
Module 2: MULTIPLE LINEAR REGRESSION
TMA4315 Generalized linear models H2018

Mette Langaas, Department of Mathematical Sciences, NTNU –
with contributions from Øyvind Bakke and Ingeborg Hem

30.08 and 06.09 [PL], 31.08 and 07.09 [IL]



(Latest changes: 29.08.2018. Theory for w1 is up to date, ILw1 is
QCd.)



Overview

Learning material

I Textbook: Chapter 2.2, 3 and B.4. (Chapter 3 was on the
reading list for TMA4267 Linear statistical 2016-2018, so much
of this module is know from before - but not from a GLM point
of view!)

I Classnotes 30.08.2018
I Classnotes 06.09.2018

https://www.math.ntnu.no/emner/TMA4315/2018h/TMA4315M2H20180830.pdf
https://www.math.ntnu.no/emner/TMA4315/2018h/TMA4315M2H20180906.pdf


Topics

First week

I Aim of multiple linear regression.
I Define and understand the multiple linear regression model -

traditional and GLM way
I parameter estimation with maximum likelihood (and least

squares)
I likelihood, score vector and Hessian (observed Fisher

information matrix)
I properties of parameter estimators
I assessing model fit (diagnostic), residuals, QQ-plots
I design matric: how to code categorical covariates (dummy or

effect coding), and how to handle interactions

Jump to IL for first week



Second week

I What did we do last week?
I big data implementation (if time)
I Statistical inference for parameter estimates

I confidence intervals,
I prediction intervals,
I hypothesis test,
I linear hypotheses

I SSE and deviance
I analysis of variance decompositions and R2, sequential ANOVA

table
I model selection with AIC and variants

Jump to IL for second week

FIRST WEEK



Aim of multiple linear regression

1. Construct a model to help understand the relationship between
a response and one or several explanatory variables.
[Correlation, or cause and effect?]

2. Construct a model to predict the reponse from a set of (one or
several) explanatory variables. [More or less “black box”]



Munich rent index
Munich, 1999: 3082 observations on 9 variables.

I rent: the net rent per month (in Euro).
I rentsqm: the net rent per month per square meter (in Euro).
I area: living area in square meters.
I yearc: year of construction.
I location: quality of location: a factor indicating whether the

location is average location, 1, good location, 2, and top
location, 3.

I bath: quality of bathroom: a a factor indicating whether the
bath facilities are standard, 0, or premium, 1.

I kitchen: Quality of kitchen: 0 standard 1 premium.
I cheating: central heating: a factor 0 without central heating,

1 with central heating.
I district: District in Munich.

More information in Fahrmeir et. al., (2013) page 5.



library("gamlss.data")
library(GGally)
ggpairs(rent99, lower = list(combo = wrap(ggally_facethist, binwidth = 0.5)))
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Interesting questions

1. Is there a relationship between rent and area?
2. How strong is this relationship?
3. Is the relationship linear?
4. Are also other variables associated with rent?
5. How well can we predict the rent of an appartment?
6. Is the effect of area the same on rent for appartments at

average, good and top location? (interaction)



Notation



Y : (n × 1) vector of responses (random variable) [e.g. one of the
following: rent, rent pr sqm, weight of baby, ph of lake, volume of
tree]

X : (n × p) design matrix [e.g. location of flat, gestation age of
baby, chemical measurement of the lake, height of tree]

β : (p × 1) vector of regression parameters (intercept included, so
p = k + 1)

ε : (n × 1) vector of random errors. Used in “traditional way”.

We assume that pairs (xT
i , yi) (i = 1, ..., n) are measured from

sampling units. That is, the observation pair (xT
1 , y1) is independent

from (xT
2 , y2), and so on.



Hands on: Munich rent index — response and covariates

Study the print-out and discuss the following questions:

1. What can be response, and what covariates? (using what you
know about rents)

2. What type of response(s) do we have? (continuous, categorical,
nominal, ordinal, discrete, factors, . . . ).

3. What types of covariates? (continuous, categorical, nominal,
ordinal, discrete, factors, . . . )

4. Explain what the elements of model.matrix are. (Hint:
coding of location)



library("gamlss.data")
ds = rent99
colnames(ds)
summary(ds)
dim(ds)
head(ds)
str(ds$location)
contrasts(ds$location)

X = model.matrix(rentsqm ~ area + yearc + location + bath + kitchen +
cheating + district, data = ds)

head(X)

## [1] "rent" "rentsqm" "area" "yearc" "location" "bath"
## [7] "kitchen" "cheating" "district"
## rent rentsqm area yearc
## Min. : 40.51 Min. : 0.4158 Min. : 20.00 Min. :1918
## 1st Qu.: 322.03 1st Qu.: 5.2610 1st Qu.: 51.00 1st Qu.:1939
## Median : 426.97 Median : 6.9802 Median : 65.00 Median :1959
## Mean : 459.44 Mean : 7.1113 Mean : 67.37 Mean :1956
## 3rd Qu.: 559.36 3rd Qu.: 8.8408 3rd Qu.: 81.00 3rd Qu.:1972
## Max. :1843.38 Max. :17.7216 Max. :160.00 Max. :1997
## location bath kitchen cheating district
## 1:1794 0:2891 0:2951 0: 321 Min. : 113
## 2:1210 1: 191 1: 131 1:2761 1st Qu.: 561
## 3: 78 Median :1025
## Mean :1170
## 3rd Qu.:1714
## Max. :2529
## [1] 3082 9
## rent rentsqm area yearc location bath kitchen cheating district
## 1 109.9487 4.228797 26 1918 2 0 0 0 916
## 2 243.2820 8.688646 28 1918 2 0 0 1 813
## 3 261.6410 8.721369 30 1918 1 0 0 1 611
## 4 106.4103 3.547009 30 1918 2 0 0 0 2025
## 5 133.3846 4.446154 30 1918 2 0 0 1 561
## 6 339.0256 11.300851 30 1918 2 0 0 1 541
## Factor w/ 3 levels "1","2","3": 2 2 1 2 2 2 1 1 1 2 ...
## 2 3
## 1 0 0
## 2 1 0
## 3 0 1
## (Intercept) area yearc location2 location3 bath1 kitchen1 cheating1
## 1 1 26 1918 1 0 0 0 0
## 2 1 28 1918 1 0 0 0 1
## 3 1 30 1918 0 0 0 0 1
## 4 1 30 1918 1 0 0 0 0
## 5 1 30 1918 1 0 0 0 1
## 6 1 30 1918 1 0 0 0 1
## district
## 1 916
## 2 813
## 3 611
## 4 2025
## 5 561
## 6 541



Model



The traditional way

Y = Xβ + ε

is called a classical linear model if the following is true:

1. E(ε) = 0.
2. Cov(ε) = E(εεT) = σ2I.
3. The design matrix has full rank, rank(X) = k + 1 = p.

The classical normal linear regression model is obtained if
additionally

4. ε ∼ Nn(0, σ2I) holds.

For random covariates these assumptions are to be understood
conditionally on X.



The GLM way

Independent pairs (Yi , xi) for i = 1, . . . , n.

1. Random component: Yi ∼ N with E(Yi) = µi and
Var(Yi) = σ2.

2. Systematic component: ηi = xT
i β.

3. Link function: linking the random and systematic component
(linear predictor): Identity link and response function. µi = ηi .



Questions

I Compare the traditional and GLM way. Have we made the
same assumptions for both?

I What is the connection between each xi and the design matrix?
I What is “full rank”? Why is this needed? Example of rank less

than p?
I Why do you think we move from traditional to GLM way?

Could we not just let ε be from binomial, Poisson, etc.
distribution?



Parameter estimation

In multiple linear regression there are two popular methods for
estimating the regression parameters in β: maximum likelihood and
least squares. These two methods give the same estimator when we
assume the normal linear regression model. We will in this module
focus on maximum likelihood estimation, since that can be used
also when we have non-normal responses (modules 3-6: binomial,
Poisson, gamma, multinomial).

Likelihood theory (from B.4)



Likelihood L(β)

We assume that pairs of covariates and response are measured
independently of each other: (xi ,Yi), and Yi follows the distribution
specified above, and xi is fixed.

L(β) =
n∏

i=1
Li(β) =

n∏
i=1

f (yi ;β)

Q: fill in with the normal density for f and the multiple linear
regression model.



Loglikelihood l(β)

The log-likelihood is just the natural log of the likelihood, and we
work with the log-likelihood because this makes the mathematics
simpler - since we work with exponential families. The main aim
with the likelihood is to maximize it to find the maximum likelihood
estimate, and since the log is a monotone function the maximum of
the log-likelihood will be in the same place as the maximum of the
likelihood.

l(β) = ln L(β) =
n∑

i=1
ln Li(β) =

n∑
i=1

li(β)

Observe that the log-likelihood is a sum of invidual contributions for
each observation pair i .

Q: fill in with the normal density for f and the multiple linear
regression model.



Repetition: rules for derivatives with respect to vector

Hardle and Simes (2015), page 65.

I Let β be a p-dimensional column vector of interest,
I and let ∂

∂β denote the p-dimensional vector with partial
derivatives wrt the p elements of β.

I Let d be a p-dimensional column vector of constants and
I D be a p × p symmetric matrix of constants.

Rule 1:
∂

∂β
(dT β) = ∂

∂β
(

p∑
j=1

djβj) = d

Rule 2:

∂

∂β
(βT Dβ) = ∂

∂β
(

p∑
j=1

p∑
k=1

βjdjkβk) = 2Dβ



Rule 3: The Hessian of the quadratic form βT Dβ is

∂2βT Dβ

∂β∂βT = 2D



Score function s(β)

The score function is a p × 1 vector, s(β), with the partial
derivatives of the log-likelihood with respect to the p elements of
the β vector.

s(β) = ∂l(β)
∂β

=
n∑

i=1

∂li(β)
∂β

=
n∑

i=1
si(β)

Again, observe that the score function is a sum of individual
contributions for each observation pair i .

Q: fill in for the multiple linear regression model.



To find the maximum likelihood estimate β̂ we solve the set of p
equations:

s(β̂) = 0

Q: fill in for the multiple linear regression model. Specify what the
normal equations are.

For the normal linear regression model, these equations s(β̂) = 0
have a solution to be written on closed form.



Least squares and maximum likelihood (ML) estimator for β:

β̂ = (XT X)−1XT Y

Q: Least squares is found by minimizing
∑n

i=1(yi − xT
i β)2. How

can you see that least squares and ML gives the same estimator?



Looking ahead: Hessian and Fisher information

But, for other distribution than the normal we get a set of
non-linear equations when we look at s(β̂) = 0, and then we will
use the Newton-Raphson or Fisher Scoring iterative methods.

Observed Fisher information matrix H(β)

H(β) = − ∂
2l(β)

∂β∂βT = −∂s(β)
∂βT

so this is minus the Hessian of the loglikelihood.

I H(β) may be considered as a local measure of information that
the likelihood contains.

I The higher the curvature of the log-likelihood near its
maximum the more information is provide by the likelihood
about the unknown parameter.

Q: Calculate this for the multiple linear regression model. What is
the dimension of H(β)?



In addition we also use the expected Fisher information matrix F (β)
which we may find in two ways, one is by taking the mean of the
observed Fisher information matrix:

F (β) = E
(
− ∂

2l(β)
∂β∂βT

)
.

Q: Calculate this for the multiple linear regression model. What is
the dimension of F (β)?

In Module 3 we need the Fisher information matrix in the
Newton-Raphson method, and also to find the (asympotic)
covariance matrix of our estimated coefficents β̂ - so much more
about this then.



Hands on: Munich rent index parameter estimates

Explain what the values under Estimate mean in practice.

fit = lm(rentsqm ~ area + yearc + location + bath + kitchen + cheating,
data = ds)

summary(fit)

##
## Call:
## lm(formula = rentsqm ~ area + yearc + location + bath + kitchen +
## cheating, data = ds)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.4303 -1.4131 -0.1073 1.3244 8.6452
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -45.475484 3.603775 -12.619 < 2e-16 ***
## area -0.032330 0.001648 -19.618 < 2e-16 ***
## yearc 0.026959 0.001846 14.606 < 2e-16 ***
## location2 0.777133 0.076870 10.110 < 2e-16 ***
## location3 1.725068 0.236062 7.308 3.45e-13 ***
## bath1 0.762808 0.157559 4.841 1.35e-06 ***
## kitchen1 1.136908 0.183088 6.210 6.02e-10 ***
## cheating1 1.765261 0.129068 13.677 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.031 on 3074 degrees of freedom
## Multiple R-squared: 0.3065, Adjusted R-squared: 0.3049
## F-statistic: 194.1 on 7 and 3074 DF, p-value: < 2.2e-16

Reproduce the values under Estimate by calculating without the
use of lm.

X = model.matrix(rentsqm ~ area + yearc + location + bath + kitchen +
cheating, data = ds)

Y = ds$rentsqm
betahat = solve(t(X) %*% X) %*% t(X) %*% Y
# betahat-fit$coefficients
print(betahat)

## [,1]
## (Intercept) -45.47548356
## area -0.03233033
## yearc 0.02695857
## location2 0.77713297
## location3 1.72506792
## bath1 0.76280784
## kitchen1 1.13690814
## cheating1 1.76526110



Projection matrices: idempotent, symmetric/orthogonal

(Optional - known from TMA4267)

First, we define predictions as Ŷ = Xβ̂, and inserted the ML (and
LS) estimate we get Ŷ = X(XT X)−1XT Y.

We define the projection matrix

H = X(XT X)−1XT

called the hat matrix. This simplifies the notation for the
predictions,

Ŷ = HY

so the hat matrix is putting the hat on the response Y.



In addition we define residuals as

ε̂ = Y− Ŷ
ε̂ = Y−HY = (I−H)Y

so we have a second projection matrix

I−H = I− X(XT X)−1XT



Geometry of Least Squares — involving our two projection
matrices
(Optional - known from TMA4267)

I Mean response vector: E(Y) = Xβ
I As β varies, Xβ spans the model plane of all linear

combinations. I.e. the space spanned by the columns of X: the
column-space of X.

I Due to random error (and unobserved covariates), Y is not
exactly a linear combination of the columns of X.

I LS-estimation chooses β̂ such that Xβ̂ is the point in the
column-space of X that is closes to Y.

I The residual vector ε̂ = Y− Ŷ = (I−H)Y is perpendicular to
the column-space of X.

I Multiplication by H = X(XT X)−1XT projects a vector onto
the column-space of X.

I Multiplication by I−H = I− X(XT X)−1XT projects a vector
onto the space perpendicular to the column-space of X.



Restricted maximum likelihood estimator for σ2

σ̂2 = 1
n − p (Y− Xβ̂)T (Y− Xβ̂) = SSE

n − p

In the generalized linear models setting (remember exponential
family from Module 1) we will look at the parameter σ2 as a
nuisance parameter = parameter that is not of interest to us. Our
our focus will be on the parameters of interest - which will be related
to the mean of the response, which is modelled using our covariate -
so the regression parameters β are therefore our prime focus.

However, to perform inference we need an estimator for σ2.



The maximum likelihood estimator for σ2 is SSE
n , which is found

from maximizing the likelihood inserted our estimate of β̂

L(β̂, σ2) = ( 1
2π )n/2( 1

σ2 )n/2 exp(− 1
2σ2 (y− Xβ̂)T (y− Xβ̂))

l(β̂, σ2) = ln(L(β̂, σ2))

= −n
2 ln(2π)− n

2 lnσ
2 − 1

2σ2 (y− Xβ̂)T (y− Xβ̂)

The score vector with respect to σ2 is
∂l
∂σ2 = 0− n

2σ2 + 1
2σ4 (y− Xβ̂)T (y− Xβ̂)

Solving ∂l
∂σ2 = 0 gives us the estimator

1
n (y− Xβ̂)T (y− Xβ̂) = SSE

n
But, this estimator is biased.



To prove this you may use the trace-formula, that is
E(YT AY) = tr(ACov(Y)) + E(Y)T AE(Y), and we use that
SSE = YT (I−H)Y. This was done in class notes from TMA4267 -
lecture 10

But, the estimator is asympotically unbiased (unbiased when the
sample size n increases to infinity).

https://www.math.ntnu.no/emner/TMA4267/2017v/L10classnotes20170217.pdf
https://www.math.ntnu.no/emner/TMA4267/2017v/L10classnotes20170217.pdf


When an unbiased version is preferred, it is found using restricted
maximum likelihood (REML). We will look into REML-estimation in
Module 7. In our case the (unbiased) REML estimate is

σ̂2 = 1
n − p (y− Xβ̂)T (y− Xβ̂) = SSE

n − p

The restricted maximum likelihood estimate is used in lm.

Q: What does it mean that the REML estimate is unbiased? Where
is the estimate σ̂ in the regression output? (See output from lm for
the rent index example.)





Properties for the normal linear model
To be able to do inference (=make confidence intervals, prediction
intervals, test hypotheses) we need to know about the properties of
our parameter estimators in the (normal) linear model.

I Least squares and maximum likelihood estimator for β:

β̂ = (XT X)−1XT Y

with β̂ ∼ Np(β, σ2(XT X)−1).
I Restricted maximum likelihood estimator for σ2:

σ̂2 = 1
n − p (Y− Xβ̂)T (Y− Xβ̂) = SSE

n − p

with (n−p)σ̂2

σ2 ∼ χ2
n−p.

I Statistic for inference about βj , cjj is diagonal element j of
(XT X)−1.

Tj = β̂j − βj√cjj σ̂
∼ tn−p

This requires that β̂j and σ̂ are independent (see below).



However, when we work with large samples then n − p becomes
large and the t distribution goes to a normal distribution, so we may
use the standard normal in place of the tn−p.



Asymptotically we have:

β̂ ∼ Np(β, σ̃2(XT X)−1)

and
Tj = β̂j − βj√cjj σ̃

∼ N(0, 1)

where σ̃2 = SSE
n (the ML estimator).

Q: Pointing forwards: do you see any connection between the
covariance matrix of β̂ and the Fisher information?



Are β̂ and SSE are independent? (optional)

Independence: Let X(p×1) be a random vector from Np(µ,Σ). Then
AX and BX are independent iff AΣBT = 0.

I Y ∼ Nn(Xβ, σ2I)
I AY = β̂ = (XT X)−1XT Y, and
I BY = (I−H)Y.
I Now Aσ2IBT = σ2ABT = σ2(XT X)−1XT (I−H) = 0
I since X(I−H) = X−HX = X− X = 0.
I We conclude that β̂ is independent of (I−H)Y,
I and, since SSE=function of (I−H)Y: SSE=YT (I−H)Y,
I then β̂ and SSE are independent, and the result with Tj being

t-distributed with n − p degrees of freedom is correct.

Remark: a similar result will exist for GLMs, using the concept of
orthogonal parameters.



Checking model assumptions
In the normal linear model we have made the following assumptions.

1. Linearity of covariates: Y = Xβ + ε. Problem: non-linear
relationship?

2. Homoscedastic error variance: Cov(ε) = σ2I. Problem:
Non-constant variance of error terms

3. Uncorrelated errors: Cov(εi , εj) = 0.
4. Additivity of errors: Y = Xβ + ε

5. Assumption of normality: ε ∼ Nn(0, σ2I)

The same assumptions are made when we do things the GLM way
for the normal linear model.

In addtion the following might cause problems:

I Outliers
I High leverage points
I Collinearity



General theory on QQ-plots

Read this for yourself. You do not need to understand this in detail,
but is useful to have a basic idea why we look for a straight line in a
QQ-plot. There is one question about this in the ILw1.

Go to separate R Markdown or html document: QQ–plot as Rmd or
QQ–plot as html

https://www.math.ntnu.no/emner/TMA4315/2017h/qq.Rmd
https://www.math.ntnu.no/emner/TMA4315/2017h/qq.html


Residuals
If we assume the normal linear model then we know that the
residuals (n × 1 vector)

ε̂ = Y− Ŷ = (I−H)Y

has a normal (singular) distribution with mean E(ε̂) = 0 and
covariance matrix Cov(ε̂) = σ2(I−H) where H = X(XT X)−1XT .

This means that the residuals (possibly) have different variance, and
may also be correlated.



Our best guess for the error ε is the residual vector ε̂, and we may
think of the residuals as predictions of the errors. Be aware: don’t
mix errors (the unobserved) with the residuals (“observed”).

But, we see that the residuals are not independent and may have
different variance, therefore we will soon define variants of the
residuals that we may use to assess model assumptions after a data
set is fitted.

Q: How can we say that the residuals can have different variance
and may be correlated? Why is that a problem?



We would like to check the model assumptions - we see that they
are all connected to the error terms. But, but we have not observed
the error terms ε so they can not be used for this. However, we
have made “predictions” of the errors - our residuals. And, we want
to use our residuals to check the model assumptions.

That is, we want to check that our errors are independent,
homoscedastic (same variance for each observation), and not
dependent on our covariates - and we want to use the residuals
(observed) in place of the errors (unobserved). Then it would have
been great if the residuals have these properties when the underlying
errors have. To amend our problem we need to try to fix the
residual so that they at least have equal variances. We do that by
working with standardized or studentized residuals.



Standardized residuals:

ri = ε̂i
σ̂
√
1− hii

where hi i is the ith diagonal element of the hat matrix H.

In R you can get the standardized residuals from an lm-object
(named fit) by rstandard(fit).

Studentized residuals:

r∗
i = ε̂i

σ̂(i)
√
1− hii

where σ̂(i) is the estimated error variance in a model with
observation number i omitted. This seems like a lot of work, but it
can be shown that it is possible to calculated the studentized
residuals directly from the standardized residuals:

r∗
i = ri(

n − p − 1
n − p − r2

i
)1/2

In R you can get the studentized residuals from an lm-object
(named fit) by rstudent(fit).



Plotting residuals - and what to do when assumptions are
violated?
Some important plots

1. Plot the residuals, r∗
i against the predicted values, ŷi .

I Dependence of the residuals on the predicted value: wrong
regression model?

I Nonconstant variance: transformation or weighted least squares
is needed?

2. Plot the residuals, r∗
i , against predictor variable or functions of

predictor variables. Trend suggest that transformation of the
predictors or more terms are needed in the regression.



3. Assessing normality of errors: QQ-plots and histograms of
residuals. As an additional aid a test for normality can be used,
but must be interpreted with caution since for small sample
sizes the test is not very powerful and for large sample sizes
even very small deviances from normality will be labelled as
significant.

4. Plot the residuals, r∗
i , versus time or collection order (if

possible). Look for dependence or autocorrelation.

Residuals can be used to check model assumptions, and also to
discover outliers.



Diagnostic plots in R

More information on the plots here:
http://data.library.virginia.edu/diagnostic-plots/ and
http://ggplot2.tidyverse.org/reference/fortify.lm.html

You can use the function fortify.lm in ggplot2 to create a
dataframe from an lm-object, which ggplot uses automatically
when given a lm-object. This can be used to plot diagnostic plots.

For simplicity we use the Munch rent index with rent as response
and only area as the only covariate. (You may change the model to
a more complex one, and rerun the code chunks.)

## rent area .hat .sigma .cooksd .fitted .resid .stdresid
## 1 109.9 26 0.001312 158.8 5.870e-04 260.0 -150.00 -0.9454
## 2 243.3 28 0.001219 158.8 1.678e-05 269.6 -26.31 -0.1658
## 3 261.6 30 0.001130 158.8 6.956e-06 279.2 -17.60 -0.1109
## 4 106.4 30 0.001130 158.8 6.711e-04 279.2 -172.83 -1.0891
## 5 133.4 30 0.001130 158.8 4.779e-04 279.2 -145.85 -0.9191
## 6 339.0 30 0.001130 158.8 8.032e-05 279.2 59.79 0.3768

http://data.library.virginia.edu/diagnostic-plots/
http://ggplot2.tidyverse.org/reference/fortify.lm.html


Residuals vs fitted values
A plot with the fitted values of the model on the x-axis and the
residuals on the y-axis shows if the residuals have non-linear
patterns. The plot can be used to test the assumption of a linear
relationship between the response and the covariates. If the residuals
are spread around a horizontal line with no distinct patterns, it is a
good indication on no non-linear relationships, and a good model.

Does this look like a good plot for this data set?
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Normal Q-Q

This plot shows if the residuals are Gaussian (normally) distributed.
If they follow a straigt line it is an indication that they are, and else
they are probably not.
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library(nortest)
ad.test(rstudent(fit))

##
## Anderson-Darling normality test
##
## data: rstudent(fit)
## A = 6.4123, p-value = 9.809e-16



Scale-location
This is also called spread-location plot. It shows if the residuals are
spread equally along the ranges of predictors. Can be used to check
the assumption of equal variance (homoscedasticity). A good plot is
one with a horizontal line with randomly spread points.

Is this plot good for your data?
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Residual vs Leverage

This plot can reveal influential outliers. Not all outliers are
influential in linear regression; even though data have extreme
values, they might not be influential to determine the regression line
(the results don’t differ much if they are removed from the data set).
These influential outliers can be seen as observations that does not
get along with the trend in the majority of the observations. In
plot.lm, dashed lines are used to indicate the Cook’s distance,
instead of using the size of the dots as is done here.



Cook’s distance is the Euclidean distance between the ŷ (the fitted
values) and ŷ(i) (the fitted values calculated when the i-th
observation is omitted from the regression). This is then a measure
on how much the model is influences by observation i . The distance
is scaled, and a rule of thumb is to examine observations with
Cook’s distance larger than 1, and give some attention to those with
Cook’s distance above 0.5.

Leverage is defined as the diagonal elements of the hat matrix, i.e.,
the leverage of the i-th data point is hii on the diagonal of
H = X(XTX)−1XT. A large leverage indicated that the observation
(i) has a large influence on the estimation results, and that the
covariate values (xi) are unusual.
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(Some observations does not fit our model, but if we fit a more
complex model this may change.)



Categorical covariates - dummy and effect coding
(read for yourself - topic of ILw1)
Example: consider our rent dataset with rent as reponse, and
continuous covariate area and categorical covariate location. Let
the location be a factor with levels average, good,
excellent.

library(gamlss.data)
library(tidyverse)
library(GGally)

ds = rent99 %>% select(location, area, rent)
levels(ds$location)
# change to meaningful names
levels(ds$location) = c("average", "good", "excellent")
ggpairs(ds)

Corr:

0.585

location area rent

location
area

rent
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## [1] "1" "2" "3"

Q: comment on what you see in the ggpairs plot.
Categorical covariates may either be ordered or unordered. We will
only consider unordered categories here. In general, we could like to
estimate regression coefficients for all levels for the categorical
covariates. However, if we want to include an intercept in our model
we can only include codings for one less variable than the number of
levels we have - or else our design matrix will not have full rank.
Q: Assume you have a categorical variable with three levels. Check
for yourself that making a design matrix with one intercept and
three columns with dummy (0-1) variable coding will result in a
matrix that is singular.

# make 'wrong' dummy variable coding with 3 columns
n = length(ds$location)
X = cbind(rep(1, n), ds$area, rep(0, n), rep(0, n), rep(0, n))
X[ds$location == "average", 3] = 1
X[ds$location == "good", 4] = 1
X[ds$location == "excellent", 5] = 1
X[c(1, 3, 69), ]
library(Matrix)
dim(X)
rankMatrix(X)

## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 26 0 1 0
## [2,] 1 30 1 0 0
## [3,] 1 55 0 0 1
## [1] 3082 5
## [1] 4
## attr(,"method")
## [1] "tolNorm2"
## attr(,"useGrad")
## [1] FALSE
## attr(,"tol")
## [1] 6.843415e-13

This is why we need to instead work with different ways of coding
categorical variables. One solution is to not include an intercept in
the model, but that is often not what we want. We will look at two
other solutions - one where we decide on a reference category (that
we not include in the coding, and therefore is kind of included in the
intercept - this is called “treatment coding”) and one where we
require that the the sum of the coeffisients are zero (called “effect
coding). This mainly effects how we interpret parameter estimates
and communicate our findings to the world.
If we fit a regression model with lm to the data with rent as
response and area and location as covariates, a model matrix is
made - and how to handle the categorical variable is either specified
the call to lm in
contrasts=list(location="contr.treatment") (or to
model.matrix) or globally for all categorical variables with
options(contrasts=c("contr.treatment","contr.poly"))-
where first element give choice for unordered factor (then treatment
contrast is default) and second for ordered (and then this polynomial
contrast is default). We will only work with unordered factors now.
–

Dummy variable coding aka treatment contrast

This is the default coding. The reference level is automatically
chosen as the “lowest” level (sorted alphabetically). For our
example this means that the reference category for location is
“average”. If we instead wanted “good” to be reference category we
could relevel the factor.

X1 = model.matrix(~area + location, data = ds)
X1[c(1, 3, 69), ]
ds$locationRELEVEL = relevel(ds$location, ref = "good")
X2 = model.matrix(~area + locationRELEVEL, data = ds)
X2[c(1, 3, 69), ]

## (Intercept) area locationgood locationexcellent
## 1 1 26 1 0
## 3 1 30 0 0
## 69 1 55 0 1
## (Intercept) area locationRELEVELaverage locationRELEVELexcellent
## 1 1 26 0 0
## 3 1 30 1 0
## 69 1 55 0 1

So, what does this mean in practice? Model 1 has average as
reference category and model 2 good.

fit1 = lm(rent ~ area + location, data = ds, contrasts = list(location = "contr.treatment"))
summary(fit1)
fit2 = lm(rent ~ area + locationRELEVEL, data = ds, contrasts = list(locationRELEVEL = "contr.treatment"))
summary(fit2)

##
## Call:
## lm(formula = rent ~ area + location, data = ds, contrasts = list(location = "contr.treatment"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -790.98 -100.89 -4.87 94.47 1004.98
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 128.0867 8.6947 14.732 < 2e-16 ***
## area 4.7056 0.1202 39.142 < 2e-16 ***
## locationgood 28.0040 5.8662 4.774 1.89e-06 ***
## locationexcellent 131.1075 18.2614 7.180 8.73e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 157.1 on 3078 degrees of freedom
## Multiple R-squared: 0.3555, Adjusted R-squared: 0.3549
## F-statistic: 566 on 3 and 3078 DF, p-value: < 2.2e-16
##
##
## Call:
## lm(formula = rent ~ area + locationRELEVEL, data = ds, contrasts = list(locationRELEVEL = "contr.treatment"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -790.98 -100.89 -4.87 94.47 1004.98
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 156.0907 9.4950 16.439 < 2e-16 ***
## area 4.7056 0.1202 39.142 < 2e-16 ***
## locationRELEVELaverage -28.0040 5.8662 -4.774 1.89e-06 ***
## locationRELEVELexcellent 103.1034 18.4021 5.603 2.30e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 157.1 on 3078 degrees of freedom
## Multiple R-squared: 0.3555, Adjusted R-squared: 0.3549
## F-statistic: 566 on 3 and 3078 DF, p-value: < 2.2e-16

Q: Comment on the print-out. How do we interpret the intercept
estimate?



Effect coding aka sum-zero-contrast:

This is an equally useful and popular coding - and this is the coding
that is preferred when working with analysis of variance in general.
The effect coding assumes that the sum of the effects for the levels
of the factor sums to zero, and this is done with the following
coding scheme (Model 3 with the original location and 4 with the
releveled version.)

X3 = model.matrix(~area + location, data = ds, contrasts = list(location = "contr.sum"))
X3[c(1, 3, 69), ]
X4 = model.matrix(~area + locationRELEVEL, data = ds, contrasts = list(locationRELEVEL = "contr.sum"))
X4[c(1, 3, 69), ]

## (Intercept) area location1 location2
## 1 1 26 0 1
## 3 1 30 1 0
## 69 1 55 -1 -1
## (Intercept) area locationRELEVEL1 locationRELEVEL2
## 1 1 26 1 0
## 3 1 30 0 1
## 69 1 55 -1 -1

Observe the coding scheme. This means that when we find “the
missing location level estimate” as the negative of the sum of the
parameter estimates for the other estimated levels.

So, what does this mean in practice?

fit3 = lm(rent ~ area + location, data = ds, contrasts = list(location = "contr.sum"))
summary(fit3)
fit4 = lm(rent ~ area + locationRELEVEL, data = ds, contrasts = list(locationRELEVEL = "contr.sum"))
summary(fit4)

##
## Call:
## lm(formula = rent ~ area + location, data = ds, contrasts = list(location = "contr.sum"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -790.98 -100.89 -4.87 94.47 1004.98
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 181.1238 10.6383 17.026 < 2e-16 ***
## area 4.7056 0.1202 39.142 < 2e-16 ***
## location1 -53.0372 6.6428 -7.984 1.98e-15 ***
## location2 -25.0331 6.7710 -3.697 0.000222 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 157.1 on 3078 degrees of freedom
## Multiple R-squared: 0.3555, Adjusted R-squared: 0.3549
## F-statistic: 566 on 3 and 3078 DF, p-value: < 2.2e-16
##
##
## Call:
## lm(formula = rent ~ area + locationRELEVEL, data = ds, contrasts = list(locationRELEVEL = "contr.sum"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -790.98 -100.89 -4.87 94.47 1004.98
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 181.1238 10.6383 17.026 < 2e-16 ***
## area 4.7056 0.1202 39.142 < 2e-16 ***
## locationRELEVEL1 -25.0331 6.7710 -3.697 0.000222 ***
## locationRELEVEL2 -53.0372 6.6428 -7.984 1.98e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 157.1 on 3078 degrees of freedom
## Multiple R-squared: 0.3555, Adjusted R-squared: 0.3549
## F-statistic: 566 on 3 and 3078 DF, p-value: < 2.2e-16

Q: Comment on the print-out. How do we now interpret the
intercept estimate?



Interactions

(read for yourself)

To illustrate how interactions between covariates can be included we
use the ozone data set from the ElemStatLearn library. This data
set is measurements from 1973 in New York and contains 111
observations of the following variables:

I ozone : ozone concentration (ppm)
I radiation : solar radiation (langleys)
I temperature : daily maximum temperature (F)
I wind : wind speed (mph)



We start by fitting a multiple linear regression model to the data,
with ozone as our response variable and temperature and wind as
covariates.
ozone radiation temperature wind

41 190 67 7.4
36 118 72 8.0
12 149 74 12.6
18 313 62 11.5
23 299 65 8.6
19 99 59 13.8

##
## Call:
## lm(formula = ozone ~ temperature + wind, data = ozone)
##
## Residuals:
## Min 1Q Median 3Q Max
## -42.160 -13.209 -3.089 10.588 98.470
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -67.2008 23.6083 -2.846 0.00529 **
## temperature 1.8265 0.2504 7.293 5.32e-11 ***
## wind -3.2993 0.6706 -4.920 3.12e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 21.72 on 108 degrees of freedom
## Multiple R-squared: 0.5817, Adjusted R-squared: 0.574
## F-statistic: 75.1 on 2 and 108 DF, p-value: < 2.2e-16

The model can be written as:
Y = β0 + β1xt + β2xw + ε

In this model we have assumed that increasing the value of one
covariate is independent of the other covariates. For example: by
increasing the temperature by one-unit always increases the
response value by β2 ≈ 1.651, regardless of the value of wind.
However, one might think that the covariate wind (wind speed)
might act differently upon ozone for different values of
temperature and vice verse.

Y = β0 + β1xt + β2xw + β3 · (xt · xw ) + ε

= β0 + (β1 + β3xw ) · xt + β2xw + ε

= β0 + β1xt + (β2 + β3xt) · xw + ε

.

We fit this model in R. An interaction term can be included in the
model using the * symbol.
Q: Look at the summary below. Is this a better model than without
the interaction term? It the term significant?
ozone.int = lm(ozone ~ temperature + wind + temperature * wind, data = ozone)
summary(ozone.int)

##
## Call:
## lm(formula = ozone ~ temperature + wind + temperature * wind,
## data = ozone)
##
## Residuals:
## Min 1Q Median 3Q Max
## -40.929 -11.190 -3.037 8.209 97.440
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -239.94146 48.59004 -4.938 2.92e-06 ***
## temperature 4.00151 0.59311 6.747 8.02e-10 ***
## wind 13.60882 4.28070 3.179 0.00193 **
## temperature:wind -0.21747 0.05446 -3.993 0.00012 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20.36 on 107 degrees of freedom
## Multiple R-squared: 0.636, Adjusted R-squared: 0.6258
## F-statistic: 62.31 on 3 and 107 DF, p-value: < 2.2e-16

Below we see that the interaction term is highly significant. The
p-value is very small, so that there is strong evidence that β3 6= 0.
Furthermore, R2

adj has increased, indicating that more of the
variability in the data has been explained by the model (than
without the interaction).
Interpretation of the interaction term:

I If we now increase the temperature by 10◦ F, the increase in
wind speed will be
(β̂1 + β̂3 · xw ) · 10 = (4.0− 0.22 · xw ) · 10 = 40− 2.2xw units.

I If we increase the wind speed by 10 mph, the increase in
temperature will be
(β̂2 + β̂3 · xt) · 10 = (14− 0.22 · xt) · 10 = 140− 2.2xt units.

The hierarchical principle
It is possible that the interaction term is higly significant, but the
main effects are not.
In our ozone.int model above: the main effects are temperature
and wind. The hierarchical principle states that if we include an
interaction term in our model, the main effects are also to be
included, even if they are not significant. This means that if the
coefficients β̂1 or β̂2 would be insignificant, while the coefficient β̂3
is significant, β̂1 and β̂2 should still be included in the model.
There reasons for this is that a model with interaction terms, but
without the main effects is hard to interpret.

Interactions between qualitative (discrete) and quantitative
(continuous) covariates

We create a new variable temp.cat which is a temperature as a
qualitative covariate with two levels and fit the model:

y = β0 + β1xw +
{
β2 + β3xw if temperature="low"
0 if temperature = "high"

=
{

(β0 + β2) + (β1 + β3) · xw if temperature="low"
β0 + β1xw if temperature="high""

ozone radiation temperature wind temp.cat
41 190 67 7.4 low
36 118 72 8.0 low
12 149 74 12.6 low
18 313 62 11.5 low
23 299 65 8.6 low
19 99 59 13.8 low

##
## Call:
## lm(formula = ozone ~ wind + temp.cat + temp.cat * wind, data = ozone2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -53.291 -9.091 -1.307 11.227 71.815
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 119.0450 7.5004 15.872 < 2e-16 ***
## wind -6.7235 0.8195 -8.204 5.61e-13 ***
## temp.catlow -92.6316 12.9466 -7.155 1.09e-10 ***
## wind:temp.catlow 6.0544 1.1999 5.046 1.86e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20.26 on 107 degrees of freedom
## Multiple R-squared: 0.6393, Adjusted R-squared: 0.6291
## F-statistic: 63.2 on 3 and 107 DF, p-value: < 2.2e-16
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Interactive lectures- problem set first week

Theoretical questions

Problem 1

1. Write down the GLM way for the multiple linear regression
model. Explain.

2. Write down the likelihood and loglikelihood. Then define the
score vector. What is the set of equations we solve to find
parameter estimates? What if we could not find a closed form
solution to our set of equations - what could we do then?

3. Define the observed and the expected Fisher information
matrix. What dimension does these matrices have? What can
these matrices tell us?



4. A core finding is β̂.

β̂ = (XT X)−1XT Y

with β̂ ∼ Np(β, σ2(XT X)−1).

Show that β̂ has this distribution with the given mean and
covariance matrix. What does this imply for the distribution of the
jth element of β̂? In particular, how can we calculate the variance
of β̂j?

5. Explain the difference between error and residual. What are the
properties of the raw residuals? Why don’t we want to use the
raw residuals for model check? What is our solution to this?

6. That is the theoretical intercept and slope of a QQ–plot based
on a normal sample? Hint: QQ–plot as html

https://www.math.ntnu.no/emner/TMA4315/2017h/qq.html


Interpretation and understanding

Problem 2: Munich Rent Index data
Fit the regression model with first rent and then rentsqm as
reponse and following covariates: area, location (dummy variable
coding using location2 and location3), bath, kitchen and
cheating (central heating).

library(gamlss.data)
library(ggfortify)
`?`(rent99)

mod1 <- lm(rent ~ area + location + bath + kitchen + cheating, data = rent99)
mod2 <- lm(rentsqm ~ area + location + bath + kitchen + cheating, data = rent99)
autoplot(mod1, label.size = 2)
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autoplot(mod2, label.size = 2)
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1. Look at diagnostic plots for the two fits. Which response do
you prefer?

Consentrate on the response-model you choose for the rest of the
tasks.

2. Explain what the parameter estimates mean in practice. In
particular, what is the interpretation of the intercept?

summary(mod1)
summary(mod2)

##
## Call:
## lm(formula = rent ~ area + location + bath + kitchen + cheating,
## data = rent99)
##
## Residuals:
## Min 1Q Median 3Q Max
## -633.41 -89.17 -6.26 82.96 1000.76
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -21.9733 11.6549 -1.885 0.0595 .
## area 4.5788 0.1143 40.055 < 2e-16 ***
## location2 39.2602 5.4471 7.208 7.14e-13 ***
## location3 126.0575 16.8747 7.470 1.04e-13 ***
## bath1 74.0538 11.2087 6.607 4.61e-11 ***
## kitchen1 120.4349 13.0192 9.251 < 2e-16 ***
## cheating1 161.4138 8.6632 18.632 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 145.2 on 3075 degrees of freedom
## Multiple R-squared: 0.4504, Adjusted R-squared: 0.4494
## F-statistic: 420 on 6 and 3075 DF, p-value: < 2.2e-16
##
##
## Call:
## lm(formula = rentsqm ~ area + location + bath + kitchen + cheating,
## data = rent99)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.4959 -1.4084 -0.0733 1.3847 9.4400
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.108319 0.168567 42.169 < 2e-16 ***
## area -0.038154 0.001653 -23.077 < 2e-16 ***
## location2 0.628698 0.078782 7.980 2.04e-15 ***
## location3 1.686099 0.244061 6.909 5.93e-12 ***
## bath1 0.989898 0.162113 6.106 1.15e-09 ***
## kitchen1 1.412113 0.188299 7.499 8.34e-14 ***
## cheating1 2.414101 0.125297 19.267 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.1 on 3075 degrees of freedom
## Multiple R-squared: 0.2584, Adjusted R-squared: 0.2569
## F-statistic: 178.6 on 6 and 3075 DF, p-value: < 2.2e-16

3. Go through the summary printout and explain the parts you
know now, and also observe the parts you don’t know yet (on
the agenda for next week?).

Next week: more on inference on this data set.



Problem 3: Simple vs. multiple regression

We look at a regression problem where both the response and the
covariates are centered - that is, the mean of the response and the
mean of each covariate is zero. We do this to avoid the intercept
term, which makes things a bit more complicated.

1. In a design matrix (without an intercept column) orthogonal
columns gives diagonal XT X. What does that mean? How can
we get orthogonal columns?

2. If we have orthogonal columns, will then simple (only one
covariate) and multiple estimated regression coefficients be
different? Explain.

3. What is multicollinearity? Is that a problem? Why (not)?



Problem 4: Dummy vs. effect coding in MLR

Background material for this task: [Categorical covariates - dummy
and effect coding)(#categorical)

We will study a dataset where we want to model income as
response and two unordered categorical covariates genderand
place (location).

income <- c(300, 350, 370, 360, 400, 370, 420, 390, 400, 430, 420, 410,
300, 320, 310, 305, 350, 370, 340, 355, 370, 380, 360, 365)

gender <- c(rep("Male", 12), rep("Female", 12))
place <- rep(c(rep("A", 4), rep("B", 4), rep("C", 4)), 2)
data <- data.frame(income, gender = factor(gender, levels = c("Female",

"Male")), place = factor(place, levels = c("A", "B", "C")))

1. First, describe the data set.

library(GGally)
GGally::ggpairs(data)
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2. Check out the
interaction.plot(data$gender,data$place,data$income).
What does it show? Do we need an interaction term if we want
to model a MLR with income as response?

interaction.plot(x.factor = data$gender, trace.factor = data$place, response = data$income,
type = "l")
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3. Check our plot.design(income~place+gender, data =
data). What does it show?

plot.design(income ~ place + gender, data = data)
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4. First, use treatment contrast (dummy variable coding) and fit a
MLR with income as response and gender and place as
covariates. Explain what your model estimates mean. In
particular, what is the interpretation of the intercept estimate?

mod3 <- lm(income ~ place + gender, data = data)
mod3

##
## Call:
## lm(formula = income ~ place + gender, data = data)
##
## Coefficients:
## (Intercept) placeB placeC genderMale
## 306.25 47.50 65.00 41.25

5. Now, turn to sum-zero contrast (effect coding). Explain what
your model estimates mean. Now, what is the intercept
estimate? Calculate the estimate for place=C.

mod4 <- lm(income ~ place + gender, data = data, contrasts = list(place = "contr.sum",
gender = "contr.sum"))

mod4
model.matrix(mod4)
mean(income)

##
## Call:
## lm(formula = income ~ place + gender, data = data, contrasts = list(place = "contr.sum",
## gender = "contr.sum"))
##
## Coefficients:
## (Intercept) place1 place2 gender1
## 364.38 -37.50 10.00 -20.62
##
## (Intercept) place1 place2 gender1
## 1 1 1 0 -1
## 2 1 1 0 -1
## 3 1 1 0 -1
## 4 1 1 0 -1
## 5 1 0 1 -1
## 6 1 0 1 -1
## 7 1 0 1 -1
## 8 1 0 1 -1
## 9 1 -1 -1 -1
## 10 1 -1 -1 -1
## 11 1 -1 -1 -1
## 12 1 -1 -1 -1
## 13 1 1 0 1
## 14 1 1 0 1
## 15 1 1 0 1
## 16 1 1 0 1
## 17 1 0 1 1
## 18 1 0 1 1
## 19 1 0 1 1
## 20 1 0 1 1
## 21 1 -1 -1 1
## 22 1 -1 -1 1
## 23 1 -1 -1 1
## 24 1 -1 -1 1
## attr(,"assign")
## [1] 0 1 1 2
## attr(,"contrasts")
## attr(,"contrasts")$place
## [1] "contr.sum"
##
## attr(,"contrasts")$gender
## [1] "contr.sum"
##
## [1] 364.375

Next week we connect this to linear hypotheses and ANOVA.



Problem 5: Interactions
This part of the module was marked “self-study”. Go through this
together in the group, and make sure that you understand.

Problem 6: Simulations in R (optional)

(a version this problem was also given as recommended exercise in
TMA4268 Statistical learning)

1. For simple linear regression, simulate at data set with
homoscedastic errore and with heteroscedastic errors. Here is a
suggestion of one solution. Why this? To see how things looks
when the model is correct and wrong. Look at the code and
discuss what is done, and relate this to the plots of errors
(which are usually unobserved) and plots of residuals.

# Homoscedastic errors
n = 1000
x = seq(-3, 3, length = n)
beta0 = -1
beta1 = 2
xbeta = beta0 + beta1 * x
sigma = 1
e1 = rnorm(n, mean = 0, sd = sigma)
y1 = xbeta + e1
ehat1 = residuals(lm(y1 ~ x))
plot(x, y1, pch = 20)
abline(beta0, beta1, col = 1)
plot(x, e1, pch = 20)
abline(h = 0, col = 2)
plot(x, ehat1, pch = 20)
abline(h = 0, col = 2)

# Heteroscedastic errors
sigma = (0.1 + 0.3 * (x + 3))^2
e2 = rnorm(n, 0, sd = sigma)
y2 = xbeta + e2
ehat2 = residuals(lm(y2 ~ x))
plot(x, y2, pch = 20)
abline(beta0, beta1, col = 2)
plot(x, e2, pch = 20)
abline(h = 0, col = 2)
plot(x, ehat2, pch = 20)
abline(h = 0, col = 2)

2. All this fuss about raw, standardized and studentized residuals-
does really matter in practice? Below is one example where the
raw residuals are rather different from the standardized, but the
standardized is identical to the studentized. Can you come up
with a simuation model where the standardized and studentized
are very different? Hint: what about at smaller sample size?

n = 1000
beta = matrix(c(0, 1, 1/2, 1/3), ncol = 1)
set.seed(123)
x1 = rnorm(n, 0, 1)
x2 = rnorm(n, 0, 2)
x3 = rnorm(n, 0, 3)
X = cbind(rep(1, n), x1, x2, x3)
y = X %*% beta + rnorm(n, 0, 2)
fit = lm(y ~ x1 + x2 + x3)
yhat = predict(fit)
summary(fit)
ehat = residuals(fit)
estand = rstandard(fit)
estud = rstudent(fit)
plot(yhat, ehat, pch = 20)
points(yhat, estand, pch = 20, col = 2)
# points(yhat,estud,pch=19,col=3)



SECOND WEEK

UNDER CONSTRUCTION :-) A first version is ready before
Monday September 3.



R packages

install.packages(c("formatR", "gamlss.data", "tidyverse", "GGally", "Matrix",
"nortest"))



References and further reading

I Slightly different presentation (more focus on multivariate
normal theory): Slides and written material from TMA4267
Linear Statistical Models in 2017, Part 2: Regression (by Mette
Langaas).

I And, same source, but now [Slides and written material from
TMA4267 Linear Statistical Models in 2017, Part 3:
Hypothesis testing and ANOVA] (http://www.math.ntnu.no/
emner/TMA4267/2017v/TMA4267V2017Part3.pdf)
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