]
5. GLM in general and quasi likelihood (exponential family, link

function) [week 41]
6. Categorical regression and contingency tables [week 43]
7. Linear mixed models (clustered data, repeated measurements)

[week 44-45]
8. Generalized mixed effects models [week 46]
9. Discussion and conclusion [week 47]



Module 2: Multiple linear regression

Example: Exam TMA4267, V2017, Problem 2: CVD
The Framingham Heart Study is a study of the etiology
(i.e. underlying causes) of cardiovascular disease (CVD), with
participants from the community of Framingham in Massachusetts,
USA https://www.framinghamheartstudy.org/. This dataset is
subset of a teaching version of the Framingham data, used with
permission from the Framingham Heart Study.

https://www.framinghamheartstudy.org/


We will focus on modelling systolic blood pressure using data from
n = 2600 persons. For each person in the data set we have
measurements of the following seven variables

▶ SYSBP systolic blood pressure (mmHg),
▶ SEX 1=male, 2=female,
▶ AGE age (years) at examination,
▶ CURSMOKE current cigarette smoking at examination: 0=not

current smoker, 1= current smoker,
▶ BMI body mass index (kg/m2),
▶ TOTCHOL serum total cholesterol (mg/dl), and
▶ BPMEDS use of anti-hypertensive medication at examination:

0=not currently using, 1=currently using.

A multiple normal linear regression model was fitted to the data set
with − 1√

SYSBP as response and all the other variables as covariates.



The data set is here called thisds.
modelB=lm(-1/sqrt(SYSBP)~SEX+AGE+CURSMOKE+BMI+TOTCHOL+BPMEDS,data=thisds)
summary(modelB)

##
## Call:
## lm(formula = -1/sqrt(SYSBP) ~ SEX + AGE + CURSMOKE + BMI + TOTCHOL +
## BPMEDS, data = thisds)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.0207366 -0.0039157 -0.0000304 0.0038293 0.0189747
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.103e-01 1.383e-03 -79.745 < 2e-16 ***
## SEX -2.989e-04 2.390e-04 -1.251 0.211176
## AGE 2.378e-04 1.434e-05 16.586 < 2e-16 ***
## CURSMOKE -2.504e-04 2.527e-04 -0.991 0.321723
## BMI 3.087e-04 2.955e-05 10.447 < 2e-16 ***
## TOTCHOL 9.288e-06 2.602e-06 3.569 0.000365 ***
## BPMEDS 5.469e-03 3.265e-04 16.748 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.005819 on 2593 degrees of freedom
## Multiple R-squared: 0.2494, Adjusted R-squared: 0.2476
## F-statistic: 143.6 on 6 and 2593 DF, p-value: < 2.2e-16



PLAN: You recapitulate what you have learned in TMA4267
Linear statistical models, and in the plenary lectures we focus on a
three-step model, likelihood theory and formal inference connected
to the likelihood. Instead of sums-of-squares of error (MSE, RSS)
we will use deviance.
In Compulsory exercise 1 you make your own mylm function to
perform MLR.
Textbook: Chapter 3 (from TMA4267) and parts of Appendix B4.



Module 3: Binary regression
How can be model a respons that is not a continuous variable?
Here we look at present/absent, true/false, healthy/diseased.

Example: Mortality of beetles
About 60 beetles were exposed to each of 8 different
concentrations of CS2 (data on log10-dose), and the number killed
at each of the concentrations were recorded.

library(investr)
head(beetle)

## ldose n y
## 1 1.6907 59 6
## 2 1.7242 60 13
## 3 1.7552 62 18
## 4 1.7842 56 28
## 5 1.8113 63 52
## 6 1.8369 59 53

frac=beetle$y/beetle$n
plot(beetle$ldose,frac,pch=20)
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What might be the distribution of the number of dead beetles, Yi
at a given dose xi? Dose xi was given to ni beetles.



Yi = bin(ni, πi)

where πi =probability for a beetle to die at dose xi and ni=
number of beetles treated with dose xi. A linear model for πi
estimated by ordinary least squares is problematic because

▶ 0 ≤ πi ≤ 1 can not be guaranteed by a linear expression
β0 + β1xi, and

▶ Var(Yi) = niπi(1 − πi) is non-constant (heteroscedastic)
variance.



The “usual” solution to this is logistic regression where the
relationship between the mean of the response and the predictor is
not linear, but instead

ln( πi
1 − πi

) = β0 + β1xi

or equivalently
πi = exp(β0 + β1xi)

1 + exp(β0 + β1xi)

Then 0 ≤ πi ≤ 1. We estimate the model by Maximum Likelihood
(ML), while taking into account that the responses are binomially
distributed.



fit=glm(cbind(beetle$y,beetle$n-beetle$y)~ldose,data=beetle,family=binomial)
summary(fit)

##
## Call:
## glm(formula = cbind(beetle$y, beetle$n - beetle$y) ~ ldose, family = binomial,
## data = beetle)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5941 -0.3944 0.8329 1.2592 1.5940
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -60.717 5.181 -11.72 <2e-16 ***
## ldose 34.270 2.912 11.77 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 284.202 on 7 degrees of freedom
## Residual deviance: 11.232 on 6 degrees of freedom
## AIC: 41.43
##
## Number of Fisher Scoring iterations: 4



thisrange=range(beetle$ldose)
xs=seq(thisrange[1],thisrange[2],length=100)
predicted=predict(fit,newdata=data.frame(ldose=xs),type="response")
plot(beetle$ldose,frac)
lines(xs,predicted)
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PLAN: In this module we will study the binary regression, work on
parameter estimation and interpretation of parameter estimates
using odds, work with both individual and grouped data, test linear
hypotheses, look at criteria for model fit and model choice, and
discuss overdispersion.
Textbook: 2.3 and 5.1.



Module 4: Poisson and gamma regression
Count data - the number of times and event occurs - is common.
In one famous study British doctors were in 1951 sent a
questionnaire about whether they smoked tobacco - and later
information about their death were collected. Questions that were
asked were: Is the death rate higher for smokers than for
non-smokers? If so, by how much? And, how is this related to age?
library(boot) #n=person-year, ns=smoker-years, age=midpoint 10 year age group,
#y=number of deaths due to cad, smoke=smoking status
head(breslow,n=10)

## age smoke n y ns
## 1 40 0 18790 2 0
## 2 50 0 10673 12 0
## 3 60 0 5710 28 0
## 4 70 0 2585 28 0
## 5 80 0 1462 31 0
## 6 40 1 52407 32 52407
## 7 50 1 43248 104 43248
## 8 60 1 28612 206 28612
## 9 70 1 12663 186 12663
## 10 80 1 5317 102 5317



To investigate this we will look at different ways of relating the
expected number of deaths and the number of doctors at risk in
the observation period for each smoke and age group. We will do
this by assuming a Poission distribution for the number of deaths,
and linking this to a linear predictor.
When we work with continuous data - like life times, costs and
claim sized - these may not be negative, and the their distribution
often follow a right skewed distribution. We will look at effect a
one of more covariates that may work multiplicative on the
response and see how we may fit that using gamma regression on
the log scale of the response.
Textbook: 5.2 and 5.3



Module 5: GLM in general (and quasi likelihood — if time)

We will see that normal, binary, Poisson and gamma regression all
have the same underlying features:

1. The mean of the response, µi = E(Yi), is connected to the
linear predictor ηi = xT

i β by a link function: ηi = g(µi) or,
alternatively, by a response function µi = h(ηi) - where
g = h−1 (inverse functions).

2. The distribution of the response can be written as a univariate
exponential family (we work with that in this first module).

This leads to a unified framework, and maximum likelihood
estimation can be written on a generalized form for all the GLMs.
In addition we can present statistical inference and asymptotic
properties of estimators on a common form. Finally, we may
expand this to quasi-likelihood models by just specifying mean and
variance (not distribution) and solve using generalized estimation
equations.



This part is rather mathematical - but is built on the findings of
modules 1-4.
Textbook: 5.4 and 5.5



Module 6: Categorical regression and contingency tables
Here our response variable has more than two categories, and these
categories can either be unordered or ordered. Examples of
categorical responses include (unordered) data in infection (no, or
socalled type I or type II) after Caesarian delivery, or (ordered)
data on degree of defoliation of trees (nine ordered categories).
We will use the multinomial distribution as the distribution for the
response, and work mainly with grouped data - that often can be
presented in a contingency table.
ds=read.table("https://www.math.ntnu.no/emner/TMA4315/2017h/data/caesarian.raw",header=TRUE)
head(ds)

## n infbin RISK NPLAN ANTIB Y
## 1 0 1 1 0 1 1
## 2 1 1 1 0 1 2
## 3 17 0 1 0 1 3
## 4 0 1 0 0 1 1
## 5 0 1 0 0 1 2
## 6 2 0 0 0 1 3



For unordered categories (like the Caesarian delivery data) we will
use many logistic regressions - each between one category and a
chosen reference category. For ordered categories (like the
defoliation of trees) we will use a cumulative model, also called a
proportional odds model.



If time permits we will also look briefly at exact and asymptotic
inference (Fishers exact test and Pearsons Chisquare test) for
contingency tables (unordered categories), which is closely related
to the GLM-presentation.
Textbook: Chapter 6, and possibly extra materiale on the Fisher
and Chi-square test (if time permits).
Compulsory exercise 2 will cover modules 3-6.



Module 7: Linear mixed effects models
In a study on the effect of sleep deprivation the average reaction
time per day were measured. On day 0 the subjects had their
normal amount of sleep. Starting that night they were restricted to
3 hours of sleep per night. The observations represent the average
reaction time on a series of tests given each day to each subject.
This was measured for 18 subjects for 10 days (days 0-9).



library(lme4)
library(ggplot2) # see more on ggplot later in this module
gg <- ggplot(sleepstudy, aes(x = Days, y = Reaction))
gg <- gg + geom_point(color = "blue", alpha = 0.7)
gg <- gg + geom_smooth(method = "lm", color = "black")
gg <- gg + theme_bw()
gg <- gg + facet_wrap(~Subject)
gg
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We observe that each subject’s reaction time increases
approximately linearly with the number of sleepdeprived days. But,
it appears that subjects have different slopes and intercepts.
As a first model we may assume that there is a common intercept
and slope for the population - called fixed effects, but allow for
random deviations for the intercept and slope for each individual.
In linear mixed effects models we assume that the random
intercepts and slopes are drawn from normal distributions and
estimate the variance in these distribution. Such a model will make
observations correlated within subjects.



fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
summary(fm1)

## Linear mixed model fit by REML ['lmerMod']
## Formula: Reaction ~ Days + (Days | Subject)
## Data: sleepstudy
##
## REML criterion at convergence: 1743.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.9536 -0.4634 0.0231 0.4634 5.1793
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## Subject (Intercept) 612.09 24.740
## Days 35.07 5.922 0.07
## Residual 654.94 25.592
## Number of obs: 180, groups: Subject, 18
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 251.405 6.825 36.838
## Days 10.467 1.546 6.771
##
## Correlation of Fixed Effects:
## (Intr)
## Days -0.138

Here the population fixed effects estimates are an intercept of
251.4 ms and a slope of 10.47 ms/day. The random effects for the
intercept and the slope have estimated standard deviations 24.74
ms and 5.92 ms/day.



In this module we will look at different models for clustered
(schools, families) and repeated measurement (e.g. over time)
using regression with fixed and random effects.
Textbook: 2.4, 7.1, 7.3



Module 8: Generalized linear mixed effects models
We generalize our model in Module 7 - on normal responses - to
binary (and possibly Poisson) responses.
Textbook: 7.2, 7.5, 7.7
Compulsory exercise 3 will cover modules 7-8.

Module 9: Discussion and conclusions



Common - for all modules

1. Model specification: an equation linking the response and the
explanatory variables, and a probability distribution for the
response.

2. Estimation of the parameters in the model
3. Checking the adequacy of the model, how well it fits the data.
4. Inference: confidence intervals, hypothesis tests, interpretation

of results, prediction of future responses.

Both theoretic derivations and practical analysis in R will be
emphasized.



Learning outcome
Knowledge.
The student can assess whether a generalised linear model can be
used in a given situation and can further carry out and evaluate
such a statistical analysis. The student has substantial knowledge
of generalised linear models and associated inference and
evaluation methods. This includes regression models for Gaussian
distributed data, logistic regression for binary and multinomial data,
Poisson regression and log-linear models for contingency tables.
The student has theoretical knowledge about linear mixed models
and generelized linear mixed effects models, and associated
inference and evaluation of the models. Main emphasis is on
Gaussian and binomial data.
Skills.
The student can assess whether a generalised linear model or a
generalized linear mixed model can be used in a given situation,
and can further carry out and evaluate such a statistical analysis.



Learning styles

We (probably) all have different ways in which we learn - and we
have different learning ambitions when attending a course.
Back in 1988 Felder and Silverman published an article where they
suggested that there was a mismatch between the way students
learn and the way university courses were taught (in Science,
Technology, Engineering and Mathematics=STEM). They devised
a taxonomy for learning styles - where four different axis are
defined:



1. active - reflective: How do you process information: actively
(through physical activities and discussions), or reflexively
(through introspection)?

2. sensing-intuitive: What kind of information do you tend to
receive: sensitive (external agents like places, sounds, physical
sensation) or intuitive (internal agents like possibilities, ideas,
through hunches)?

3. visual-verbal: Through which sensorial channels do you tend
to receive information more effectively: visual (images,
diagrams, graphics), or verbal (spoken words, sound)?

4. sequential - global: How do you make progress: sequentially
(with continuous steps), or globally (through leaps and an
integral approach)?

Here are a few words on the four axis

http://www4.ncsu.edu/unity/lockers/users/f/felder/public//ILSdir/styles.pdf


The idea in the 1988 article was that by acknowledging these
different learning style axes it was possible to guide the teachers to
choose teaching styles that matched the learning styles of the
students. That is, many students (according to Felder and
coauthors) have a visual way of learning, and then teachers should
spend time devising visual aids (in addition to verbal aids - that
were the prominent aids in 1988), and so on.
However, studies show that the students should use many
different learning resources - not only one favourite (not only
go to plenary lectures or not only read in the book).



In this GLM course I have designed different learning resources,
and hope that many of these match your way of learning. To help
me (and maybe for you to get some insight into your own learning
style)
I ask you to answer a standardized set of questions made by
Felder et al (44 questions with two possible answers), and
then report your results to me in a Google form.



You can report your scores anonymously, or by giving our name. If
you do this anonymously I will have information on the class level,
and if you do this with your name I get to know a bit about how
you learn and I can use the results to help to construct student
groups for the interactive lectures. Your results will only be used
by me, and I will not show them to other people (students or staff).
This means that this is not used for research, but to increase the
quality of the GLM course (in total and for each one of you). I will
never discuss your personal results in class, but are very eager to
discuss results on the class level - and use these when designing
new learning resources.
Here is the questionarie (maybe do a screen shot of your results
-the results only appear on a web page and is not saved or emailed
to you or anyone).
I have taken the test and these were my results: I scored 3 on the
active side of the active-reflective scale, 1 on the sensing side of
the sensing-intuitive scale, 5 on the visual side on the visual-verbal
scale and finally 5 on the global side of the sequential-global scale.
In the Google form I would then report to have a “active value” for
the active-reflective axis, and then report the value to be 3. Then I
would choose “sensing value” on the sensoring-intuitive axis and
report the value to be 1, I will choose “visual value” and report 5,
and finally choose “global value” and report 5. (Values below 5 are
reported to be weak, and this means that there is no strong
preference on that axis.)
Here is the Google form where I ask that you write your 4 scores
After you have submitted your scores please go back and read the
description of the four axis, but this time focus on the advice for
the different type of learners
If you are curios about the work of Felder and coauthors, more
resources can be found here: http://educationdesignsinc.com/

https://www.webtools.ncsu.edu/learningstyles/
https://goo.gl/forms/p77EFhQabe9BIZT32
http://www4.ncsu.edu/unity/lockers/users/f/felder/public//ILSdir/styles.pdf
http://www4.ncsu.edu/unity/lockers/users/f/felder/public//ILSdir/styles.pdf
http://educationdesignsinc.com/


Learning resources in the GLM course

The module pages
I have divided the GLM course into modular units with specific
focus, in order to use smaller units (time and topic) to facilitate
learning.

▶ The topic of each module on the agenda for 1—2 weeks of
study.

▶ All activity points to module pages.
▶ Mathematics in LaTeX (also derivations present), figures and

examples with R, all R code visible.



Structure of module pages

1. Introduction and aim
2. Motivating example
3. Theory—example loop
4. Recommended exercises
5. References, packages to install.



How to use the module pages?

▶ A slides version (output: beamer_presentation) of the pages
used in the plenary lectures.

▶ A webpage version (output: html_document) used in the
(so-called) interactive lectures.

▶ A document version (output: pdf_document) used for student
self study.

▶ The Rmd version — used as notebook to investigate changes
to the R code.

▶ Additional class notes (written in class) linked in.

The module pages are the backbone of the course!



Active students — deep learning? Since active students are
more able to analyse, evaluate and synthesise ideas?

▶ Provide learning environments, opportunities, interactions,
tasks and instruction that foster deep learning.

▶ Provide guidance and support that challenges students based
on their current ability.

▶ Students discover their current strengths and weaknesses and
what they need to do to improve.

What are student active learing methods/tasks?

▶ Pause in plenary lecture to ask questions and let students
think and/or discuss.

▶ In-class quizzes (with the NTNU invention Kahoot!) —
individual and team mode.

▶ Projects — individual or in groups.
▶ Group discussion.

Now: plenary and interactive lectures.



The plenary lectures (PL)

▶ for each module we start with a plenary lecture to introduce
the aims,

▶ use real data to examplify what to learn, why this is useful
and what this is used in society

▶ then we move to notation and focus on the model used
▶ theory is then presented (writing - not slides), discussed and
▶ mixed with use of R and data analysis.

The plenary lectures is rather passive in nature - for the students -
and held in classical auditorium. They provide the first step into
the new module.
Q: What are advantages of attending a plenary lecture (as
compared to reading the text book or the module pages, or
watching videoes)? Do you plan to attend the plenary lectures?



The interactive lectures (IL)

has focus on student activity and understanding though discussing
with fellow students and with the lecturer/TA - in groups.

Smia (the smithy)

A room where interaction and activity is in focus. Flat floor with
group tables, whiteboard and screen — PC and electricity outlets.
50 students.
https://www.ntnu.no/laeringsarealer/smia

https://www.ntnu.no/laeringsarealer/smia


1. Students arrive and are divided into groups (different criteria
will be used). Short presentation round (name, study
programme, interests) in the groups. One student (the
“manager”) log in to the PC at each table, or connect her/his
own laptop and display the module page.

2. Lecturer gives a short introduction to current state, and
present a problem set (mainly exam problem).



3. Students work together in the group on the problem set. The
problems are presented on the digital screen, and the students
discuss by interacting around the screen and often by running
(ready-made) R code and interpreting analysis output - all
presented on the digital screen.

4. If the problem is of a theoretical flavour, or drawing is needed
- the students work on the whiteboards next to the digital
screen. One student may act as “secretary”.



5. Lecturer summarizes solutions to the problem with input from
the student groups.

6. This summarizing the first 45 minutes, then there is a break
(with light refreshments) and then repeat 1-5 in the second
hour.

More pictures of how the students in H2017 worked will be
shown in the PL.



Statements from focus groups H2017
(two groups of 4 students each, one hour “interviews” by external
evaluator - anonymous contributtions)

The concept
Student A: We are taught in a different way than what we have
experienced earlier — sitting in groups, working on problem sets
and discussing. No, never experienced this before — and we are
master students. Where was all this earlier?
Student B: It is very nice to have two hours every week to discuss
with the others, and be able to explain to each other and work
with the course material from a new point of view. We are not told
what is right, but we spend time finding that out — together.
They also commented that the reading list was short and that they
did not think they had to prepare much for the exam — they felt
that they really understood and were up to date.



Learning outcome in group setting and new concepts
Student C: For most sessions I feel I learnt a lot. I remember the
concept we work on has been talked about in the plenary lectures,
and then I talk about the details with the others in the group and
get to explain to the others — then I feel that I really know this
concept. I do not really learn so much new stuff, but I learn what
we have already gone through in the plenary lectures a lot better.
Student D: And, we get a confirmation that we have understood
what we were taught in the plenary lecture. Yes, I know this
concept - and so on - and I have not misunderstood - which may
often happen. If I have misunderstood I get corrected here in the
interactive lecture - this makes the learning more targeted (not so
abstract).
Student E: Yes, I agree, what we learn becomes reinforced.
Personally I find it hard to learn new concepts in a group setting.
Comment: hard to come to IL if not up-to-date on reading list
(e.g. not read by yourself or attended PL).



But, they were also worried:
Student F: I believe Mette cannot go so deep in the plenary
lecture - compared to when we had the double amount of plenary
lectures. She plans for us to learn by ourselves, which I think is a
good thing. I beleive that we have a greater gain from learning
together, and from seeing each others problems, and we learn from
each other.
Student G: I agree, I think it is more challenging for a lecturer to
divide the course in interactive and plenary lectures than only using
plenary lectures. The lecturer needs to teach in two different ways,
but also to try to cover all material in effectively shorter time.
Maybe this results in us loosing the depth understanding, maybe
that is how it is, and that is sad.
This was the main motivation behind the module pages — having
the full story written out, but choosing parts to present in the
plenary lectures and parts in the interactive lectures.



Questions:

▶ Who are the interactive lectures for?
▶ What are advantages of attending an interactive lecture?
▶ When you finish your studies and head for a job - go you think

the skills developed in the interactive lectures will be in
demand?

▶ Do you think the interactive lectures will be challenging for
you to attend? Why?

▶ How can the lecturer help you make this easier? Personal
adjustment can be made.

▶ If the IL worked well in 2017, does it mean that it will also
work in 2018?



The compulsory exercises
has mainly focus on programming and interpretation - with some
theory - and can be worked on in small groups (1-3). Will be a test
of acquired understanding, and will constitute 30% of the final
evaluation.



Practical details

go to Blackboard student log-in or guest access.

https://innsida.ntnu.no/bb-student
https://ntnu.blackboard.com/webapps/login?action=guest_login&new_loc=/webapps/blackboard/execute/courseMain?course_id=_11002_1


Core concept: Exponential family of distributions



In this course we will look at models where the distribution of the
response variable, yi, can be written in the form of a univariate
exponential family

f(yi | θi) = exp
(yiθi − b(θi)

ϕ
· wi + c(yi, ϕ, wi)

)
where

▶ θi is called the canonical parameter and is a parameter of
interest

▶ ϕ is called a nuisance parameter (and is not of interest to
us=therefore a nuisance (plage))

▶ wi is a weight function, in most cases wi = 1
▶ b and c are known functions.

It can be shown that E(Yi) = b′(θi) and Var(Yi) = b′′(θi) · ϕ
w .

Remark: slightly different versions of writing the exponential family
exists, but we will use this version in our course (a different version
might be used in TMA4295, but the basic findings are the same).



Interactive lectures - problem set
You may of cause read through the problem set before the
interactive lecture, but that is not a prerequisite. Solutions will be
provided to the major part of the recommended exercises (but not
to the R-part of this one).

Theoretical questions (first hour)

We will work with the exponential family, but to make the notation
easier for these tasks, we omit the i subscript.

f(y | θ) = exp
(yθ − b(θ)

ϕ
· w + c(y, ϕ, w)

)

Problem 1:
Choose (discuss and then talk to lecturer/TA) if you will work on
a) binomial, b) Poisson, c) univariate normal or d) gamma.



1. What process can produce a Y that is binomially distributed?
Write down the probability mass function, f(x). Is the binomial
distribution an the exponential family? Identify b and c and
show the connection with the mean and variance of Y.

NB: you may first use n = 1 in the binomial (which then is called
Bernoulli) - since that is much easier than a general n.
Hint: https://wiki.math.ntnu.no/tma4245/tema/begreper/discrete
and nearly the same parameterization for showing the binomial is
member of exponential
https://www.youtube.com/watch?v=7mNrsFr7P_A.

2. What about the Poisson distribution? What process can
produce a Y that is Poisson distributed? Write down the
probability mass function, f(x). Is the Poisson distribution an
the exponential family? Identify b and c and show the
connection with the mean and variance of Y.

Hint: https://wiki.math.ntnu.no/tma4245/tema/begreper/discrete
and first part of Sannsynlighetsmaksimering

https://wiki.math.ntnu.no/tma4245/tema/begreper/discrete
https://www.youtube.com/watch?v=7mNrsFr7P_A
https://wiki.math.ntnu.no/tma4245/tema/begreper/discrete
https://mediasite.ntnu.no/Mediasite/Play/db9c6fbc45bf48abb8a4dd00ff146e081d?catalog=0fce6173-7a98-4db7-84b7-50cba3a3a341


3. What about the (univariate) normal? What process can
produce a Y that is normally distributed? Write down the
probability distribution function, f(x). Is the univariate normal
distribution an the exponential family? Identify b and c and
show the connection with the mean and variance of Y.

4. What about the gamma distribution? What process can
produce a Y that is gamma distributed? There are many
different parameterizations for the gamma pdf, and we will
use this (our textbook page 643): Y ∼ Ga(µ, ν) with density

f(y) = 1
Γ(ν)(ν

µ
)νyν−1 exp(−ν

µ
y) for y > 0

Is the gammadistribution an the exponential family? Identify b and
c and show the connection with the mean and variance of Y.
Hint:
https://wiki.math.ntnu.no/tma4245/tema/begreper/continuous

https://wiki.math.ntnu.no/tma4245/tema/begreper/continuous


Problem 2. Choose either alternative a or b.
Alternative a: Prove that E(Yi) = b′(θi) and Var(Yi) = b′′(θi) · ϕ

w .
Alternative b: The following is a derivation of the mean and
variance of an exponential family. Go through this derivation and
specify why you go from one step to another. Derivation

https://www.math.ntnu.no/emner/TMA4315/2017h/M5ExpFamProofEVar.pdf


Exam questions with the exponential family
We have covered the Poisson and gamma in the problem sets
above, but not the negative binomial.

Exam December 2017, Problem 1a: Poisson regression
(Remark: last question can not be answered before module 4.)
Consider a random variable Y. In our course we have considered
the univariate exponential family having distribution (probability
density function for continuous variables and probability mass
function for discrete variables)

f(y) = exp(yθ + b(θ)
ϕ

w + c(y, ϕ, w))

where θ is called the natural parameter (or parameter of interest)
and ϕ the dispersion parameter.
The Poisson distribution is a discrete distribution with probability
mass function

f(y) = λy

y! exp(−λ), for y = 0, 1, ...,

where λ > 0.
a) [10 points]
Show that the Poisson distribution is a univariate exponential
family, and specify what are the elements of the exponential family
(θ, ϕ, b(θ), w, c(y, ϕ, w)).
What is the connection between E(Y) and the elements of the
exponential family?
What is the connection between Var(Y) and the elements of the
exponential family?
Use these connections to derive the mean and variance for the
Poisson distribution.
If the Poisson distribution is used as the distribution for the
response in a generalized linear model, what is then the canonical
link function?

Exam 2012, Problem 3: Precipitation in Trondheim, amount
Remark: the text is slightly modified from the original exam since
we parameterized the gamma as in our textbook.
We want to model the amount of daily precipitation given that it is
precipitation, and denote this quantity Y. It is common to model Y
as a gamma distributed random variable, Y ∼ Gamma(ν, µ), with
density

fY(y) = 1
Γ(ν)

(
ν

µ

)ν

yν−1 exp
(

−ν

µ
y
)

In this problem we consider N observations, each gamma
distributed with Yi ∼ Gamma(ν, µi) (remark: common ν). Here ν
is considered to be a known nuisance parameter, and the µis are
unknown.
a) Show that the gamma distribution function is member of the
exponential family when µi is the parameter of interest.
Use this to find expressions for the expected value and the variance
of Yi, in terms of (ν, µi), and interpret ν.

Exam 2010, Problem 2: Negative binomial distribution
The probability density function for a negative binomial random
variable is

fy(y; θ, r) = Γ(y + r)
y!Γ(r) (1 − θ)rθy

for y = 0, 1, 2, . . . ,, r > 0 and θ ∈ (0, 1), and where Γ() denotes
the gamma function. (There are also other parameterizations of
the negative binomial distributions, but use this for now.)
a) Show that the negative binomial distribution is an exponential
family. You can in this question consider r as a known constant.
b) Use the general formulas for a exponential family to show that
E(Y) = µ = r θ

1−θ and Var(Y) = µ 1
1−θ .

Focus on R-related topics (second hour)

R, Rstudio, CRAN and GitHub - and R Markdown

What is R?
https://www.r-project.org/about.html

What is Rstudio?
https://www.rstudio.com/products/rstudio/

What is an R package?
http://r-pkgs.had.co.nz (We will make an R package in the
exercise part of this course.)

What is CRAN?
https://cran.uib.no/

What is GitHub and Bitbucket?
Do we need GitHub or Bitbucket in our course?
https://www.youtube.com/watch?v=w3jLJU7DT5E and https:
//techcrunch.com/2012/07/14/what-exactly-is-github-anyway/

What is R Markdown?
http://r4ds.had.co.nz/r-markdown.html

What is knitr?
https://yihui.name/knitr/

What is R Shiny?
https://shiny.rstudio.com/
(In the statistics group we will build R Shiny app for the thematic
pages for our TMA4240/TMA4245/ST1101/ST1201/ST0103
introductory courses, so if you have ideas for cool graphical
presentation please let us know - we have some economical
resources available for help from master students in statistics! Also
ideas for this GLM course is or interest!)
The IMF R Shiny server is here: https://shiny.math.ntnu.no/ (not
anything there now, but a lot more soooon).
(Remember the test you did to brush up on R programming?
https://tutorials.shinyapps.io/04-Programming-Basics/
#section-welcome This was made with a combination of the R
package learnr and a shiny server.)

https://www.r-project.org/about.html
https://www.rstudio.com/products/rstudio/
http://r-pkgs.had.co.nz
https://cran.uib.no/
https://www.youtube.com/watch?v=w3jLJU7DT5E
https://techcrunch.com/2012/07/14/what-exactly-is-github-anyway/
https://techcrunch.com/2012/07/14/what-exactly-is-github-anyway/
http://r4ds.had.co.nz/r-markdown.html
https://yihui.name/knitr/
https://shiny.rstudio.com/
https://shiny.math.ntnu.no/
https://tutorials.shinyapps.io/04-Programming-Basics/#section-welcome
https://tutorials.shinyapps.io/04-Programming-Basics/#section-welcome


Explore R Markdown in Rstudio
Quotations from
https://rmarkdown.rstudio.com/authoring_quick_tour.html:

▶ Creating documents with R Markdown starts with an .Rmd
file that contains a combination of markdown (content with
simple text formatting) and R code chunks.

▶ The .Rmd file is fed to knitr, which executes all of the R code
chunks and creates a new markdown (.md) document which
includes the R code and it’s output.

▶ The markdown file generated by knitr is then processed by
pandoc which is responsible for creating a finished web page,
PDF, MS Word document, slide show, handout, book,
dashboard, package vignette or other format.

The module pages (you are reading the Module 1 page now), are
written using R Markdown. To work with the module pages you
either copy-paste snippets of R code from the module page over in
your editor window in Rstudio, or copy the Rmd-version of the
module page (1Intro.Rmd) into your Rstudio editor window (then
you can edit directly in Rmarkdown document - to make it into
your personal copy).
If you choose the latter: To compile the R code we use knitr
(termed “knit”) to produce a html-page you press “knit” in menu
of the editor window, but first you need to install packages:
rmarkdown and devtools (from CRAN). For the module pages
the needed R packages will always be listed in the end of the
module pages.
If you want to learn more about the R Markdown (that you may
use for the compulsory exercises) this is a good read:

▶ http://r4ds.had.co.nz/r-markdown.html (Chapter 27: R
Markdown from the “R for Data Science” book), and

▶ the Rstudio cheat sheet on R Markdown is here:
https://www.rstudio.com/wp-content/uploads/2016/03/
rmarkdown-cheatsheet-2.0.pdf.

Then you see that you can make a pdf-file in addition to a html-file
(for your reports you may choose either). To make the pdf-file you
need latex to be installed on your machine.

Not use R Markdown, but only R code?
If you only want to extract the R code from a R Markdown file you
may do that using the function purl from library knitr. To
produce a file “1Intro.R” from this “1Intro.Rmd” file:

library(knitr)
purl("https://www.math.ntnu.no/emner/TMA4315/2018h/1Intro.Rmd")

The file will then be saved in your working directory, that you see
with getwd().

https://rmarkdown.rstudio.com/authoring_quick_tour.html
http://r4ds.had.co.nz/r-markdown.html
https://www.rstudio.com/wp-content/uploads/2016/03/rmarkdown-cheatsheet-2.0.pdf
https://www.rstudio.com/wp-content/uploads/2016/03/rmarkdown-cheatsheet-2.0.pdf


R packages
And to work with either the 1Intro.R or 1Intro.Rmd file you will
have to first install the following libraries:

install.packages(c("rmarkdown","prettydoc","gamlss.data","tidyverse","ggpubr","investr","lme4"))

For the subsequent module pages this information will be available
in the end of the page.



The Munic Rent Index Data set
We will use this data set when working with multiple linear
regression (next module), so this is a good way to start to know
the data set and the ggplot functions, which can be installed
together with a suite of useful libraries from tidyverse.
A version of the Munic Rent Index data is available as rent in
library catdata from CRAN.

library(gamlss.data)
library(ggplot2)

Get to know the rent data.

ds=rent99
colnames(ds)

## [1] "rent" "rentsqm" "area" "yearc" "location" "bath"
## [7] "kitchen" "cheating" "district"

dim(ds)

## [1] 3082 9

summary(ds)

## rent rentsqm area yearc
## Min. : 40.51 Min. : 0.4158 Min. : 20.00 Min. :1918
## 1st Qu.: 322.03 1st Qu.: 5.2610 1st Qu.: 51.00 1st Qu.:1939
## Median : 426.97 Median : 6.9802 Median : 65.00 Median :1959
## Mean : 459.44 Mean : 7.1113 Mean : 67.37 Mean :1956
## 3rd Qu.: 559.36 3rd Qu.: 8.8408 3rd Qu.: 81.00 3rd Qu.:1972
## Max. :1843.38 Max. :17.7216 Max. :160.00 Max. :1997
## location bath kitchen cheating district
## 1:1794 0:2891 0:2951 0: 321 Min. : 113
## 2:1210 1: 191 1: 131 1:2761 1st Qu.: 561
## 3: 78 Median :1025
## Mean :1170
## 3rd Qu.:1714
## Max. :2529

Then, head for plotting with ggplot but first take a quick look at
the ggplot2 library:

▶ Grolemund and Hadwick (2017): “R for Data Science”,
Chapter 3: Visualisation:
http://r4ds.had.co.nz/data-visualisation.html

Before you continue you should have read the start of the
Visualisation chapter that explains the ggplot grammar. Yes, you
start with creating the coordinate system with ggplot and then
add layers. What does the following words mean: mapping,
aesthetic, geom function mean in the ggplot setting?

▶ The Rstudio cheat sheet on ggplot2 is here:
https://www.rstudio.com/wp-content/uploads/2016/11/
ggplot2-cheatsheet-2.1.pdf

First, look at plotting rentsqm for different values of location -
with panels of scatter plots and with boxplots

ggplot(data=ds)+
geom_point(mapping=aes(area,rentsqm))+
facet_wrap(~location,nrow=1)
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ggplot(data = ds, mapping = aes(x = location, y = rentsqm)) +
geom_boxplot()
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So, location matters.
But, should we use rent or rentsqm as response?

library(ggpubr)

## Loading required package: magrittr

plot1 <- ggplot(data=ds) +
geom_density(mapping=aes(rent),kernel="gaussian")

plot2 <- ggplot(data=ds) +
geom_density(mapping=aes(rentsqm),kernel="gaussian")

ggarrange(plot1, plot2, ncol=2)
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So, which response will we use? And, what if we would include
area as covariate? I have plotted two plots together below, more
on mixing graphs on the same page (we need ggprbr, gridExtra and
cowplot packages) https://www.r-bloggers.com/
ggplot2-easy-way-to-mix-multiple-graphs-on-the-same-page/
Relationship between rent or rentsqm and area

plot1 <- ggplot(data=ds,aes(area,rent))+
geom_point(mapping=aes(area,rent),size=0.5)

plot2 <- ggplot(data=ds)+
geom_point(mapping=aes(area,rentsqm),size=0.5)

ggarrange(plot1, plot2, ncol=2)
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So, if we include area as a covariate, we may look at residuals
when using rent or rentsqm. More about diagnostic plots in
Module 2 - but - which plot below looks more random?

lm.rent=lm(rent~area,data=ds)
summary(lm.rent)

##
## Call:
## lm(formula = rent ~ area, data = ds)
##
## Residuals:
## Min 1Q Median 3Q Max
## -786.63 -104.88 -5.69 95.93 1009.68
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 134.5922 8.6135 15.63 <2e-16 ***
## area 4.8215 0.1206 39.98 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 158.8 on 3080 degrees of freedom
## Multiple R-squared: 0.3417, Adjusted R-squared: 0.3415
## F-statistic: 1599 on 1 and 3080 DF, p-value: < 2.2e-16

lm.rentsqm=lm(rentsqm~area,data=ds)
summary(lm.rentsqm)

##
## Call:
## lm(formula = rentsqm ~ area, data = ds)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.9622 -1.5737 -0.1102 1.5861 9.9674
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.46883 0.12426 76.20 <2e-16 ***
## area -0.03499 0.00174 -20.11 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.291 on 3080 degrees of freedom
## Multiple R-squared: 0.1161, Adjusted R-squared: 0.1158
## F-statistic: 404.5 on 1 and 3080 DF, p-value: < 2.2e-16

p1<-ggplot(lm.rent, aes(.fitted, .resid))+geom_point()
p1<-p1+stat_smooth(method="loess")+geom_hline(yintercept=0, col="red", linetype="dashed")
p1<-p1+xlab("Fitted values")+ylab("Residuals")
p1<-p1+ggtitle("Rent: Residual vs Fitted Plot")+theme_bw()
p2<-ggplot(lm.rentsqm, aes(.fitted, .resid))+geom_point()
p2<-p2+stat_smooth(method="loess")+geom_hline(yintercept=0, col="red", linetype="dashed")
p2<-p2+xlab("Fitted values")+ylab("Residuals")
p2<-p2+ggtitle("rentsqm: Residual vs Fitted Plot")+theme_bw()
ggarrange(p1, p2, ncol=2)
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Take home message: for the mean of the response may differ with
out covariates - that is why we use regression. For the normal
linear regression it is not the response that is supposed to have
mean zero, but the error term - more about this in Module 2. And,
is the variance of the residuals independent of the fitted values?
Yes, more in Module 2.

http://r4ds.had.co.nz/data-visualisation.html
https://www.rstudio.com/wp-content/uploads/2016/11/ggplot2-cheatsheet-2.1.pdf
https://www.rstudio.com/wp-content/uploads/2016/11/ggplot2-cheatsheet-2.1.pdf
https://www.r-bloggers.com/ggplot2-easy-way-to-mix-multiple-graphs-on-the-same-page/
https://www.r-bloggers.com/ggplot2-easy-way-to-mix-multiple-graphs-on-the-same-page/


Combining exercise 1 and 2:
Choose one of the distributions you studied earlier (binomial,
Poisson, normal or gamma), and write a R-markdown document
answering the questions on requirements, f(x), f(x) as exponential
family and mean and variance. Also add R-code to plot f(x) and
F(x) for a given set of parameters - and add the mean as a vertical
line - using the ggplot library. Submit your Rmd document to the
lecturer (email) - so it can be added to this module solutions, or
make your own github repository and email the link to your repo to
be added to this module page.



Further reading
▶ Grolemund and Hadwick (2017): “R for Data Science”,

http://r4ds.had.co.nz
▶ Xie, Allaire and Grolemund (2018): “R Markdown — the

definitive guide”, https://bookdown.org/yihui/rmarkdown/
▶ Hadwick (2009): “ggplot2: Elegant graphics for data analysis”

textbook.
▶ Wilkinson (2005): The grammar of graphics. The theory

behind the ggplot2 package universe.
▶ If you want to see more of the powers of ggplot, combined

with a nice story: https://www.andrewheiss.com/blog/2017/
08/10/exploring-minards-1812-plot-with-ggplot2/

▶ R-bloggers: https://https://www.r-bloggers.com/ is a good
place to look for tutorials.

▶ Stack Overflow: https://stackoverflow.com/ is a good place
to look for answers to your R questions (but also try the GLM
teaching team)

http://r4ds.had.co.nz
https://bookdown.org/yihui/rmarkdown/
https://link.springer.com/book/10.1007%2F978-0-387-98141-3
https://link.springer.com/book/10.1007%2F978-0-387-98141-3
https://www.springer.com/gp/book/9780387245447
https://www.andrewheiss.com/blog/2017/08/10/exploring-minards-1812-plot-with-ggplot2/
https://www.andrewheiss.com/blog/2017/08/10/exploring-minards-1812-plot-with-ggplot2/
https://https://www.r-bloggers.com/
https://stackoverflow.com/

