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Overview

Learning material

• Textbook: Fahrmeir et al (2013): Chapter 2.3, 5.1, B4.1-3
• Classnotes 13.09.2018
• Classnotes 20.09.2018

Topics

First week

• aim of binary regression
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• how to model a binary response
• three ingredients of a GLM model
• the logit model: logistic regression
• interpreting the logit model - with odds
• grouped vs. individual data
• parameter estimation with maximum likelihood

– likelihood, log-likelihood,
– score function

Jump to interactive lecture (week 1)

Second week

• Parameter estimation
– score function- and mean and covariance thereof,
– observed and expected information matrix

• comparison with the normal distribution - score function and Fisher information
• exponential family and canonical link
• iterative calculation of ML estimator (Newton-Raphson and Fisher scoring) - and in R with optim
• asymptotic properties of ML estimators - how to use in inference?
• statistical inference

– confidence intervals
– hypothesis testing: Wald, and likelihood ratio

• deviance: definition, analysis of deviance, deviance residuals
• model fit and model choice
• overdispersion and estimating overdispersion parameter
• sampling stragegy: cohort, but also case-control data good for logit model

Jump to interactive lecture (week 2)

FIRST WEEK

Aim of binary regression

Two aims

1. Construct a model to help understand the relationship between a “success probability” and one or
several explanatory variables. The response measurements are binary (present/absent, true/false,
healthy/diseased).

2. Use the model for estimation and prediction of success probabilites.

Two running examples: mortality of beetles and probability of respiratory infant disease.

Example: Mortality of beetles

A total of 481 beetles were exposed to 8 different consentration of CS2 (data on log10-dose). Yes, only one
consentration tried for each beetle. For each beetle is was recorded if the beetle was alive or killed at the
given concentration.
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Data for beetle i: Yi = 0 if beetle i was alive and Yi = 1 if it was killed, and xi is then the log10-dose beetle i
was given.

The table below shows the 8 values of the log10-dose against the number of beetles alive and killed. The plot
shows log10-dose on the horisontal axis and fraction of beetles killed (killed/total) for each log10-dose.
library(investr)
# from aggregated to individual data (because these data were aggregated)
ldose = rep(beetle$ldose, beetle$n)
y = NULL
for (i in 1:8) y = c(y, rep(0, beetle$n[i] - beetle$y[i]), rep(1, beetle$y[i]))
beetleds = data.frame(killed = y, ldose = ldose)
table(beetleds)

## ldose
## killed 1.6907 1.7242 1.7552 1.7842 1.8113 1.8369 1.861 1.8839
## 0 53 47 44 28 11 6 1 0
## 1 6 13 18 28 52 53 61 60

# plot from aggregated data
frac = beetle$y/beetle$n
dss = data.frame(fkilled = frac, ldose = beetle$ldose)
ggplot(dss, aes(ldose, fkilled)) + geom_point()

0.25

0.50

0.75

1.00

1.70 1.75 1.80 1.85

ldose

fk
ill

ed

Q:

a. What might be the effect (mathematical function) of the log10-dose on the probability of killing a
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beetle?
b. How can this curve be part of a regression model?

## Answers

## a) logistic, sigmoid, normal cdf?.

## b) see item 3 below - the response function connects the mean of the respons to the linear predictor.

How to model a binary response?

In multiple linear regression we have

1. Random component: Distribution of response: Yi ∼ N(µi, σ2), where µi is parameter of interest and
σ2 is nuisance.

2. Systematic component: Linear predictor: ηi = xTi β. Here xi is our fixed (not random) p-dimensional
column vector of covariates (intercept included).

3. Link: Connection between the linear predictor and the mean (parameter of interest): µi = ηi.

In addition we have independent pairs (xi, Yi), and assume that the design matrix - with the covariates for
all observation in a n× p matrix - has full rank p.

• It would not make sense to fit the continuous linear regression to Yi when Yi = {0, 1} - since Yi is not a
continuous random variable, and Yi is not normal.

• So, we need to change 1. We keep 2. And, we make 3. more general.

Binary regression

1. Yi ∼ bin(ni, πi). First we study the case that ni = 1, that is, each individual observation comes from a
Bernoulli process with ni = 1 trials (this version of the binomial distribution is called the Bernoulli
distribution). (Remark: later we will also look at “grouped” data with ni > 1.) Our parameter of
interest is πi which is the mean E(Yi) = µi = πi.

For a generalized linear model (GLM) we require that the distribution of the response is an
exponential family. We have seen in M1 that the binomial distribution is an exponential family.

2. Linear predictor: ηi = xTi β.

3. We will consider different relationships between the mean µi = πi and the linear predictor ηi, and define
the link function g as

g(µi) = ηi

and the inverse of the link function, called the response function, and denoted by

h(ηi) = g−1(ηi) = µi

We thus also have to require that the link function is monotone, and we will soon see that we also need to
require that it is twice differential.

These three ingredients (exponential family distribution of reponse, linear predictor and choice
of reponse or link function) give the core of our GLM model.
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Popular choices for the respons function for binary regression are based on selecting a cumulative distribution
function (cdf) as the response function. The cdf will always be within [0,1], and the cdf is monotone - which
will help us to interpret results.

The most popular response functions are:

• logistic cdf (with corresponding logit link function) referred to as the logit model, followed by the

• normal cdf - (with corresponding probit link function) referred to as the probit model , and

• the extreme minimum-value cdf (with corresponding complementary log-log link function) referred to as
the complementary log-log model.

In this module we focus on the logit model.

The logit model aka logistic regression

Beetle mortality: response function

In the beetle example we have a simple linear predictor: ηi = β0 + β1xi where xi is the log10-dose for beetle i.

Assume that β0 = -60.7 and β1 = 34.3. (These values are estimates from our data, and we will see later how
to find these estimates using maximum likelihood estimation.)

Below the response function is plotted for ηi =-60.7+34.3xi.

library(ggplot2)
# print(c(beta0, beta1))
xrange = range(beetleds$ldose)
xrange[1] = xrange[1] - 0.05
etas = beta0 + beta1 * seq(xrange[1], xrange[2], length = 100)
ggplot(data.frame(eta = range(etas), mu = c(0, 1)), aes(eta, mu)) + xlab(expression(eta)) +

ylab(expression(mu)) + stat_function(fun = function(eta) exp(eta)/(1 + exp(eta)),
geom = "line", colour = "red")
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R: more on greek letters with ggplot: https://github.com/tidyverse/ggplot2/wiki/Plotmath

Q: Explain to your neighbour what is on the x- and y-axis of this plot. Where are the observed log10-doses
in this graph?

A:

On the x-axis is the linear predictor η = β0 + β1x1 for the given values of β0 and β1 and values for x1 is
chosen from the range of the log10-dose values. On the y-axis is the model for the mean of the response,
which also here is the probability of success. This is our non-linear relationship between the linear predictor
and the mean = our response function.

Link and reponse function

The logit model is based on the logistic cdf as the response function, given as

µi = πi = h(ηi) = exp(ηi)
1 + exp(ηi)

or alternatively as the link function (the inverse of the response function)

g(µi) = h−1(µi) = ln( µi
1− µi

) = ln( πi
1− πi

)

Hands-on: show this for yourself.
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Interpreting the logit model

If the value of the linear predictor ηi changes to ηi + 1 the probability π increases non-linearly from exp(ηi)
1+exp(ηi)

to exp(ηi+1)
1+exp(ηi+1) , as shown in the graph above.

Before we go further: do you know about the odds? The ratio P (Yi=1)
P (Yi=0) = πi

1−π1
is called the odds. If πi = 1

2
then the odds is 1, and if πi = 1

4 then the odds is 1
3 . We may make a table for probability vs. odds in R:

library(knitr)
library(kableExtra)
pivec = seq(0.1, 0.9, 0.1)
odds = pivec/(1 - pivec)
kable(t(data.frame(pivec, odds)), digits = c(2, 2)) %>% kable_styling()

pivec 0.10 0.20 0.30 0.40 0.5 0.6 0.70 0.8 0.9
odds 0.11 0.25 0.43 0.67 1.0 1.5 2.33 4.0 9.0

library(knitr)
library(kableExtra)
pivec = seq(0.1, 0.9, 0.1)
odds = pivec/(1 - pivec)
plot(pivec, odds, type = "b", ylab = "odds", xlab = "probability")

0.2 0.4 0.6 0.8

0
2

4
6
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probability
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R: Pretty table with kableExtra

Odds may be seen to be a better scale than probability to represent chance, and is used in betting. In
addition, odds are unbounded above.
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We look at the link function (inverse of the response function). Let us assume that our linear predictor has k
covariates present

ηi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik

πi = exp(ηi)
1 + exp(ηi)

ηi = ln( πi
1− πi

)

ln( πi
1− πi

) = β0 + β1xi1 + β2xi2 + · · ·+ βkxik

πi
1− πi

=P (Yi = 1)
P (Yi = 0) = exp(β0) · exp(β1xi1) · · · exp(βkxik)

We have a multiplicative model for the odds.

So, what if we increase x1i to x1i + 1?

If the covariate x1i increases by one unit (while all other covariates are kept fixed) then the odds is multiplied
by exp(β1):

P (Yi = 1 | xi1 + 1)
P (Yi = 0) | xi1 + 1) = exp(β0) · exp(β1(xi1 + 1)) · · · exp(βkxik)

= exp(β0) · exp(β1xi1) exp(β1) · · · exp(βkxik)

= P (Yi = 1 | xi1)
P (Yi = 0 | xi1) · exp(β1)

This means that if xi1 increases by 1 then: if β1 < 0 we get a decrease in the odds, if β1 = 0 no change, and
if β1 > 0 we have an increase. In the logit model exp(β1) is easier to interpret than β1.

So, to sum up: for the linear predictor we interpret effects in the same way as for the linear
model (in Module 2), then we transform this linear effect in η into a nonlinear effect for
π = exp(η)

1+exp(η) , and use the odds to interpret changes.

Infant respitory disease : interpretation of parameter estimates

(This example is taken from Faraway (2006): “Extending the linar model with R”)

We select a sample of newborn babies (girls and boys) where the parents had decided on the method of
feeding (bottle, breast, breast with some supplement), and then monitored the babies during their first year
to see if they developed infant respiratory disease (the event we want to model).

We fit a logistic regression to the data, and focus on the parameter estimates.
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library(faraway)
data(babyfood)
babyfood

## disease nondisease sex food
## 1 77 381 Boy Bottle
## 2 19 128 Boy Suppl
## 3 47 447 Boy Breast
## 4 48 336 Girl Bottle
## 5 16 111 Girl Suppl
## 6 31 433 Girl Breast
xtabs(disease/(disease + nondisease) ~ sex + food, babyfood)

## food
## sex Bottle Breast Suppl
## Boy 0.16812227 0.09514170 0.12925170
## Girl 0.12500000 0.06681034 0.12598425

fit = glm(cbind(disease, nondisease) ~ sex + food, family = binomial(link = logit),
data = babyfood)

summary(fit)

##
## Call:
## glm(formula = cbind(disease, nondisease) ~ sex + food, family = binomial(link = logit),
## data = babyfood)
##
## Deviance Residuals:
## 1 2 3 4 5 6
## 0.1096 -0.5052 0.1922 -0.1342 0.5896 -0.2284
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.6127 0.1124 -14.347 < 2e-16 ***
## sexGirl -0.3126 0.1410 -2.216 0.0267 *
## foodBreast -0.6693 0.1530 -4.374 1.22e-05 ***
## foodSuppl -0.1725 0.2056 -0.839 0.4013
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 26.37529 on 5 degrees of freedom
## Residual deviance: 0.72192 on 2 degrees of freedom
## AIC: 40.24
##
## Number of Fisher Scoring iterations: 4
exp(fit$coefficients)

## (Intercept) sexGirl foodBreast foodSuppl
## 0.1993479 0.7315770 0.5120696 0.8415226
predict(fit, type = "response") #gives predicted probabilites

## 1 2 3 4 5 6
## 0.16621356 0.14365654 0.09262485 0.12727653 0.10931093 0.06948992

Q: Observe that the two factors by default is coded with dummy variable coding, and that sexBoy is the
reference category for sex and foodBottle the reference category for feeding method.
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1: Explain how to interpret the Estimate for sexGirl, foodBreast and foodSuppl.

2: What are the 6 values given by the call to predict? What is the least favourable combination of sex and
method of feeding? And the most favourable?

Comment: we have here fitted an additive model in the two covariates, but we could also include an interaction
term. This will be discussed later.

More response function plots for the logit model

The response function as a function of the covariate x and not of η. Solid lines: β0 = 0 and β1 is 0.8 (blue), 1
(red) and 2 (orange), and dashed lines with β0 = 1.
library(ggplot2)
ggplot(data.frame(x = c(-6, 5)), aes(x)) + xlab(expression(x)) + ylab(expression(mu)) +

stat_function(fun = function(x) exp(x)/(1 + exp(x)), geom = "line", colour = "red") +
stat_function(fun = function(x) exp(2 * x)/(1 + exp(2 * x)), geom = "line",

colour = "orange") + stat_function(fun = function(x) exp(0.8 * x)/(1 +
exp(0.8 * x)), geom = "line", colour = "blue") + stat_function(fun = function(x) exp(1 +
x)/(1 + exp(1 + x)), geom = "line", colour = "red", linetype = "dashed") +
stat_function(fun = function(x) exp(1 + 2 * x)/(1 + exp(1 + 2 * x)), geom = "line",

colour = "orange", linetype = "dashed") + stat_function(fun = function(x) exp(1 +
0.8 * x)/(1 + exp(1 + 0.8 * x)), geom = "line", colour = "blue", linetype = "dashed") +
scale_colour_manual("0+k x", values = c("red", "orange", "blue"), labels = c("1",

"2", "0.8"))
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Grouped vs. individual data

So far we have only mentioned individual (ungrouped) data. That is, every Yi is 0 or 1 and has a corresponding
covariate vector xi - and together they form one unit.

Yi ∼ bin(ni = 1, πi)

However, in both the examples we have looked at some covariate vectors are identical (rows in the design
matrix are identical). We call these unique combinations of covariates covariate patterns, and say we have
grouped data.
library(kableExtra)
knitr::kable(babyfood) %>% kable_styling(bootstrap_options = c("striped", "hover"))

disease nondisease sex food
77 381 Boy Bottle
19 128 Boy Suppl
47 447 Boy Breast
48 336 Girl Bottle
16 111 Girl Suppl
31 433 Girl Breast

Here we have 6 groups of covariate patterns. The first group has covariates Boy and Bottle, there are
77+381= 458 babies with this combination and 77 of these got the disease.

We prefer to group data if possible. Grouping is good because then data can be kept in a condenced form, it
will speed up computations and makes model diagnosis easier (than for individual data).

For the grouped data we still have a binomial distribution, and possible generalization is to let

• nj Ȳj be the number of successes in group j,
• which means that Ȳj = 1

nj

∑
Yi where the sum is over all i in group j.

Further
nj Ȳj ∼ bin(nj , πj)

such that E(nj Ȳj) = njπj and Var(nj Ȳj) = njπj(1− πj), and E(Ȳj) = πj and Var(Ȳj) = 1
nj
πj(1− πj)

We then keep the linear predictor, and the link function is still ηj = ln( πj

1−πj
). That is, we do not model the

mean njπj but πj directly.

Q: What is a covariate pattern?

## Answer

## A set of values for covariates that are the same for a group of individual data. For the beetle example we have 8 covariate patterns - the 8 dosages, while for the infant respiratory disease we have 6 covariate patterns (boy, girl)*(bottle, supplement, breast). So, unique rows of the design matrix.

Likelihood and derivations thereof

Our parameter of interest is the vector β of regression coefficients, and we have no nuicance parameters
(because the variance is related directly to the πj and nj is known).

We would like to estimate β from maximizing the likelihood, but we will soon see that we have no closed
form solution. First we look at the likelihood, the log-likelihood and first and second derivatives thereof.
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For simplicity we do the derivations for the case where ni = 1, but then include the results for the case where
we have G covariate patterns with nj observations of each pattern.

Assumptions:

1. Yi ∼ bin(ni = 1, πi), and E(Yi) = µi = πi, and Var(Yi) = πi(1− πi).

2. Linear predictor: ηi = xTi β.

3. Logit link
ηi = ln( πi

1− πi
) = g(µi)

and (inverse thereof) logistic response function

µi = πi = exp(ηi)
1 + exp(ηi)

= h(ηi)

We will also need:

(1− πi) = 1− exp(ηi)
1 + exp(ηi)

= 1 + exp(ηi)− exp(ηi)
1 + exp(ηi)

= 1
1 + exp(ηi)

.

Likelihood L(β)

We assume that pairs of covariates and response are measured independently of each other: (xi, Yi), and Yi
follows the distribution specified above, and xi is fixed.

L(β) =
n∏
i=1

Li(β) =
n∏
i=1

f(yi; β) =
n∏
i=1

πyi

i (1− πi)1−yi

Q: What is the interpretation of the likelihood? Is it not a misuse of notation to write L(β) when the right
hand side does not involve β?

A:

The likelihood is the joint distribution of the responses, but with focus on the unknown parameter vector.
Yes, a slight misuse of notation, need to fill in πi = h(ηi) and ηi = xTβ to write out L(β), really. But we
keep this version because when we want to take the partical derivatives we will use the chain rule.

Loglikelihood l(β)

The log-likelihood is the natural log of the likelihood, and makes the mathematics simpler - since we work
with exponential families. The main aim with the likelihood is to maximize it to find the maximum likelihood
estimate, and since the log is a monotone function the maximum of the log-likelihood will be in the same
place as the maximum of the likelihood.
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l(β) = lnL(β) =
n∑
i=1

lnLi(β) =
n∑
i=1

li(β) (1)

=
n∑
i=1

[yi ln πi + (1− yi) ln(1− πi)] (2)

=
n∑
i=1

[yi ln( πi
1− πi

) + ln(1− πi)] (3)

Observe that the log-likelihood is a sum of invidual contributions for each observation pair i.

The log-likelihood is now expressed as a function of πi, but we want to make this a function of β and the
connection between πi and β goes through ηi. We have that π = exp(ηi)

1+exp(ηi) and in our log-likelihood we need

(1− πi) = 1
1 + exp(ηi)

= 1 + exp(ηi)− exp(ηi)
1 + exp(ηi)

= 1
1 + exp(ηi)

and
ln( πi

1− π1
) = ηi

(the last is our logit link function). Then we get:

l(β) =
n∑
i=1

[yiηi + ln( 1
1 + exp(ηi)

)] =
n∑
i=1

[yiηi − ln(1 + exp(ηi))]

which is now our function of ηi.

Finally, since ηi = xTi β,

l(β) =
n∑
i=1

[yixTi β − ln(1 + exp(xTi β))].

Q: What does the graph of l look like as a function of β?

If we look at the beetle example we only have one covariate (in addition to the intercept) - so this means that
we have β = (β0, β1). Plotting the log-likelihood (for the beetle data set) will be one of the tasks for the
interactive lecture.

But, next we take partial derivatives, and then we will (instead of using this formula) look at
li(β) = li(ηi(β)) and use the chain rule.

Score function s(β)

The score function is a p× 1 vector, s(β), with the partial derivatives of the log-likelihood with respect to
the p elements of the β vector.

Q: Write down the rules for derivatives: chain rule, product rule, fraction rule, and in particular derivative of
ln(x), exp(x) and 1

x , you will need them now.

A: Chain rule: df(u(x))
du = df

du ·
du
dx , product rule: (u · v)′ = u′ · v + u · v′, fraction rule: (uv )′ = u′·v−u·v′

v2 ,
d ln(x)
dx = 1

x ,
d exp(x)
dx = exp(x) and d( 1

x )
dx = − 1

x2 .
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Here we go:

s(β) = ∂l(β)
∂β

=
n∑
i=1

∂li(β)
∂β

=
n∑
i=1

si(β)

Again, observe that the score function is a sum of individual contributions for each observation pair i.

We will use the chain rule to calculate si(β).

si(β) = ∂li(β)
∂β

= ∂li(β)
∂ηi

· ∂ηi
∂β

= ∂[yiηi − ln(1 + exp(ηi))]
∂ηi

· ∂[xTi β]
∂β

si(β) = (yi −
exp(ηi)

1 + exp(ηi)
) · xi = (yi − πi)xi

Here we have used the general rule for all partial derivatives of scalar with respect to vector (also used in
TMA4267):

∂aTb
∂b = a

and later we will also need
∂aTb
∂bT = (∂aTb

∂b )T = aT .

The score function is given as:

s(β) =
n∑
i=1

si(β) =
n∑
i=1

xi(yi − πi) =
n∑
i=1

xi(yi −
exp(xTi β)

1 + exp(xTi β)
)

To find the maximum likelihood estimate β̂ we solve the set of p non-linear equations:

s(β̂) = 0

We will soon see how we can do that using the Newton-Raphson or Fisher Scoring iterative methods, but
first we will work on finding the mean and covariance matrix of the score vector - and the derivatives of the
score vector (the Hessian, which is minus the observed Fisher matrix).

Remark: in Module 5 we will see that the general formula for GLMs is:

s(β) =
n∑
i=1

[ yi − µiVar(Yi)
xi
∂µi
∂ηi

] =
n∑
i=1

[ yi − µiVar(Yi)
xih′(ηi)] = XTDΣ−1(y− µ)

where X is the n×p design matrix, D = diag(h′(η1), h′(η2), . . . , h′(ηn)) is a diagonal matrix with the derivatives
of the response function evaluated at each observation. Further, Σ = diag(Var(Y1),Var(Y2), . . . ,Var(Yn)) is a
diagonal matrix with the variance for each response, and y is the observed n× 1 vector of responses and µ is
the n× 1 vector of individual expectations µi = E(Yi) = h(ηi).

More in Module 5.
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Interactive lecture - first week

Theoretical questions - with and without use of R

Problem 1: Model assumptions

a) What are the model assumptions for a binary regression?
b) Which link function and response function is used for the logit model?
c) What is the difference between the logit model and a logistic regression?

Problem 2: Log-likelihood.

a) What is the definition of the log-likelihood?

b) For the logit model the log-likelihood is

l(β) =
G∑
j=1

[ln
(
nj
yj

)
+ yj ln πj − yj ln(1− πj) + nj ln(1− πj)]

for grouped data. Explain how we have arrived at this formula?

c) Write the version of the loglikelihood for individual data (i.e. nj = 1 and G = n).

d) Where is β in the loglikelihood in c? Rewrite this to be a function of β.

e) Why can we ignore the normalizing constant (what is the constant?) in the case of nj = 1 ∀j?
Considering what the log-likelihood is used for, why can we ignore the normalizing constant in all cases
(i.e., also when nj 6= 1)?

f) What does this graph of l look like as a function of β for the beetle data? First discuss shortly and
then to aid you in answering this we look at the loglikelihood for the beetle data. Read the R code,
discuss what is done and work on interpreting the final graph - in particular comment on the yellow
ridge in the plot.

The beetle data has only one covariate (in addition to the intercept) - so this means that we have β = (β0,β1).
Look at the following code and explain what is done - remark: we have used the ni = 1 version of the
loglikelihood here.
library(investr)
library(ggplot2)
library(viridis)

# from aggregated to individual data (because these data were aggregated)
ldose <- rep(investr::beetle$ldose, investr::beetle$n)
y <- NULL
for (i in 1:8) y = c(y, rep(0, investr::beetle$n[i] - investr::beetle$y[i]),

rep(1, investr::beetle$y[i]))
beetleds = data.frame(killed = y, ldose = ldose)

loglik <- function(par, args) {
y <- args$y
x <- args$x
n <- args$n
res <- sum(y * x %*% par - n * log(1 + exp(x %*% par)))
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return(res)
}

loglik(c(1, 1), args = list(y = beetleds$killed, x = cbind(rep(1, nrow(beetleds)),
beetleds$ldose), n = rep(1, nrow(beetleds))))

## [1] -549.2543
loglikmat <- matrix(NA, nrow = 100, ncol = 100)
loglikframe <- data.frame()
beta_0 <- seq(-90, -30, length.out = 100)
beta_1 <- seq(20, 50, length.out = 100)

for (i in 1:length(beta_0)) {
for (j in 1:length(beta_1)) {

loglikmat[i, j] <- loglik(c(beta_0[i], beta_1[j]), args = list(y = beetleds$killed,
x = cbind(rep(1, nrow(beetleds)), beetleds$ldose), n = rep(1, nrow(beetleds))))

loglikframe <- rbind(loglikframe, c(beta_0[i], beta_1[j], loglikmat[i,
j]))

}
}
names(loglikframe) <- c("beta_0", "beta_1", "loglik")
head(loglikframe)

## beta_0 beta_1 loglik
## 1 -90 20.00000 -15545.83
## 2 -90 20.30303 -15384.56
## 3 -90 20.60606 -15223.28
## 4 -90 20.90909 -15062.01
## 5 -90 21.21212 -14900.73
## 6 -90 21.51515 -14739.46
ggplot(data = loglikframe, mapping = aes(x = beta_0, y = beta_1, z = loglik)) +

geom_raster(aes(fill = exp(1e-04 * loglik))) + geom_point(data = loglikframe[which.max(loglikframe$loglik),
], mapping = aes(x = beta_0, y = beta_1), size = 5, col = "red", shape = 21,
stroke = 2) + scale_shape(solid = FALSE) + scale_fill_viridis() + geom_contour(col = "black")
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Comments to the code: for the loglik function we have two arguments: par= the parameters to be estimated,
and args=a list with data. The reason for only having these two arguments is that it is easier to use when we
later perform optimization (with optim) of the loglikelihood to find the ML estimates.

Problem 3: Score function

a) What is the definition of the score function? What is the dimension of the score function?
b) Derive the score function for the logit model (individual data). The result should be

s(β) =
n∑
i=1

xi(yi − πi) =
n∑
i=1

xi(yi −
exp(xTi β)

1 + exp(xTi β)
)

c) What do we need the score function for?

Problem 4: Fisher information.

(We did not cover this in the lecture week 1, but we know one of the definitions from Module 2. Either you
skip Problem 4 and move to Problem 5, or you look at the section “Properties of the score function”, and
“The expected Fisher information matrix F (β)” together.)

a) What is the definition of the expected (and the observed) Fisher information matrix? What is the
dimension of thise matrix (matrices)?

b) What is the role of these matrices in ML estimation?
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c) For the logit model with grouped data the expected and the observed Fisher information matrix are
equal and given as

F (β) =
G∑
j=1

xjxTj njπj(1− πj)

Where is β in this expression?

d) Write the version of the expected Fisher information for individual data (i.e. nj = 1 and G = n).

Problem 5: Maximum likelihood

To find the ML estimate for β we may either use the function glm or optimize the log-likelihood manually.
We will do both.

a) First we use the glm function in R, and we also check that the individual and the grouped data give
the same parameter estimates for the β. Read the R-code, notice the different input structures and
check the results.

# the beetle.ds was made above
fitind = glm(killed ~ ldose, family = "binomial", data = beetleds) # individual data
summary(fitind)

##
## Call:
## glm(formula = killed ~ ldose, family = "binomial", data = beetleds)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.4922 -0.5986 0.2058 0.4512 2.3820
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -60.717 5.181 -11.72 <2e-16 ***
## ldose 34.270 2.912 11.77 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 645.44 on 480 degrees of freedom
## Residual deviance: 372.47 on 479 degrees of freedom
## AIC: 376.47
##
## Number of Fisher Scoring iterations: 5
fitgrouped = glm(cbind(y, n - y) ~ ldose, family = "binomial", data = investr::beetle) # grouped data. response is #success AND #fails (here we have defined a dead beetle as a success)
summary(fitgrouped)

##
## Call:
## glm(formula = cbind(y, n - y) ~ ldose, family = "binomial", data = investr::beetle)
##
## Deviance Residuals:
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## Min 1Q Median 3Q Max
## -1.5941 -0.3944 0.8329 1.2592 1.5940
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -60.717 5.181 -11.72 <2e-16 ***
## ldose 34.270 2.912 11.77 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 284.202 on 7 degrees of freedom
## Residual deviance: 11.232 on 6 degrees of freedom
## AIC: 41.43
##
## Number of Fisher Scoring iterations: 4

b) What is the default convergence criterion for the glm? (Note: IRWLS used in glm - more in Module 5.)

c) We implemented the log-likelihood as a function in item 2 above. Now we will use this together with
the optim function on the beetle data set to optimize the loglikelihood. Read the R-code, take notice
of how we put data into the args slot and how the optimization is called with optim. (In Compulsory
exercise 2 you will use this in a Poisson regression.)

loglik_gr <- function(par, args) {

y <- args$y
x <- args$x
n <- args$n

res <- y %*% x - t(t(n * x) %*% ((1 + exp(-x %*% par))^(-1)))
return(res)

}

opt <- optim(c(-60, 30), fn = loglik, gr = loglik_gr, args = list(y = beetleds$killed,
x = cbind(rep(1, nrow(beetleds)), beetleds$ldose), n = rep(1, nrow(beetleds))),
control = list(fnscale = -1), hessian = TRUE, method = "BFGS")

opt

## $par
## [1] -60.71748 34.27034
##
## $value
## [1] -186.2354
##
## $counts
## function gradient
## 24 9
##
## $convergence
## [1] 0
##
## $message
## NULL
##
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## $hessian
## [,1] [,2]
## [1,] -58.48417 -104.0105
## [2,] -104.01047 -185.0941
sqrt(diag(-solve(opt$hessian))) # calculate the standard deviations of the parameters

## [1] 5.180709 2.912138

Problem 6: Interpreting results

a) Interpret the estimated β´s. Odds ratio is useful for this.
b) Plot the predicted probability of a beetle dying against the dosage and discuss what you see. (Yes,

since this is the last question you may try to program by yourself!)

SECOND WEEK

Remember the beetle and infant respitory disease examples?

First, we look back at the model requirements for the binary regression - and the loglikelihood and score
function.

Likelihood and derivations thereof - continued

Individual data (not grouped):

Loglikelihood:

l(β) =
n∑
i=1

[yi ln πi − yi ln(1− πi) + ln(1− πi)]

Score function:
s(β) =

n∑
i=1

xi(yi − πi)

Properties of the score function

Since the score function depends on Yi = yi we may regard the score function as a random vector. We will
now calculate the mean and covariance matrix for the score function. The expected value is

E(s(β)) = E(
n∑
i=1

(Yi − πi)xi) =
n∑
i=1

E((Yi − πi)xi) =
n∑
i=1

(E(Yi)− πi)xi = 0

as E(Yi) = πi. We also see that E(si(β)) = E((Yi − πi)xi) = 0 ∀i.
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The expected Fisher information matrix F (β)

The covariance of s(β) is called the expected Fisher information matrix, F (β) and is given by

F (β) = Cov(s(β)) =
n∑
i=1

Cov(si(β)) (4)

=
n∑
i=1

E

[(
si(β)− E(si(β))

)(
si(β)− E(si(β))

)T]
(5)

=
n∑
i=1

E(si(β)si(β)T ) =
n∑
i=1

Fi(β) (6)

where it is used that the responses Yi and Yj are independent, and that E(si(β)) = 0 ∀i.

Remember that si(β) = (Yi − πi)xi, then:

Fi(β) = E(si(β)si(β)T ) = E((Yi − πi)xi(Yi − πi)xTi )

= xixTi E((Yi − πi)2) = xixTi πi(1− πi)

where E((Yi − πi)2) = Var(Yi) = πi(1− πi) is the variance of Yi. Thus

F (β) =
n∑
i=1

xixTi πi(1− πi).

A useful relationship: Under mild regularity conditions (so we can change the order of
∫

and ∂
∂β ):

Cov(s(β) = F (β) = E

(
− ∂2l(β)
∂β∂βT

)
= E(−Hessian matrix of l)

which relates the expected to the observed Fisher information matrix.

Do you want to see an explanation?

Observed Fisher information matrix H(β)

H(β) = − ∂2l(β)
∂β∂βT

= −∂s(β)
∂βT

= ∂

∂βT

[
n∑
i=1

(πi − yi)xi

]

because s(β) =
∑n
i=1(yi − πi)xi and hence −s(β) =

∑n
i=1(πi − yi)xi. Note that πi = πi(β).

H(β) =
n∑
i=1

∂

∂βT
[xiπi − xiyi] =

n∑
i=1

∂

∂βT
xiπi =

n∑
i=1

xi
∂πi
∂ηi

∂ηi

∂βT
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Use that

∂ηi

∂βT
= ∂xTi β

∂βT
=
(
∂xTi β

∂β

)T
= xTi

and

∂πi
∂ηi

=
∂
(

exp(ηi)
1+exp(ηi)

)
∂ηi

= (1 + exp(ηi)) exp(ηi)− exp(ηi) exp(ηi)
(1 + exp(ηi))2

= πi(1− πi).

And thus

H(β) =
n∑
i=1

xiπi(1− πi)xTi =
n∑
i=1

xixTi πi(1− πi).

Note that the observed and the expected Fisher information matrix are equal (see below - canonical link -
that this is a general finding). This is not the case for the probit or complementary log-log models.

Overview of the results for individual and grouped data

• Individual data: i = 1, . . . , n, and pairs (xi, yi).
• Grouped data: j = 1, . . . , G with nj observations for group j, and Yj =

∑
Yi for all i member of group

j. In total
∑G
j=1 nj observations. For each pair (xj , yj), where xj the covariate pattern for group j.

NB: we keep that ηi = ln( πi

1−πi
) - not changed for grouped data (but now µj = njπj).

Log-likelihood:

Individual:
l(β) =

n∑
i=1

[yi ln πi − yi ln(1− πi) + ln(1− πi)]

Grouped:

l(β) =
G∑
j=1

[yj ln πj − yj ln(1− πj) + nj ln(1− πj) + ln
(
nj
yj

)
]

The last part is usually not include in calculations.

Score function:

Individual:
s(β) =

n∑
i=1

xi(yi − πi)

Grouped:

s(β) =
G∑
j=1

xj(yj − njπj)
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Expected Fisher information matrix:

Individual:

F (β) =
n∑
i=1

xixTi πi(1− πi)

Grouped:

F (β) =
G∑
j=1

xjxTj njπj(1− πj)

The observed Fisher information matrix equals the expected Fisher information matrix - because the logit
model is the canonical link for the binomial distribution.

Look back at MLR - what is s(β) and F (β) then?

1. Yi ∼ N(µi, σ2)

2. ηj = xTi β

3. µi = ηi (identity response function and link function)

Likelihood:

L(β) =
(

1
2π

)n/2( 1
σ2

)n/2
exp

(
− 1

2σ2 (y −Xβ)T (y −Xβ)
)

Loglikelihood:
l(β) = lnL(β) = −n2 ln(2π)− n

2 ln(σ2)− 1
2σ2 (y −Xβ)T (y −Xβ)

Since (y −Xβ)T (y −Xβ) = Y TY − 2Y TXβ + βTXTXβ, then

s(β) = ∂l(β)
∂β

= − 1
2σ2 (2XTXβ − 2XTY ) = 1

σ2 (XTY −XTXβ)

and s(β̂) = 0 gives XTY −XTXβ = 0 which can be solved on closed form giving β̂ = (XTX)−1XTY . So,
no need for iterative methods.

Finally, observed Fisher information matrix.

H(β) = ∂s(β)
∂βT

= − ∂

∂βT
( 1
σ2 XTY − 1

σ2 XTXβ) = 1
σ2 XTX

which is independent on β, and also we see that F (β) = E(H(β)) = H(β) since no random variables are
present. The identity link is also the canonical link. Finally, the (asymptotic) covariance of the ML estimate
is F−1(β̂) = (XTX)−1σ2 which we know as Cov(β̂).
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Exponential family - and canonical link

In Module 1 we introduced distributions of the Yi, that could be written in the form of a univariate exponential
family

f(yi | θi) = exp
(
yiθi − b(θi)

φ
· wi + c(yi, φ, wi)

)
where

• θi is called the canonical parameter and is a parameter of interest

• φ is called a nuisance parameter (and is not of interest to us=therefore a nuisance (plage))

• wi is a weight function, in most cases wi = 1

• b and c are known functions.

It can be shown that E(Yi) = b′(θi) and Var(Yi) = b′′(θi) · φwi
.

In Module 1 we found that the binomial distribution Yi ∼ bin(1, πi) is an exponential family (derivation from
Module 1: https://www.math.ntnu.no/emner/TMA4315/2017h/Module1ExponentialFamily.pdf)

and that

• θi = ln( πi

1−πi
) is the canonical parameter

• φ = 1, no nuisance
• wi = 1
• b(θi) = ln(1 + exp(θi))

Recall that in a GLM we choose a link function g, linking the linear predictor and the mean: ηi = g(µi). For
the logit model we had that ηi = ln( πi

1−πi
).

Now (new to us) - every exponential family has a unique canonical link function such that

θi = ηi

Since ηi = g(µi) this means to us that we need

g(µi) = θi

to have a canonical link.

Q: Is the logit link the canonical link for the binary model?

A:

Yes, since θi = ln( πi

1−πi
) = g(πi) then the logit link is the canonical link for the binary regression.

Properties of a GLM with canonical link

1. The log-likelihod is always concave so that the ML estimated is always unique (given that it exists).

2. The observed Fisher information matrix H(β) equals the expected Fisher information matrix F (β).
That is,

− ∂2l

∂ββT
= E(− ∂2l

∂ββT
)

Proving this is beyond the scope of this course.

25

https://www.math.ntnu.no/emner/TMA4315/2017h/Module1ExponentialFamily.pdf


Parameter estimation - in practise

To find the ML estimate β̂ we need to solve
s(β̂) = 0

We have that the score function for the logit model is:

s(β) =
G∑
j=1

xj(yj − njπj)

where πj = exp(xT
j β̂)

1+exp(xT
j

β̂) . Observe that this is a non-linear function in β, and has no closed form solution.

Iterative gradient-based methods

Back to the general case - we may use a first order multivariate Taylor approximation for s(β̂), around some
chosen reference value β(0):

s(β̂) ≈ s(β(0)) + ∂s(β)
∂β

∣∣
β=β(0)(β̂ − β(0))

Let H(β(0)) = −∂s(β)
∂β

∣∣
β=β(0) . Setting s(β̂) = 0 solving for β̂ gives

β̂ = β(0) +H(β(0))−1s(β(0))

where H(β(0))−1 is the matrix inverse of H(β(0)).

If we start with some value β(0) and then find a new value β(1) by applying this equation, and then continue
applying the equation until convergence we have the Newton-Raphson method:

β(t+1) = β(t) +H(β(t))−1s(β(t))

Replacing the observed Fisher information matrix H with the expected Fisher information matrix F yields
the Fisher-scoring method.

For the logit model these two methods are the same since the observed and expected Fisher information
matrix is the same for canonical link functions (like the logit is for binary regression).

This algorithm is run until the relative difference in Euclidean distance between two iterations “(new-old)/old”
is smaller than some chosen constant.

Requirements for convergence

For the Newton-Raphson algorithm we see that the observed Fisher information matrix H needs to be
invertible for all β, alternatively for the Fisher scoring algorithm the expected Fisher information matrix F
needs to be invertible.

In our logit model

F (β) =
G∑
j=1

xjxTj njπj(1− πj)
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Let X be the design matrix, where the rows are xTj . Then XTX =
∑G
j=1 xjxTj .

If we require that the design matrix has full rank (G) then also XTX will have full rank (it will also be
positive definite) and and in addition πj(1− πj) > 0 for all πj ∈ (0, 1), so then F (β) will be positive definite
and all is good.

Why is F (β) positive definite if we require that the design matrix has full rank? Formally, let
X be a n× p matrix and Λ a n× n diagonal matrix where all the diagonal elements are positive (like our
πj(1−πj), yes, put them on the diagonal). Let X have independent columnes (full rank)⇔ XTΛX is positive
definite.

Proof: ⇒: Let v be a p dimensional column vector. Assume 0 = vTXTΛXv = (Λ1/2Xv)T (Λ1/2Xv) =∑n
i=1 w

2
i where W = Λ1/2Xv. Then, w must be 0, that is Λ1/2Xv = 0 since multiplication with Λ1/2 is

to multiply each element in Xv with a number different from 0. That is, we must have v = 0 since X has
independent columns.

⇐: Assume that Xv = 0. Then vTXTΛXv = 0 so v = 0 since XTΛX is positive definite. This is, X has
independent columns.

End of proof

Therefore, for GLMs we will also - as for the multiple linear regression model in Module 2 - assume that the
design matrix has full rank!

We will see in Module 5 that this is the requirement needed for GLMs in general.

However, it is possible that the algorithm does not converge. This may happen for “unfavorable” data
configurations (especially for small samples). Accoring to our text book, Fahrmeir et al (2013), page 284, the
conditions for uniqueness and existence of ML estimators are very complex, and the authors suggest that the
GLM user instead checks for convergence in practice by performing the iterations.

Asymptotic properties of ML estimates

Results

Under some (weak) regularity conditions (including that β falls in the interior of the parameter space and p
is fixed that n increases, Agresti (2015) page 125):

Let β̂ be the maximum likelihood (ML) estimate in the GLM model. As the total sample size increases,
n→∞:

1. β̂ exists
2. β̂ is consistent (convergence in probability, yielding asymptotically unbiased estimator, variances goes

towards 0)
3. β̂ ≈ Np(β, F−1(β̂))

Observe that this means that asymptotically Cov(β̂) = F−1(β̂): the inverse of the expected Fisher information
matrix evaluated at the ML estimate.

Observe: The result requires that the total sample size goes to infinity (not the individual nj for the covariate
patterns).
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The proof (for the univariate case) is given in the course TMA4295 Statistical Inference course, Casella
and Berger (2002):“Statistical inference”, page 472. It starts by a first order Taylor expansion of the score
function (derivative of loglikelihood) around the true parameter, and utilizes the fact that the maximum
likelihood estimate is defined as the zero of the score function.

The following is not a formal proof, but a sketch - and I use the parameter of interest θ in the exponential
family version of the distribution (and then there is a connection to the mean µ and then to η and finally β):

We start with the multivariate version of the first order Taylor expansion around the true parameter value θ:

0 = s(θ̂) ≈ s(θ)−H(θ)(θ̂ − θ)

We assume that θ̂ is the maximum likelihood estimate, and there the score function is 0 so we get:

s(θ) ≈ H(θ)(θ̂ − θ)

And premultiplying with H−1(θ) gives

(θ̂ − θ) ≈ H−1(θ)s(θ)

Then, to use the central limit theorem we need some smart manipulations with n, so we start by multiplying
with

√
n and split that into n and 1√

n
.

√
n(θ̂ − θ) ≈

√
nH−1(θ)s(θ) = ( 1

n
H(θ))−1 1√

n
s(θ)

From the central limit theorem:

1) 1
nH(θ) goes to the expected value which is F(θ) (in probability),

2) the part 1√
n
s(θ) asymptoticalle goes to a random variable W that follows a multivariate normal with

• mean E( 1√
n
s(θ)) = 0 and the

• covariance matrix is Cov( 1√
n
s(θ)) = 1

nF(θ)

W ∼ N(0, 1
n

F(θ))

√
n(θ̂ − θ) ≈ F−1(θ)W

On the right side here we have a multivariate normal distributed random variable F−1(θ)W with mean 0
and covariance matrix

Cov(F−1(θ)W) = F−1(θ) 1
n

F(θ)F−1(θ) = 1
n

F−1(θ)

This leads to the wanted result:

θ̂ ≈ N(θ,F−1(θ))

Due to the Slutsky theorem (from TMA4295 Statistical inference) this also holds when F−1(θ)) is replaced
by F−1(θ̂)).
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Parameter estimation

Parameter estimation can be based on grouped data - so now we use Yj ∼ bin(nj , πj) from 1 above, but keep
2 and 3 unchanged. The number of groups is G and the total number of observations is

∑G
j=1 nj .

• Likelihood=joint distribution, exponential family.

f(y | θ) = exp
(
yθ − b(θ)

φ
· w + c(y, φ, w)

)
where we have that θ = ln( π

1−π ) for the binomial distribution, which means that our logit model is
gives the canonical link (remember, good properties!).

• Log-likelihood

l(β) =
G∑
j=1

[yj ln πj − yj ln(1− πj) + nj ln(1− πj) + ln
(
nj
yj

)
]

• Score function=vector of partial derivatives of log-likelihood. Find ML by solving s(β̂)) = 0 - but no
closed form solutions.

s(β) =
G∑
j=1

xj(yj − njπj)

• Expected Fisher information matrix

F (β) =
G∑
j=1

xjxTj njπj(1− πj)

• β̂ found iteratively using Newton-Raphson or Fisher scoring

β(t+1) = β(t) + F (β(t))−1s(β(t))

• β̂ ≈ Np(β, F−1(β̂))

Further statistical inference

Our further statistical inference (confidence intervals and hypotheses tests) are based on the asymptotic
distribution of the parameter estimates

β̂ ≈ Np(β, F−1(β̂))

where F−1(β̂)) is the inverse of the expected Fisher information matrix inserted β̂.

For the logit model we found that

F (β) =
G∑
j=1

xjxTj njπj(1− πj)

So we would need to do πj = exp(η−j)
1+exp(ηj) and ηj = xTj β as “usual”, and then replace β with β̂.

The asymptotic distribution still holds when we replace β with β̂ in F.
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If we make a diagonal matrix W with njπj(1− πj) on the diagonal, then we may write the matrix F (β) in
matrix notation. As before X is the G× p design matrix.

F (β) =
G∑
j=1

xjxTj njπj(1− πj) = XTWX.

which means that Cov(β̂) = (XTWX)−1 for the binomial model (remember that β̂ comes in with π̂j in W).

Q: How is this compared to the normal case?

A: F (β) = 1
σ2 XTX, and the inverse Cov(β̂) = (XTX)−1σ2.

Let A(β) = F−1(β̂), and akk(β̂) is diagonal element number k.

For one element of the parameter vector:

Zk = β̂k − βk√
âkk(β)

is asymptotically standard normal. We will use this now!

Q: Where can you find β̂ and F−1(β̂) in the print-out below?

library(investr)
fitgrouped = glm(cbind(y, n - y) ~ ldose, family = "binomial", data = investr::beetle)
summary(fitgrouped)

##
## Call:
## glm(formula = cbind(y, n - y) ~ ldose, family = "binomial", data = investr::beetle)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5941 -0.3944 0.8329 1.2592 1.5940
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -60.717 5.181 -11.72 <2e-16 ***
## ldose 34.270 2.912 11.77 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 284.202 on 7 degrees of freedom
## Residual deviance: 11.232 on 6 degrees of freedom
## AIC: 41.43
##
## Number of Fisher Scoring iterations: 4
summary(fitgrouped)$cov.scaled

## (Intercept) ldose
## (Intercept) 26.83966 -15.082090
## ldose -15.08209 8.480525
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sqrt(diag(summary(fitgrouped)$cov.scaled))

## (Intercept) ldose
## 5.180701 2.912134

Note: cov.unscaled is the estimated covariance matrix for the estimated coefficients, and cov.scaled is
the the cov.unscaled scaled with the dispersion parameter. For the binomial the dispersion is equal to 1, so
no difference between the two.

Confidence intervals

In addition to providing a parameter estimate for each element of our parameter vector β we should also
report a (1− α)100% confidence interval (CI) for each element.

We focus on element k of β, called βk. It is known that asympotically

Zk = β̂k − βk√
akk(β̂)

is asymptotically standard normal. We use that to form confidence intervals.

Let zα/2 be such that P (Zk > zα/2) = α/2. REMARK: our textbook would here look at area to the left
instead of to the right - but we stick with this notation.

We then use
P (−zα/2 ≤ Zk ≤ zα/2) = 1− α

insert Zk and solve for βk to get

P (β̂k − zα/2

√
akk(β̂) ≤ βk ≤ β̂k − zα/2

√
akk(β̂)) = 1− α

A (1− α)% CI for βk is when we insert numerical values for the upper and lower limits.

Q: We write akk(β̂). Why not akk(β̂kk)?

Example with the beetle data

Again, we study our beetle data - in the grouped version.

Here we calculate the upper and lower limits of the confidence interval using the formula. Then, there is
also an R function confint.glm that can be used. This function may give a slightly different answer to
our calculations because here an extra “profiling” step is done to check the convergence of the glm, and to
recalculate the estimated covariance matrix for the regression parameter estimate.
fitgrouped = glm(cbind(y, n - y) ~ ldose, family = "binomial", data = investr::beetle)
coeff = fitgrouped$coefficients
sds = sqrt(diag(summary(fitgrouped)$cov.scaled))
alpha = 0.05
lower = coeff - qnorm(1 - alpha/2) * sds
upper = coeff + qnorm(1 - alpha/2) * sds
cbind(lower, upper)
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## lower upper
## (Intercept) -70.87144 -50.56347
## ldose 28.56265 39.97800
confint(fitgrouped)

## 2.5 % 97.5 %
## (Intercept) -71.44263 -51.07902
## ldose 28.85403 40.30069

Q: Explain what is done in the R-print-out.

Hypothesis testing

There are three methods that are mainly used for testing hypotheses in GLMs - these are called Wald test,
likelihood ratio test and score test. We will look at the first two.

First, look at linear hypotheses: We study a binary regression model with p = k + 1 covariates, and refer to
this as model A (the larger model). As for the multiple linear model we then want to investigate the null and
alternative hypotheses of the following type(s):

H0 : βj = 0 vs. H1 : βj 6= 0
H0 : β1 = β2 = β3 = 0 vs. H1 : at least one of these 6= 0
H0 : β1 = β2 = · · · = βk = 0 vs. H1 : at least one of these 6= 0

We call the restricted model (when the null hypotesis is true) model B, or the smaller model.

These null hypotheses and alternative hypotheses can all be rewritten as a linear hypothesis

H0 : Cβ = d vs. Cβ 6= d

by specifying C to be a r × p matrix and d to be a column vector of length d.

The Wald test

The Wald test statistic is given as:

w = (Cβ̂ − d)T[CF−1(β̂)CT]−1(Cβ̂ − d)

and measures the distance between the estimate Cβ̂ and the value under then null hypothesis d, weighted by
the asymptotic covariance matrix of Cβ̂. Remember: Cov(Cβ̂) = CF−1(β̂)CT.

Asymptotically it is found that w under the null hypothesis follows a χ2 distribution with r degrees of freedom
(where r is the number of hypotheses tested). Why is that?

P -values are calculated in the upper tail of the χ2-distribution.

Observe: to perform the test you only need to fit the larger model (and not the smaller).
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For the special case that we only test one regression parameter, for example βk:

H0 : βk = 0 vs. H1 : βk 6= 0.

Now Cβ̂ = βk and C[F (β̂)]−1CT = CA(β)CT = akk(β), and the Wald test becomes

(β̂k − βk)[akk(β̂)]−1(β̂k − βk) =

 β̂k − βk√
akk(β̂)

2

= Z2
k

so, asymptotically the square of the standard normal, which we know follows a χ2-distribution with 1 degree
of freedom.

Q: Explain what you find in the columns named z value and Pr(>|z|) below, and which hypothesis tests
these are related to. Are the hypothesis tests performed using the Wald test?

library(investr)
fitgrouped = glm(cbind(y, n - y) ~ ldose, family = "binomial", data = investr::beetle)
summary(fitgrouped)

##
## Call:
## glm(formula = cbind(y, n - y) ~ ldose, family = "binomial", data = investr::beetle)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5941 -0.3944 0.8329 1.2592 1.5940
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -60.717 5.181 -11.72 <2e-16 ***
## ldose 34.270 2.912 11.77 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 284.202 on 7 degrees of freedom
## Residual deviance: 11.232 on 6 degrees of freedom
## AIC: 41.43
##
## Number of Fisher Scoring iterations: 4

The likelihood ratio test

An alternative to the Wald test is the likelihood ratio test (LRT), which compares the likelihood of two
models.

We stick with the notation of A: the larger model and B: the smaller model (under H0), and the smaller
model is nested within the larger model (that is, B is a submodel of A).

• First we maximize the likelihood for model A (the larger model) and find the parameter estimate β̂A.
The maximum likelihood is achieved at this parameter estimate and is denoted L(β̂A).
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• Then we maximize the likelihood for model B (the smaller model) and find the parameter estimate β̂B .
The maximum likelihood is achieved at this parameter estimate and is denoted L(β̂B).

The likelihood of the larger model (A) will always be larger or equal to the likelihood of the smaller mode
(B). Why? How is this compared to our result for SSE for small and large model in MLR?

The likelihood ratio statistic is defined as

−2 lnλ = −2(lnL(β̂B)− lnL(β̂A))

(so, −2 times small minus large).

Under weak regularity conditions the test statistic is approximately χ2-distributed with degrees of freedom
equal the difference in the number of parameters in the large and the small model. This is general - and not
related to the GLM! More in TMA4295 Statistical Inference!

P -values are calculated in the upper tail of the χ2-distribution.

Observe: to perform the test you need to fit both the small and the large model.

Notice: asymptotically the Wald and likelihood ratio test statistics have the same distribution, but the value
of the test statistics might be different. How different?

For the beetle data we compare model A=model with ldose as covariate with model B=model with only
intercept. We use the loglikelihood-function that we made for the lecture session for week 2.
library(investr)
fitgrouped = glm(cbind(y, n - y) ~ ldose, family = "binomial", data = investr::beetle)
fitnull = glm(cbind(y, n - y) ~ 1, family = "binomial", data = investr::beetle)

loglik <- function(par, args) {
y <- args$y
x <- args$x
n <- args$n
res <- sum(y * x %*% par - n * log(1 + exp(x %*% par)))
return(res)

}

# call this with parameters estimated under model A=larger model
beetleargs = list(y = investr::beetle$y, x = cbind(rep(1, nrow(investr::beetle)),

investr::beetle$ldose), n = investr::beetle$n)

llA = loglik(matrix(fitgrouped$coefficients, ncol = 1), args = beetleargs)

# then the smaller model, then we set the coeff for ldose to 0. B=smaller
# model
llB = loglik(matrix(c(fitnull$coefficients, 0), ncol = 1), args = beetleargs)
lrt = -2 * (llB - llA)
lrt

## [1] 272.9702
pchisq(lrt, df = 1)

## [1] 1

34



anova(fitgrouped, fitnull, test = "LRT")

## Analysis of Deviance Table
##
## Model 1: cbind(y, n - y) ~ ldose
## Model 2: cbind(y, n - y) ~ 1
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 6 11.232
## 2 7 284.202 -1 -272.97 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Q and A: Here the small model is the model with only intercept and the large is the one with dose as
covariate. This means that the null hypothesis is that “the small model is preferred” and our p-value is very
small, so we reject the null hyptheses and stick with the model with dose as covariate. Observe that the LRT
can be performed using anova.

Deviance

The deviance is used to assess model fit and also for model choice, and is based on the likelihood ratio test
statistic.

The derivation assumes that data can be grouped into covariate patterns, with G groups and nj observations
in each group (individual data later).

Saturated model: If we were to provide a perfect fit to our data then we would estimate πj by the observed
frequency for the group: π̃j = yj

nj
. Then π̃ is a G-dimensional column vector with the elements π̃j .

This “imaginary model” is called the saturated model. This would be a model where each group was given its
own parameter.

Candidate model: The model that we are investigated can be thought of as a candidate model. Then
we maximize the likelihood and get β̂ which through our linear predictor and link function we turn into
estimates for each group π̂j . Then π̂ is a G-dimensional column vector with the elements π̂j .

The deviance is then defined as the likelihood ratio statistic, where we put the saturated model in place of
the larger model A and our candidate model in place of the smaller model B:

D = −2(lnL(candidate model)− lnL(saturated model)) = −2(l(π̂)− l(π̃)) = −2
G∑
j=1

(lj(π̂j)− lj(π̃j))

For our logit model this can be written as (after some maths):

D = 2
G∑
j=1

[yj ln( yj
nj π̂j

) + (nj − yj) ln( nj − yj
nj − nj π̂j

)]

Verify this by yourself.

The reasoning behind this is that if our model is good, it should not be too far from the saturated model,
and we measure this distance by the deviance.
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If we want to investigate the null hypothesis that “our model fits the data well” to the negation, it is useful
to know that asymptotically D is distributed as χ2 with G− p degrees of freedom (same reason as for the
likelihood ratio test statistic).

This result depends on that nj is large, hard to say how large (at least 5 is a rule of thumb).

The deviance is in summary.glm outputted as “Residual deviance”, which we read off as 11.2322311. Let’s
check for our beetle example by computing the formula for D directly:
D = deviance(fitgrouped)
D

## [1] 11.23223
G = dim(investr::beetle)[1]
G

## [1] 8
p = 2
1 - pchisq(D, G - p)

## [1] 0.08145881

So, do we have a good fit?

Well, at level 0.05 we do not reject that the saturated model is significantly better.

In the summary from glm also the socalled NULL deviance is given. This is the deviance when the candicate
model is the model with only intercept term present. This deviance asymptotically distributed as χ2 with
G− 1 degrees of freedom.

summary(fitgrouped)

##
## Call:
## glm(formula = cbind(y, n - y) ~ ldose, family = "binomial", data = investr::beetle)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5941 -0.3944 0.8329 1.2592 1.5940
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -60.717 5.181 -11.72 <2e-16 ***
## ldose 34.270 2.912 11.77 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 284.202 on 7 degrees of freedom
## Residual deviance: 11.232 on 6 degrees of freedom
## AIC: 41.43
##
## Number of Fisher Scoring iterations: 4

Q: where is the deviance(s) here and how do we use these?
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Analysis of deviance

In MLR we have seen that we may produce a sequential analysis of variance (Type I) by adding more and
more terms to the model and comparing the scaled decrease in SSE by the scaled SSE of a full model.

For the binary regression we may adapt a similar strategy, but with using the scaled change in deviance
instead of the SSE.

We use the infant respiratory disease data as an example

library(faraway)
fit = glm(cbind(disease, nondisease) ~ sex * food, family = binomial(link = logit),

data = babyfood)
summary(fit)

##
## Call:
## glm(formula = cbind(disease, nondisease) ~ sex * food, family = binomial(link = logit),
## data = babyfood)
##
## Deviance Residuals:
## [1] 0 0 0 0 0 0
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.59899 0.12495 -12.797 < 2e-16 ***
## sexGirl -0.34692 0.19855 -1.747 0.080591 .
## foodBreast -0.65342 0.19780 -3.303 0.000955 ***
## foodSuppl -0.30860 0.27578 -1.119 0.263145
## sexGirl:foodBreast -0.03742 0.31225 -0.120 0.904603
## sexGirl:foodSuppl 0.31757 0.41397 0.767 0.443012
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2.6375e+01 on 5 degrees of freedom
## Residual deviance: 2.6401e-13 on 0 degrees of freedom
## AIC: 43.518
##
## Number of Fisher Scoring iterations: 3
anova(fit, test = "Chisq")

## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: cbind(disease, nondisease)
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 5 26.3753
## sex 1 5.4761 4 20.8992 0.01928 *
## food 2 20.1772 2 0.7219 4.155e-05 ***
## sex:food 2 0.7219 0 0.0000 0.69701
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Q: is it recommended (from the test) to add an interaction term to the model? What does it mean that the
Residual deviance is 0 for the sex*food model?
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Deviance residuals

The deviance residuals are given by a signed version of each element in the sum for the deviance, that is

dk = sign(yk − nkπ̂k) ·
{

2[yk ln( yk
nkπ̂k

) + (nk − yk) ln( nk − yk
nk − nkπ̂k

)]
}1/2

where the term sign(yk − nkπ̂k) makes negative residuals possible.

Model assessment and choice

The fit of the model can be assessed based on goodness of fit statistics (and related tests) and by residual
plots. Model choice can be made from analysis of deviance, or by comparing the AIC for different models.

Deviance test for grouped data

We may use the deviance test presented before to test if the model under study is preferred compared to the
saturated model.

Pearson test and residuals

An alternative to the deviance test is the Pearson test. We will look in more detail at this test in a Module
4. The Pearson test statistic can be written as a function of the Pearson residuals, which for the binomial
regression is given as:

rj = yj − nj π̂j√
nj π̂j(1− π̂j)

Remark: A standardized version scales the Pearson residuals with
√

1− hkk similar to the standardized
residuals for the normal model. Here hkk is the diagonal element number k in the hat matrix H =
X(XTX)−1XT .

The Pearson χ2-goodness of fit statistic is given as

X2
P =

G∑
j=1

r2
j =

G∑
j=1

(yj − nj π̂j)2

nj π̂j(1− π̂j)

The Pearson χ2 statistic is asymptotically equivalent to the deviance statistic and thus is asymptotically
χ2
G−p.

The Pearson χ2 statistic is not a good choice if any of the groups have a low expected number of observations,
i.e. nj π̂j is small (below 1).

Model assessment with continuous covariates

If data have continuous covariates it is possible to form groups based making intervals for continuous covariates.
Alternatively grouping on predicted probabilites can be done.

For continuous data the Hosmer Lemeshow test can be used - not on our reading list.

38



Plotting residuals

Deviance and Pearson residuals can be used for checking the fit of the model, by plotting the residuals against
fitted values and covariates.

If nj is small for the covariate patterns the residual plots may be relatively uninformative.

Residual plots for the logistics regression - and for the GLM in general - is highly debated, and we will not
put much emphasis on residual plots for this module.

df = data.frame(fitted = fitgrouped$fitted.values, dres = residuals(fitgrouped,
type = "deviance"), ldose = investr::beetle$ldose)

ggplot(df, aes(x = fitted, y = dres)) + geom_point()
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ggplot(df, aes(x = ldose, y = dres)) + geom_point()
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Other plots

A useful plot is to show observed and fitted proportions (grouped data) plotted against the linear predictor
or covariates.
df = data.frame(fitted = fitgrouped$fitted.values, dres = residuals(fitgrouped,

type = "deviance"), ldose = investr::beetle$ldose, frac = investr::beetle$y/investr::beetle$n)
ggplot(df, aes(x = ldose)) + geom_point(aes(y = frac, colour = "observed")) +

geom_point(aes(y = fitted, colour = "fitted"))
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AIC

It is known to us from multiple linear regression that if a model is chosen based on a goodness of fit statistic
(like the SSE or R2 in multiple linear regression) will in general result in us choosing a to big model (to many
parameters fit). The Akaike informations criterion - that we studied for multiple linear regression - can also
be used for binary regression: Let p be the number of regression parameters in our model.

AIC = −2 · l(β̂) + 2p

A scaled version of AIC, standardizing for sample size, is sometimes preferred.

To use AIC for model selection you use the model with the smallest AIC.

We may also use the BIC, where 2p is replaced by log(G) · p or log(n) · p.

library(faraway)
fit1 = glm(cbind(disease, nondisease) ~ 1, family = binomial(link = logit),

data = babyfood)
fit2 = glm(cbind(disease, nondisease) ~ sex, family = binomial(link = logit),

data = babyfood)
fit3 = glm(cbind(disease, nondisease) ~ food, family = binomial(link = logit),

data = babyfood)
fit4 = glm(cbind(disease, nondisease) ~ food + sex, family = binomial(link = logit),

data = babyfood)
fit5 = glm(cbind(disease, nondisease) ~ food * sex, family = binomial(link = logit),

data = babyfood)
AIC(fit1, fit2, fit3, fit4, fit5)
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## df AIC
## fit1 1 59.89324
## fit2 2 56.41710
## fit3 3 43.21693
## fit4 4 40.23987
## fit5 6 43.51795

Q: Which of these 5 models would you prefer?

Overdispersion and estimating overdispersion parameter

When we have grouped data: Yj ∼ Bin(nj , πj) and Var(Yj) = njπj(1− πj).

It is possible to estimate the variance (within a group) by nj ȳj(1− ȳj) where ȳj = yj/nj (this is an estimate
of πj for group j). We call this the empirical variance.

In a logistic regresson we estimate π̂j = h(xTj β̂) (h(·) is the inverse link function) which is

π̂j =
exp(xTj β̂)

1 + exp(xTj β̂)

for a logistic regression. This would give the estimated binomial variance for Yj as nj π̂j(1− π̂j).

Some times the empirical variance is much larger than the estimated binomial variance of the model. This is
called overdispersion and may occur when the individual responses within the groups are correlated, or when
the model could be improved upon (missing/unobserved covariates?).

Positively correlated binary variables will give a variance of the sum that is larger than for uncorrelated
variables, e.g.

Var(
K∑
k=1

Yk) =
K∑
k=1

Var(Yk) + 2
∑
k<l

Cov(Yk, Yl).

This can be handeled by including an overdispersion parameter, named φ, in the variance formula:

Var(Yj) = φnjπj(1− πj)

The overdispersion parameter can be estimated as the average Pearson statistic or average deviance

φ̂D = 1
G− p

D

where D is the deviance. Note that similarity to σ̂2 = 1/(n− p) · SSE in the MLR. The Cov(β̂) can then be
changed to φ̂F−1(β̂).

Remark: We are now moving from likelihood to quasi-likelihood theory, where only E(Yj) and Var(Yj) - and
not the distribution of Yj - are used in the estimation.

In Modules 7 and 8 we will look at using multilevel models to handle correlated observations.
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library(investr)
estpi = investr::beetle$y/investr::beetle$n
empvars = investr::beetle$n * estpi * (1 - estpi)
fit = glm(cbind(y, n - y) ~ ldose, family = "binomial", data = investr::beetle)
modelestvar = investr::beetle$n * fit$fitted.values * (1 - fit$fitted.values)
cbind(empvars, modelestvar)

## empvars modelestvar
## 1 5.389831 3.254850
## 2 10.183333 8.227364
## 3 12.774194 14.321308
## 4 14.000000 13.378891
## 5 9.079365 10.261038
## 6 5.389831 5.156652
## 7 0.983871 2.653383
## 8 0.000000 1.230704
est.dispersion = fit$deviance/fit$df.residual
est.dispersion

## [1] 1.872039
summary(fit, dispersion = est.dispersion, correlation = TRUE)

##
## Call:
## glm(formula = cbind(y, n - y) ~ ldose, family = "binomial", data = investr::beetle)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5941 -0.3944 0.8329 1.2592 1.5940
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -60.717 7.088 -8.566 <2e-16 ***
## ldose 34.270 3.984 8.601 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1.872039)
##
## Null deviance: 284.202 on 7 degrees of freedom
## Residual deviance: 11.232 on 6 degrees of freedom
## AIC: 41.43
##
## Number of Fisher Scoring iterations: 4
##
## Correlation of Coefficients:
## (Intercept)
## ldose -1.00
fitquasi = glm(cbind(y, n - y) ~ ldose, family = "quasibinomial", data = investr::beetle)
# preferred method of estimation is to use quasilikelihood
summary(fitquasi)$dispersion

## [1] 1.671141
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Prospective vs. retrospective sampling

This section is optional - but it is very useful if you will work within biostatistics. (Examples motivated by
Faraway (2006), Extending the linear model with R, Section 2.6.)

In a prospective sampling strategy we sample individuals from a population (covariates are then fixed) and
wait for a predefined period to check if an event has happend (e.g. disease). This is also called a cohort study.
An example might be that we select a sample of newborn babies (girls and boys) where the parents had
decided on the method of feeding (bottle, breast, breast with some supplement), and then monitored the
babies during their first year to see if they developed infant respiratory disease (the event we want to model).
For rare events the sample may then include few individuals with success (disease), which might lead to wide
confidence intervals for parameters.

An alternative strategy is called retrospective sampling. Here we have access to medical registers and select a
sample of n1 babies where we know that they developed infant respiratory disease (the cases) and a sample
of n2 babies where we know that they did not develop infant respiratory disease (the controls). We require
that the samples are selected independently of the values of the covariates (here: sex and food=method of
feeding). This is called a case–control study.

If we aim to model the relationship between the covariates and the response (here: infant respiratory disease)
we would naturally by default choose the cohort design, however, we will now show that the case–control
design is also a valid design if we use the logit model to analyse the data.

To illustrate this we use a data set from a prospective study,
library(faraway)
data(babyfood)
head(babyfood)

## disease nondisease sex food
## 1 77 381 Boy Bottle
## 2 19 128 Boy Suppl
## 3 47 447 Boy Breast
## 4 48 336 Girl Bottle
## 5 16 111 Girl Suppl
## 6 31 433 Girl Breast
xtabs(disease/(disease + nondisease) ~ sex + food, babyfood)

## food
## sex Bottle Breast Suppl
## Boy 0.16812227 0.09514170 0.12925170
## Girl 0.12500000 0.06681034 0.12598425

and for simplicity we focus on girls who were breast or bottle fed:
babyfood[c(4, 6), ]

## disease nondisease sex food
## 4 48 336 Girl Bottle
## 6 31 433 Girl Breast

Notice - we now look at the observed data within the different covariate patterns. This would be the same as
fitting a binomial glm with sex, food and the interaction thereof as covariates.

We read off: given that the infant is breast fed: 31/433= 0.07 is the estimated odds of respiratory disease,
and the log-odds is -2.64. And, given that the infant is bottle fed: 48/336= 0.14 is the estimated odds of
respiratory disease, and the log-odds is -1.95. The difference between these two log-odds represents the
increased risk of infant respiratory disease caused by bottle feeding relative to breast feeding:
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∆= -1.95- -2.64= 0.69.

But, what if we instead had performed a case–control study, and then wanted to compute the log odds
difference between feeding type given respiratory disease status.

We read off: given that the infant got the disease (case): 48/31= 1.55 is the estimated odds for bottle
compared to breast, and the log-odds is 0.44. Given that the infant did not get the disease (control): 336/433=
0.78 is the estimated odds for bottle compared to breast, and the log-odds is -0.25. The difference between
these two log-odds represents the “increased risk” of bottle feeding relative to breast feeding “caused by
respiratory disease”.

∆∗=0.44- -0.25=0.69.

Observe that ∆ and ∆∗ are equal, and shows (with a numerical example) why a retrospective design can
be use to estimate change in log-odds. But, this argumentation is only valid for our logit model (where we
estimate changes in odds), and not for the probit or complementary-log-log model.

We would like to use the retrospective case–control design instead of the prospective cohort design because it
is more convenient to get a sample of cases on the same size as a sample of controls - which give us better
properties of the parameter estimators. However, to use the case–control design it is important that covariates
are reliably measured retrospective (rely on records).

In a mathematical comparison between logit models for pro- and retrospective designs we will find that the
regression parameters β1, . . . , βk will be the same in the two models, but the intercept terms will differ.

In the prospectictive study we model πi, the probability of sucess (e.g. respiratory disease) for covariates
xi1, xi2, . . . , xik (e.g. sex and food). Using the logit model in the proseptive study, the regression model is

ln( πi
1− πi

) = ηi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik

and we write
πi = exp(ηi)

1 + exp(ηi)
.

In a retrospective study we consider ρi, the probability of sucess for covariates xi1, xi2, . . . , xik, given that
individual i was sampled to be part of the case-control study.

Let S denote the event ‘sampled’, and let D denote event ‘disease’ (or sucess). Then, using Bayes’ rule and
the law of total probability, we have

ρi = Pi(D|S) = Pi(D ∩ S)
Pi(S) = Pi(S|D)Pi(D)

Pi(S|D)Pi(D) + Pi(S|Dc)Pi(Dc)

where Pi(D) = πi and Pi(Dc) = 1− πi.

In the retrospective study, the probability of being sampled is equal for any individual with the disease;
τ1 = P (S|D) = Pi(S|D) and similarly for individuals who do not have the disease; τ0 = P (S|Dc) = Pi(S|Dc).
Then,

ρi = τ1πi
τ1πi + τ0(1− πi)

=
τ1

exp(ηi)
1+exp(ηi)

τ1
exp(ηi)

1+exp(ηi) + τ0
1

1+exp(ηi)

Dividing by τ0 and multiplying by 1 + exp(ηi) in the numerator and denominator gives

ρi = (τ1/τ0) exp(ηi)
(τ1/τ0) exp(ηi) + 1 = exp(ln(τ1/τ0) + ηi)

exp(ln(τ1/τ0) + ηi) + 1

Using the logit model for ρi in the retrospective model, the regression model is

ln( ρi
1− ρi

) = ln(τ1/τ0) + ηi = ln(τ1/τ0) + β0 + β1xi1 + β2xi2 + · · ·+ βkxik
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We see that the only difference between the parameters of interest in the retrospective study and the
parameters of interest in the prospective study is the intercept of the regression model. All other covariates
are equal.

Interactive lecture - second week

We will use a data set on contraceptive use in Fiji (data from 1975). The data is to be analysed with “current
use of contraceptive” as response and some (or all of) “age”, “level of education”, “desire for more children”
as covariates

The data is available at http://data.princeton.edu/wws509/datasets/cuse.dat with the following description:

• Contraceptive use: yes (using) or no (notUsing)
• age: categorical variable with 5 levels: “<25”, “25-29”, “30-39”, “40-49”
• education: categorical variable with 2 levels giving highest level of education obtained: Lower and

Upper
• wantsMore: Desires more children: yes or no

ds = read.table("http://data.princeton.edu/wws509/datasets/cuse.dat", header = TRUE)
names(ds)

## [1] "age" "education" "wantsMore" "notUsing" "using"
summary(ds)

## age education wantsMore notUsing using
## 25-29:4 high:8 no :8 Min. : 8.00 Min. : 4.00
## 30-39:4 low :8 yes:8 1st Qu.: 31.00 1st Qu.: 9.50
## 40-49:4 Median : 56.50 Median :29.00
## <25 :4 Mean : 68.75 Mean :31.69
## 3rd Qu.: 85.75 3rd Qu.:49.00
## Max. :212.00 Max. :80.00
dim(ds)

## [1] 16 5
head(ds)

## age education wantsMore notUsing using
## 1 <25 low yes 53 6
## 2 <25 low no 10 4
## 3 <25 high yes 212 52
## 4 <25 high no 50 10
## 5 25-29 low yes 60 14
## 6 25-29 low no 19 10

We will study binary regression using the logit model, and we will work with grouped data.

Plan: Start with Problem 2, then move to 3 and 4, and if you have time you look at Problem
1. We will do a team Kahoot! in the end of the IL - on one device go to kahoot.it or use an
app version.

Problem 1: The null model - no covariates included.

(This is the most theoretical of the problems and rather technical - but with some cool results on the null
model.)
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a) Fit the null model and call it fit0. Explain what you see.
fit0 = glm(cbind(using, notUsing) ~ 1, data = ds, family = binomial(link = logit))
summary(fit0)

##
## Call:
## glm(formula = cbind(using, notUsing) ~ 1, family = binomial(link = logit),
## data = ds)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -4.3264 -2.4619 -0.7162 2.1273 5.4591
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.77455 0.05368 -14.43 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 165.77 on 15 degrees of freedom
## Residual deviance: 165.77 on 15 degrees of freedom
## AIC: 239.28
##
## Number of Fisher Scoring iterations: 4

Observe: When we only have an intercept in the model, the model matrix will be an n× 1-matrix with only
ones. Then xTj β = β0. The log-likelihood can be written as (let j = 1, . . . , G)

l(β) =
G∑
j=1

(yjxTj β − nj log(1 + exp(xTj β))) =
G∑
j=1

(yjβ0 − nj log(1 + exp(β0))) (7)

= β0

G∑
j=1

yj − log(1 + exp(β0))
G∑
j=1

nj = β0N1 − log(1 + exp(β0))N (8)

where N1 =
∑G
j=1 yj is the total number of successes and N =

∑G
j=1 nj is the total number of trials (over all

covariates patterns, that is, here the number of individuals in the data set). Also N2 = N −N1 is the total
number of failures.

We will use this loglikelihood in the next question.

b) What is the relationship between your estimated coefficient and the proportion in the data set using
contraception (N1/N)? (Hint 0: What would be your intuitive estimator for π (common to all groups). Hint
1: Find the derivative of the log-likelihood with respect to β0, and use this to find the MLE for β0. Hint 2:
maybe easier to see what π̂ is, where π̂ = exp β̂0

1+exp β̂0
(so plogis), and then β̂0 = logit(π̂) (so qlogis). Hint 3:

You can verify by using the estimate from glm.)
N = sum(ds$using + ds$notUsing)
N

## [1] 1607
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N1 = sum(ds$using)
N1

## [1] 507
N2 = N - N1
N2

## [1] 1100
qlogis(N1/N)

## [1] -0.7745545
fit0$coefficients

## (Intercept)
## -0.7745545

c) We know that the (asymptotic) estimated covariance matrix of the ML estimate is the inverse of the
expected Fisher information matrix, here the matrix is only a scalar and the covariance matrix is just the
variance. Find the mathematical expression for the estimated variance of our estimated intercept. (Hint 1:
We have F (β) =

∑G
j=1 xjx

T
j njπj(1− πj), and then insert xj = 1 and πj(1− πj) = π(1− π), and hopefully

you found above that π̂ = N1/N in our model with only intercept. Hint 2: N
N1·N2

= 1
N1

+ 1
N2

to make things
prettier.)

d) What is the estimated (numerical value) standard deviation of the parameter estimate? Hint: vcov(fit0).
Did your calculation above gives the same result?
vcov(fit0)

## (Intercept)
## (Intercept) 0.002881477

e) What is the asymptotic distribution of the estimated regression coefficient? Use this to write down the
formula for the 95% confidence interval for the intercept, and calculate the interval in R. Compare numerically
to confint.default and confint.
ci = confint.default(fit0)
ci

## 2.5 % 97.5 %
## (Intercept) -0.8797641 -0.6693448
confint(fit0)

## 2.5 % 97.5 %
## -0.8804716 -0.6700014

f) Translate the 95% CI to probability scale (Hint: plogis is the inverse logit.)
plogis(ci)

## 2.5 % 97.5 %
## (Intercept) 0.2932267 0.3386436
fit0$family$linkinv(ci)

## 2.5 % 97.5 %
## (Intercept) 0.2932267 0.3386436
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Problem 2: We then study the effect of the covariate “wantsMore”

(a little less maths)

a) Fit a regression with wantsMore as covariate, and call this fit1. Explain what the estimated coefficient
(β1) means. Hint: Interpretation using odds – if ‘wantsMore´ goes from 0=no to 1=yes, then. . .
fit1 = glm(cbind(using, notUsing) ~ wantsMore, data = ds, family = binomial)
summary(fit1)

##
## Call:
## glm(formula = cbind(using, notUsing) ~ wantsMore, family = binomial,
## data = ds)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -4.7091 -1.2756 -0.3467 1.4667 3.5505
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.18636 0.07971 -2.338 0.0194 *
## wantsMoreyes -1.04863 0.11067 -9.475 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 165.772 on 15 degrees of freedom
## Residual deviance: 74.098 on 14 degrees of freedom
## AIC: 149.61
##
## Number of Fisher Scoring iterations: 4
exp(fit1$coefficients)

## (Intercept) wantsMoreyes
## 0.8299712 0.3504178

b) Is this covariate significant? Write down the null and alternative hypothesis to test. Then test using the
Wald test - write down the formula yourself. Use vcov(fit1) to access the inverse of the Fisher information
matrix. What is the degrees of freedom for this test? Compare to the print-out from summary.
vcov(fit1)

## (Intercept) wantsMoreyes
## (Intercept) 0.006354067 -0.006354067
## wantsMoreyes -0.006354067 0.012248298

c) Alternatively, the likelihood ratio test can be used. Write down the formula for the likelihood ratio test
statistic. Use this in combination with the fit0 and fit1 objects to calculate the likelihood ratio statistic.
Then calculate the p-value.
loglik <- function(par, args) {

y <- args$y
x <- args$x
n <- args$n
res <- sum(y * x %*% par - n * log(1 + exp(x %*% par)))
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return(res)
}

args0 <- list(y = ds$using, n = ds$using + ds$notUsing, x = cbind(rep(1, nrow(ds))))
args1 <- list(y = ds$using, n = ds$using + ds$notUsing, x = cbind(rep(1, nrow(ds)),

as.numeric(ds$wantsMore) - 1))

betas0 <- fit0$coefficients
betas1 <- fit1$coefficients

ll0 <- loglik(betas0, args0)
ll0

## [1] -1001.847
ll1 <- loglik(betas1, args1)
ll1

## [1] -956.0096

d) The likelihood ratio test statistic can alternatively be calculated using the residual deviance in fit1 and
fit0, and is given as fit0$deviance-fit1$deviance. Do you see why?
fit0$deviance - fit1$deviance

## [1] 91.6744

e) Are the two test statistics (Wald and LRT) equal? Do the two tests give the same conclusions?

Problem 3: Now two covariates - deviance and model comparison

(no maths - only definitions and print-out)

Now we study the response together with age and wantsMore. We will consider the following 5 models. See
R-code and print-out below. a) Explain what each of these models include.

b) What is the definition of the deviance and df. What can we use the deviance for? Optional: derive the
formula for the deviance for the logit model (the derivation is not given on the module pages.)

c) Perform a likelihood ratio test - based on the deviance results given in the data frame in the R chunk-
to compare the additive and interact models. First write down the null and alternative hypothesis you are
testing. Which of the two models would you prefer?

d) What if you use the AIC for model selection, which model (out of the 5) will you then use?
ds$Y <- cbind(ds$using, ds$notUsing)
models <- list(null = glm(Y ~ 1, family = binomial, data = ds), age = glm(Y ~

age, family = binomial, data = ds), desire = glm(Y ~ wantsMore, family = binomial,
data = ds), additive = glm(Y ~ age + wantsMore, family = binomial, data = ds),
interact = glm(Y ~ age * wantsMore, family = binomial, data = ds))

models

## $null
##
## Call: glm(formula = Y ~ 1, family = binomial, data = ds)
##
## Coefficients:
## (Intercept)
## -0.7746
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##
## Degrees of Freedom: 15 Total (i.e. Null); 15 Residual
## Null Deviance: 165.8
## Residual Deviance: 165.8 AIC: 239.3
##
## $age
##
## Call: glm(formula = Y ~ age, family = binomial, data = ds)
##
## Coefficients:
## (Intercept) age30-39 age40-49 age<25
## -1.0465 0.5876 0.9640 -0.4607
##
## Degrees of Freedom: 15 Total (i.e. Null); 12 Residual
## Null Deviance: 165.8
## Residual Deviance: 86.58 AIC: 166.1
##
## $desire
##
## Call: glm(formula = Y ~ wantsMore, family = binomial, data = ds)
##
## Coefficients:
## (Intercept) wantsMoreyes
## -0.1864 -1.0486
##
## Degrees of Freedom: 15 Total (i.e. Null); 14 Residual
## Null Deviance: 165.8
## Residual Deviance: 74.1 AIC: 149.6
##
## $additive
##
## Call: glm(formula = Y ~ age + wantsMore, family = binomial, data = ds)
##
## Coefficients:
## (Intercept) age30-39 age40-49 age<25 wantsMoreyes
## -0.5020 0.4400 0.6548 -0.3678 -0.8241
##
## Degrees of Freedom: 15 Total (i.e. Null); 11 Residual
## Null Deviance: 165.8
## Residual Deviance: 36.89 AIC: 118.4
##
## $interact
##
## Call: glm(formula = Y ~ age * wantsMore, family = binomial, data = ds)
##
## Coefficients:
## (Intercept) age30-39 age40-49
## -0.8199 0.9058 1.1289
## age<25 wantsMoreyes age30-39:wantsMoreyes
## -0.6354 -0.3312 -0.8233
## age40-49:wantsMoreyes age<25:wantsMoreyes
## -1.0999 0.2672
##
## Degrees of Freedom: 15 Total (i.e. Null); 8 Residual
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## Null Deviance: 165.8
## Residual Deviance: 20.1 AIC: 107.6
lapply(models, summary)

## $null
##
## Call:
## glm(formula = Y ~ 1, family = binomial, data = ds)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -4.3264 -2.4619 -0.7162 2.1273 5.4591
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.77455 0.05368 -14.43 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 165.77 on 15 degrees of freedom
## Residual deviance: 165.77 on 15 degrees of freedom
## AIC: 239.28
##
## Number of Fisher Scoring iterations: 4
##
##
## $age
##
## Call:
## glm(formula = Y ~ age, family = binomial, data = ds)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -4.5141 -1.5019 0.3857 0.9679 3.5907
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.0465 0.1134 -9.225 < 2e-16 ***
## age30-39 0.5876 0.1406 4.181 2.9e-05 ***
## age40-49 0.9640 0.1831 5.265 1.4e-07 ***
## age<25 -0.4607 0.1727 -2.667 0.00765 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 165.772 on 15 degrees of freedom
## Residual deviance: 86.581 on 12 degrees of freedom
## AIC: 166.09
##
## Number of Fisher Scoring iterations: 4
##
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##
## $desire
##
## Call:
## glm(formula = Y ~ wantsMore, family = binomial, data = ds)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -4.7091 -1.2756 -0.3467 1.4667 3.5505
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.18636 0.07971 -2.338 0.0194 *
## wantsMoreyes -1.04863 0.11067 -9.475 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 165.772 on 15 degrees of freedom
## Residual deviance: 74.098 on 14 degrees of freedom
## AIC: 149.61
##
## Number of Fisher Scoring iterations: 4
##
##
## $additive
##
## Call:
## glm(formula = Y ~ age + wantsMore, family = binomial, data = ds)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.7870 -1.3208 -0.3417 1.2346 2.4577
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.5020 0.1364 -3.682 0.000232 ***
## age30-39 0.4400 0.1443 3.050 0.002291 **
## age40-49 0.6548 0.1906 3.436 0.000591 ***
## age<25 -0.3678 0.1754 -2.097 0.035951 *
## wantsMoreyes -0.8241 0.1171 -7.037 1.97e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 165.772 on 15 degrees of freedom
## Residual deviance: 36.888 on 11 degrees of freedom
## AIC: 118.4
##
## Number of Fisher Scoring iterations: 4
##
##
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## $interact
##
## Call:
## glm(formula = Y ~ age * wantsMore, family = binomial, data = ds)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.67001 -0.85288 0.02621 0.72300 2.18925
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.8199 0.1973 -4.155 3.25e-05 ***
## age30-39 0.9058 0.2284 3.966 7.31e-05 ***
## age40-49 1.1289 0.2624 4.303 1.69e-05 ***
## age<25 -0.6354 0.3564 -1.783 0.07463 .
## wantsMoreyes -0.3312 0.2414 -1.372 0.17008
## age30-39:wantsMoreyes -0.8233 0.2975 -2.767 0.00566 **
## age40-49:wantsMoreyes -1.0999 0.4276 -2.572 0.01011 *
## age<25:wantsMoreyes 0.2672 0.4091 0.653 0.51366
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 165.772 on 15 degrees of freedom
## Residual deviance: 20.099 on 8 degrees of freedom
## AIC: 107.61
##
## Number of Fisher Scoring iterations: 4
data.frame(deviance = round(unlist(lapply(models, deviance)), 2), df = unlist(lapply(models,

df.residual)), aic = round(unlist(lapply(models, AIC))))

## deviance df aic
## null 165.77 15 239
## age 86.58 12 166
## desire 74.10 14 150
## additive 36.89 11 118
## interact 20.10 8 108

Note: The function lapply (list apply) will apply a function to each element of a list.

Problem 4: Plotting

(yes, mainly R and trying to understand)

Finally, we want to use the additive model with all three covariates: Y~age+education+wantsMore to study
different plots.
fit3add = glm(cbind(using, notUsing) ~ age + education + wantsMore, data = ds,

family = binomial)
summary(fit3add)

##
## Call:
## glm(formula = cbind(using, notUsing) ~ age + education + wantsMore,
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## family = binomial, data = ds)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.5148 -0.9376 0.2408 0.9822 1.7333
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.4188 0.1401 -2.990 0.002786 **
## age30-39 0.5192 0.1478 3.513 0.000443 ***
## age40-49 0.7999 0.1993 4.012 6.01e-05 ***
## age<25 -0.3894 0.1759 -2.214 0.026809 *
## educationlow -0.3250 0.1240 -2.620 0.008789 **
## wantsMoreyes -0.8330 0.1175 -7.091 1.33e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 165.772 on 15 degrees of freedom
## Residual deviance: 29.917 on 10 degrees of freedom
## AIC: 113.43
##
## Number of Fisher Scoring iterations: 4
exp(fit3add$coefficients)

## (Intercept) age30-39 age40-49 age<25 educationlow
## 0.6578105 1.6807361 2.2252234 0.6774757 0.7225312
## wantsMoreyes
## 0.4347628

a) Comment on the output from summary. Use the deviance to test if this is a good model. Which model do
you then compare to (what is the saturated model here)?.

b) Look at the plot of fitted values vs. deviance residuals. Do you see a trend?
library(ggplot2)
plotdf <- data.frame(dres = fit3add$residuals, fitted = fit3add$fitted.values,

age = ds$age)
ggplot(plotdf, aes(x = fitted, y = dres)) + geom_point() + labs(x = "Fitted values",

y = "Deviance residuals")
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c) Here is a code to produce a plot of fitted values for the 16 covariate patterns together with a saturated
model (called frac) - on the logit scale. How can you see from the dots for fitted values that we are assuming
an additive model on the logit scale (that is, the pattern for each panel for logit fitted vs age is the same for
each panel if we have an additive model on the logit scale - you see that from the fitted points)? Do you also
see that for the observed values? Implication? Any other observations?
library(ggplot2)
frac = ds$using/(ds$using + ds$notUsing)
logitdf = data.frame(lfitted = qlogis(fit3add$fitted), lfrac = qlogis(frac),

age = ds$age, wantsMore = ds$wantsMore, education = ds$education)
ggplot(logitdf, aes(x = age)) + geom_point(aes(y = lfrac, colour = "saturated")) +

geom_point(aes(y = lfitted, colour = "fitted")) + facet_wrap(facets = ~wantsMore *
education) + labs(x = "age", y = "")
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To see what Rodríguez have found to be the best model, look at the bottom of http://data.princeton.edu/
wws509/R/c3s6.html.

Note: This exercise is based on the excellent notes of Germán Rodríguez at Princeton, see in particular the
R logs at http://data.princeton.edu/wws509/R/c3s1.html.

Exam questions

For this module the following are exam questions to work with

• 2012 – Problem 1
• 2011 – Problem 1

In addition these essay-type exam questions are closely related to this module.

December 2014

There are two main asymptotic results that are behind essentially everything we have done with respect to
inference for generalized linear models. These are

1. asymptotic normality of maximum likelihood estimators (MLE), and

2. asymptotic result for likelihood ratio tests (LRT).

State, describe and discuss the main assumptions behind these two asymptotic results, how these results are
used in practice to do inference for parameters, testing various hypotheses and comparing nested models, for
logistic regression.

57

http://data.princeton.edu/wws509/R/c3s6.html
http://data.princeton.edu/wws509/R/c3s6.html
http://data.princeton.edu/wws509/R/c3s1.html
https://www.math.ntnu.no/emner/TMA4315/Exam/GLMeksamen2012E.pdf
https://www.math.ntnu.no/emner/TMA4315/Exam/eksDes11e.pdf


December 2016

We will consider (binomial or binary) logistic regression, where we have independent observations

Yi ∼ Binomial(ni, πi) i = 1, . . . , n

so that
P (Yi) =

(
ni
yi

)
πyi

i (1− πi)ni−yi , yi = 0, 1, . . . , ni

The linear predictor is
ηi = xTi β

and
πi = exp(ηi)

1 + exp(ηi)
or

logit(πi) = ηi.

Here, xi is a vector of the p covariates for the ith observation yi with size (number of trials) ni, and β is the
vector of p unknown regression coefficients.

Write an introduction to logistic regression and its practical usage, for a student with a good background in
statistics, but no knowledge about Generalized Linear Models (GLM). Topics you may want to consider, are

• When to use it? Underlying assumptions.
• Parameter estimation, limiting results for the MLE, Fisher information and observed Fisher information,

confidence intervals and hypothesis testing.
• Output analysis, residual plots (when it is possible) and interpretation of the β-coefficients
• Deviance and its usage.

R packages

install.packages(c("tidyverse", "investr", "knitr", "kableExtra", "faraway",
"viridis", "statmod"))

References for further reading

• A. Agresti (2015): “Foundations of Linear and Generalized Linear Models.” Wiley.
• A. J. Dobson and A. G. Barnett (2008): “An Introduction to Generalized Linear Models”, Third edition.
• J. Faraway (2015): “Extending the Linear Model with R”, Second Edition. http://www.maths.bath.ac.

uk/~jjf23/ELM/
• P. McCullagh and J. A. Nelder (1989): “Generalized Linear Models”. Second edition.
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