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Overview

Learning material

▶ Textbook: Fahrmeir et al (2013): Chapter 2.3, 5.1, B4.1-3
▶ Classnotes 13.09.2018
▶ Classnotes 20.09.2018

https://www.math.ntnu.no/emner/TMA4315/2018h/TMA4315M3H20180913.pdf
https://www.math.ntnu.no/emner/TMA4315/2018h/TMA4315M3H20180920.pdf


Topics

First week

▶ aim of binary regression
▶ how to model a binary response
▶ three ingredients of a GLM model
▶ the logit model: logistic regression
▶ interpreting the logit model - with odds
▶ grouped vs. individual data
▶ parameter estimation with maximum likelihood

▶ likelihood, log-likelihood,
▶ score function

Jump to interactive lecture (week 1)



Second week

▶ Parameter estimation
▶ score function- and mean and covariance thereof,
▶ observed and expected information matrix

▶ comparison with the normal distribution - score function and
Fisher information

▶ exponential family and canonical link
▶ iterative calculation of ML estimator (Newton-Raphson and

Fisher scoring) - and in R with optim
▶ asymptotic properties of ML estimators - how to use in

inference?
▶ statistical inference

▶ confidence intervals
▶ hypothesis testing: Wald, and likelihood ratio

▶ deviance: definition, analysis of deviance, deviance residuals
▶ model fit and model choice
▶ overdispersion and estimating overdispersion parameter
▶ sampling stragegy: cohort, but also case-control data good for

logit model

Jump to interactive lecture (week 2)
FIRST WEEK



Aim of binary regression

Two aims

1. Construct a model to help understand the relationship
between a “success probability” and one or several explanatory
variables. The response measurements are binary
(present/absent, true/false, healthy/diseased).

2. Use the model for estimation and prediction of success
probabilites.

Two running examples: mortality of beetles and probability of
respiratory infant disease.



Example: Mortality of beetles
A total of 481 beetles were exposed to 8 different consentration of
CS2 (data on log10-dose). Yes, only one consentration tried for
each beetle. For each beetle is was recorded if the beetle was alive
or killed at the given concentration.
Data for beetle i: Yi = 0 if beetle i was alive and Yi = 1 if it was
killed, and xi is then the log10-dose beetle i was given.
The table below shows the 8 values of the log10-dose against the
number of beetles alive and killed. The plot shows log10-dose on
the horisontal axis and fraction of beetles killed (killed/total) for
each log10-dose.

library(investr)
# from aggregated to individual data (because these data were aggregated)
ldose = rep(beetle$ldose, beetle$n)
y = NULL
for (i in 1:8) y = c(y, rep(0, beetle$n[i] - beetle$y[i]), rep(1, beetle$y[i]))
beetleds = data.frame(killed = y, ldose = ldose)
table(beetleds)

## ldose
## killed 1.6907 1.7242 1.7552 1.7842 1.8113 1.8369 1.861 1.8839
## 0 53 47 44 28 11 6 1 0
## 1 6 13 18 28 52 53 61 60
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Q:

1. What might be the effect (mathematical function) of the
log10-dose on the probability of killing a beetle?

2. How can this curve be part of a regression model?



How to model a binary response?
In multiple linear regression we have

1. Random component: Distribution of response: Yi ∼ N(µi, σ2),
where µi is parameter of interest and σ2 is nuisance.

2. Systematic component: Linear predictor: ηi = xT
i β. Here xi is

our fixed (not random) p-dimensional column vector of
covariates (intercept included).

3. Link: Connection between the linear predictor and the mean
(parameter of interest): µi = ηi.

In addition we have independent pairs (xi, Yi), and assume that the
design matrix - with the covariates for all observation in a n × p
matrix - has full rank p.

▶ It would not make sense to fit the continuous linear regression
to Yi when Yi = {0, 1} - since Yi is not a continuous random
variable, and Yi is not normal.

▶ So, we need to change 1. We keep 2. And, we make 3. more
general.



Binary regression

1. Yi ∼ bin(ni, πi). First we study the case that ni = 1, that is,
each individual observation comes from a Bernoulli process
with ni = 1 trials (this version of the binomial distribution is
called the Bernoulli distribution). (Remark: later we will also
look at “grouped” data with ni > 1.) Our parameter of
interest is πi which is the mean E(Yi) = µi = πi.

For a generalized linear model (GLM) we require that the
distribution of the response is an exponential family. We
have seen in M1 that the binomial distribution is an
exponential family.



2. Linear predictor: ηi = xT
i β.

3. We will consider different relationships between the mean
µi = πi and the linear predictor ηi, and define the link function
g as

g(µi) = ηi

and the inverse of the link function, called the response
function, and denoted by

h(ηi) = g−1(ηi) = µi

We thus also have to require that the link function is monotone,
and we will soon see that we also need to require that it is twice
differential.
These three ingredients (exponential family distribution of
reponse, linear predictor and choice of reponse or link
function) give the core of our GLM model.



Popular choices for the respons function for binary regression are
based on selecting a cumulative distribution function (cdf) as the
response function. The cdf will always be within [0,1], and the cdf
is monotone - which will help us to interpret results.
The most popular response functions are:

▶ logistic cdf (with corresponding logit link function) referred to
as the logit model, followed by the

▶ normal cdf - (with corresponding probit link function) referred
to as the probit model , and

▶ the extreme minimum-value cdf (with corresponding
complementary log-log link function) referred to as the
complementary log-log model.

In this module we focus on the logit model.



The logit model aka logistic regression

Beetle mortality: response function
In the beetle example we have a simple linear predictor:
ηi = β0 + β1xi where xi is the log10-dose for beetle i.
Assume that β0 = -60.7 and β1 = 34.3. (These values are
estimates from our data, and we will see later how to find these
estimates using maximum likelihood estimation.)
Below the response function is plotted for ηi =-60.7+34.3xi.



0.00

0.25

0.50

0.75

1.00

−2.5 0.0 2.5
η

µ

R: more on greek letters with ggplot:
https://github.com/tidyverse/ggplot2/wiki/Plotmath

https://github.com/tidyverse/ggplot2/wiki/Plotmath


Q: Explain to your neighbour what is on the x- and y-axis of this
plot. Where are the observed log10-doses in this graph?



Link and reponse function
The logit model is based on the logistic cdf as the response
function, given as

µi = πi = h(ηi) = exp(ηi)
1 + exp(ηi)

or alternatively as the link function (the inverse of the response
function)

g(µi) = h−1(µi) = ln( µi
1 − µi

) = ln( πi
1 − πi

)

Hands-on: show this for yourself.



Interpreting the logit model
If the value of the linear predictor ηi changes to ηi + 1 the
probability π increases non-linearly from exp(ηi)

1+exp(ηi) to exp(ηi+1)
1+exp(ηi+1) , as

shown in the graph above.



Before we go further: do you know about the odds? The ratio
P(Yi=1)
P(Yi=0) = πi

1−π1
is called the odds. If πi = 1

2 then the odds is 1,
and if πi = 1

4 then the odds is 1
3 . We may make a table for

probability vs. odds in R:

pivec 0.10 0.20 0.30 0.40 0.5 0.6 0.70 0.8 0.9
odds 0.11 0.25 0.43 0.67 1.0 1.5 2.33 4.0 9.0
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R: Pretty table with kableExtra
Odds may be seen to be a better scale than probability to
represent chance, and is used in betting. In addition, odds are
unbounded above.

https://cran.r-project.org/web/packages/kableExtra/vignettes/awesome_table_in_html.html


We look at the link function (inverse of the response function). Let
us assume that our linear predictor has k covariates present

ηi = β0 + β1xi1 + β2xi2 + · · · + βkxik

πi = exp(ηi)
1 + exp(ηi)

ηi = ln( πi
1 − πi

)

ln( πi
1 − πi

) = β0 + β1xi1 + β2xi2 + · · · + βkxik

πi
1 − πi

=P(Yi = 1)
P(Yi = 0) = exp(β0) · exp(β1xi1) · · · exp(βkxik)

We have a multiplicative model for the odds.



So, what if we increase x1i to x1i + 1?

If the covariate x1i increases by one unit (while all other covariates
are kept fixed) then the odds is multiplied by exp(β1):

P(Yi = 1 | xi1 + 1)
P(Yi = 0) | xi1 + 1) = exp(β0) · exp(β1(xi1 + 1)) · · · exp(βkxik)

= exp(β0) · exp(β1xi1) exp(β1) · · · exp(βkxik)

= P(Yi = 1 | xi1)
P(Yi = 0 | xi1) · exp(β1)

This means that if xi1 increases by 1 then: if β1 < 0 we get a
decrease in the odds, if β1 = 0 no change, and if β1 > 0 we have
an increase. In the logit model exp(β1) is easier to interpret than
β1.



So, to sum up: for the linear predictor we interpret effects in
the same way as for the linear model (in Module 2), then we
transform this linear effect in η into a nonlinear effect for
π = exp(η)

1+exp(η) , and use the odds to interpret changes.



Infant respitory disease : interpretation of parameter estimates
(This example is taken from Faraway (2006): “Extending the linar
model with R”)
We select a sample of newborn babies (girls and boys) where the
parents had decided on the method of feeding (bottle, breast,
breast with some supplement), and then monitored the babies
during their first year to see if they developed infant respiratory
disease (the event we want to model).
We fit a logistic regression to the data, and focus on the parameter
estimates.



## disease nondisease sex food
## 1 77 381 Boy Bottle
## 2 19 128 Boy Suppl
## 3 47 447 Boy Breast
## 4 48 336 Girl Bottle
## 5 16 111 Girl Suppl
## 6 31 433 Girl Breast

## food
## sex Bottle Breast Suppl
## Boy 0.16812227 0.09514170 0.12925170
## Girl 0.12500000 0.06681034 0.12598425



##
## Call:
## glm(formula = cbind(disease, nondisease) ~ sex + food, family = binomial(link = logit),
## data = babyfood)
##
## Deviance Residuals:
## 1 2 3 4 5 6
## 0.1096 -0.5052 0.1922 -0.1342 0.5896 -0.2284
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.6127 0.1124 -14.347 < 2e-16 ***
## sexGirl -0.3126 0.1410 -2.216 0.0267 *
## foodBreast -0.6693 0.1530 -4.374 1.22e-05 ***
## foodSuppl -0.1725 0.2056 -0.839 0.4013
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 26.37529 on 5 degrees of freedom
## Residual deviance: 0.72192 on 2 degrees of freedom
## AIC: 40.24
##
## Number of Fisher Scoring iterations: 4

## (Intercept) sexGirl foodBreast foodSuppl
## 0.1993479 0.7315770 0.5120696 0.8415226

## 1 2 3 4 5 6
## 0.16621356 0.14365654 0.09262485 0.12727653 0.10931093 0.06948992



Q: Observe that the two factors by default is coded with dummy
variable coding, and that sexBoy is the reference category for sex
and foodBottle the reference category for feeding method.
1: Explain how to interpret the Estimate for sexGirl,
foodBreast and foodSuppl.
2: What are the 6 values given by the call to predict? What is
the least favourable combination of sex and method of feeding?
And the most favourable?
Comment: we have here fitted an additive model in the two
covariates, but we could also include an interaction term. This will
be discussed later.



More response function plots for the logit model
The response function as a function of the covariate x and not of η.
Solid lines: β0 = 0 and β1 is 0.8 (blue), 1 (red) and 2 (orange),
and dashed lines with β0 = 1.
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Grouped vs. individual data
So far we have only mentioned individual (ungrouped) data. That
is, every Yi is 0 or 1 and has a corresponding covariate vector xi -
and together they form one unit.

Yi ∼ bin(ni = 1, πi)

However, in both the examples we have looked at some covariate
vectors are identical (rows in the design matrix are identical). We
call these unique combinations of covariates covariate patterns,
and say we have grouped data.

disease nondisease sex food
77 381 Boy Bottle
19 128 Boy Suppl
47 447 Boy Breast
48 336 Girl Bottle
16 111 Girl Suppl
31 433 Girl Breast



Here we have 6 groups of covariate patterns. The first group has
covariates Boy and Bottle, there are 77+381= 458 babies with
this combination and 77 of these got the disease.
We prefer to group data if possible. Grouping is good because then
data can be kept in a condenced form, it will speed up
computations and makes model diagnosis easier (than for
individual data).



For the grouped data we still have a binomial distribution, and
possible generalization is to let

▶ njȲj be the number of successes in group j,
▶ which means that Ȳj = 1

nj

∑Yi where the sum is over all i in
group j.

Further
njȲj ∼ bin(nj, πj)

such that E(njȲj) = njπj and Var(njȲj) = njπj(1 − πj), and
E(Ȳj) = πj and Var(Ȳj) = 1

nj
πj(1 − πj)

We then keep the linear predictor, and the link function is still
ηj = ln( πj

1−πj
). That is, we do not model the mean njπj but πj

directly.
Q: What is a covariate pattern?



Likelihood and derivations thereof

Our parameter of interest is the vector β of regression coefficients,
and we have no nuicance parameters (because the variance is
related directly to the πj and nj is known).
We would like to estimate β from maximizing the likelihood, but
we will soon see that we have no closed form solution. First we
look at the likelihood, the log-likelihood and first and second
derivatives thereof.
For simplicity we do the derivations for the case where ni = 1, but
then include the results for the case where we have G covariate
patterns with nj observations of each pattern.



Assumptions:

1. Yi ∼ bin(ni = 1, πi), and E(Yi) = µi = πi, and
Var(Yi) = πi(1 − πi).

2. Linear predictor: ηi = xT
i β.

3. Logit link
ηi = ln( πi

1 − πi
) = g(µi)

and (inverse thereof) logistic response function

µi = πi = exp(ηi)
1 + exp(ηi)

= h(ηi)

We will also need:

(1 − πi) = 1 − exp(ηi)
1 + exp(ηi)

= 1 + exp(ηi) − exp(ηi)
1 + exp(ηi)

= 1
1 + exp(ηi)

.



Likelihood L(β)

We assume that pairs of covariates and response are measured
independently of each other: (xi, Yi), and Yi follows the
distribution specified above, and xi is fixed.

L(β) =
n∏

i=1
Li(β) =

n∏
i=1

f(yi; β) =
n∏

i=1
πyi

i (1 − πi)1−yi

Q: What is the interpretation of the likelihood? Is it not a misuse
of notation to write L(β) when the right hand side does not
involve β?



Loglikelihood l(β)

The log-likelihood is the natural log of the likelihood, and makes
the mathematics simpler - since we work with exponential families.
The main aim with the likelihood is to maximize it to find the
maximum likelihood estimate, and since the log is a monotone
function the maximum of the log-likelihood will be in the same
place as the maximum of the likelihood.

l(β) = ln L(β) =
n∑

i=1
ln Li(β) =

n∑
i=1

li(β) (1)

=
n∑

i=1
[yi ln πi + (1 − yi) ln(1 − πi)] (2)

=
n∑

i=1
[yi ln( πi

1 − πi
) + ln(1 − πi)] (3)

Observe that the log-likelihood is a sum of invidual contributions
for each observation pair i.



The log-likelihood is now expressed as a function of πi, but we
want to make this a function of β and the connection between πi
and β goes through ηi. We have that π = exp(ηi)

1+exp(ηi) and in our
log-likelihood we need

(1 − πi) = 1
1 + exp(ηi)

= 1 + exp(ηi) − exp(ηi)
1 + exp(ηi)

= 1
1 + exp(ηi)

and
ln( πi

1 − π1
) = ηi

(the last is our logit link function). Then we get:

l(β) =
n∑

i=1
[yiηi + ln( 1

1 + exp(ηi)
)] =

n∑
i=1

[yiηi − ln(1 + exp(ηi))]

which is now our function of ηi.



Finally, since ηi = xT
i β,

l(β) =
n∑

i=1
[yixT

i β − ln(1 + exp(xT
i β))].

Q: What does the graph of l look like as a function of β?
If we look at the beetle example we only have one covariate (in
addition to the intercept) - so this means that we have
β = (β0, β1). Plotting the log-likelihood (for the beetle data set)
will be one of the tasks for the interactive lecture.
But, next we take partial derivatives, and then we will
(instead of using this formula) look at li(β) = li(ηi(β)) and
use the chain rule.



Score function s(β)

The score function is a p × 1 vector, s(β), with the partial
derivatives of the log-likelihood with respect to the p elements of
the β vector.
Q: Write down the rules for derivatives: chain rule, product rule,
fraction rule, and in particular derivative of ln(x), exp(x) and 1

x ,
you will need them now.
A: Chain rule: df(u(x))

du = df
du · du

dx , product rule:
(u · v)′ = u′ · v + u · v′, fraction rule: (u

v )′ = u′·v−u·v′

v2 , d ln(x)
dx = 1

x ,
d exp(x)

dx = exp(x) and d( 1
x )

dx = − 1
x2 .

Here we go:

s(β) = ∂l(β)
∂β

=
n∑

i=1

∂li(β)
∂β

=
n∑

i=1
si(β)

Again, observe that the score function is a sum of individual
contributions for each observation pair i.



We will use the chain rule to calculate si(β).

si(β) = ∂li(β)
∂β

= ∂li(β)
∂ηi

· ∂ηi
∂β

= ∂[yiηi − ln(1 + exp(ηi))]
∂ηi

· ∂[xT
i β]

∂β

si(β) = (yi − exp(ηi)
1 + exp(ηi)

) · xi = (yi − πi)xi



Here we have used the general rule for all partial derivatives of
scalar with respect to vector (also used in TMA4267):

∂aTb
∂b = a

and later we will also need

∂aTb
∂bT = (∂aTb

∂b )T = aT.



The score function is given as:

s(β) =
n∑

i=1
si(β) =

n∑
i=1

xi(yi − πi) =
n∑

i=1
xi(yi − exp(xT

i β)
1 + exp(xT

i β)
)

To find the maximum likelihood estimate β̂ we solve the set of p
non-linear equations:

s(β̂) = 0

We will soon see how we can do that using the Newton-Raphson or
Fisher Scoring iterative methods, but first we will work on finding
the mean and covariance matrix of the score vector - and the
derivatives of the score vector (the Hessian, which is minus the
observed Fisher matrix).



Remark: in Module 5 we will see that the general formula for
GLMs is:

s(β) =
n∑

i=1
[ yi − µi
Var(Yi)

xi
∂µi
∂ηi

] =
n∑

i=1
[ yi − µi
Var(Yi)

xih′(ηi)] = XTDΣ−1(y−µ)

where X is the n × p design matrix,
D = diag(h′(η1), h′(η2), . . . , h′(ηn)) is a diagonal matrix with the
derivatives of the response function evaluated at each observation.
Further, Σ = diag(Var(Y1),Var(Y2), . . . ,Var(Yn)) is a diagonal
matrix with the variance for each response, and y is the observed
n × 1 vector of responses and µ is the n × 1 vector of individual
expectations µi = E(Yi) = h(ηi).
More in Module 5.



Interactive lecture - first week

Theoretical questions - with and without use of R

Problem 1: Model assumptions

1. What are the model assumptions for a binary regression?
2. Which link function and response function is used for the logit

model?
3. What is the difference between the logit model and a logistic

regression?



Problem 2: Log-likelihood.

1. What is the definition of the log-likelihood?
2. For the logit model the log-likelihood is

l(β) =
G∑

j=1
[ln
(

nj
yj

)
+ yj ln πj − yj ln(1 − πj) + nj ln(1 − πj)]

for grouped data. Explain how we have arrived at this
formula?

3. Write the version of the loglikelihood for individual data (i.e.
nj = 1 and G = n).

4. Where is β in the loglikelihood in c? Rewrite this to be a
function of β.

5. Why can we ignore the normalizing constant (what is the
constant?) in the case of nj = 1 ∀j? Considering what the
log-likelihood is used for, why can we ignore the normalizing
constant in all cases (i.e., also when nj ̸= 1)?

6. What does this graph of l look like as a function of β for the
beetle data? First discuss shortly and then to aid you in
answering this we look at the loglikelihood for the beetle data.
Read the R code, discuss what is done and work on
interpreting the final graph - in particular comment on the
yellow ridge in the plot.

The beetle data has only one covariate (in addition to the
intercept) - so this means that we have β = (β0, β1). Look at the
following code and explain what is done - remark: we have used
the ni = 1 version of the loglikelihood here.

library(investr)
library(ggplot2)
library(viridis)

# from aggregated to individual data (because these data were aggregated)
ldose <- rep(investr::beetle$ldose, investr::beetle$n)
y <- NULL
for (i in 1:8) y = c(y, rep(0, investr::beetle$n[i] - investr::beetle$y[i]),

rep(1, investr::beetle$y[i]))
beetleds = data.frame(killed = y, ldose = ldose)

loglik <- function(par, args) {
y <- args$y
x <- args$x
n <- args$n
res <- sum(y * x %*% par - n * log(1 + exp(x %*% par)))
return(res)

}

loglik(c(1, 1), args = list(y = beetleds$killed, x = cbind(rep(1, nrow(beetleds)),
beetleds$ldose), n = rep(1, nrow(beetleds))))

## [1] -549.2543

loglikmat <- matrix(NA, nrow = 100, ncol = 100)
loglikframe <- data.frame()
beta_0 <- seq(-90, -30, length.out = 100)
beta_1 <- seq(20, 50, length.out = 100)

for (i in 1:length(beta_0)) {
for (j in 1:length(beta_1)) {

loglikmat[i, j] <- loglik(c(beta_0[i], beta_1[j]), args = list(y = beetleds$killed,
x = cbind(rep(1, nrow(beetleds)), beetleds$ldose), n = rep(1, nrow(beetleds))))

loglikframe <- rbind(loglikframe, c(beta_0[i], beta_1[j], loglikmat[i,
j]))

}
}
names(loglikframe) <- c("beta_0", "beta_1", "loglik")
head(loglikframe)

## beta_0 beta_1 loglik
## 1 -90 20.00000 -15545.83
## 2 -90 20.30303 -15384.56
## 3 -90 20.60606 -15223.28
## 4 -90 20.90909 -15062.01
## 5 -90 21.21212 -14900.73
## 6 -90 21.51515 -14739.46

ggplot(data = loglikframe, mapping = aes(x = beta_0, y = beta_1, z = loglik)) +
geom_raster(aes(fill = exp(1e-04 * loglik))) + geom_point(data = loglikframe[which.max(loglikframe$loglik),
], mapping = aes(x = beta_0, y = beta_1), size = 5, col = "red", shape = 21,
stroke = 2) + scale_shape(solid = FALSE) + scale_fill_viridis() + geom_contour(col = "black")
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Comments to the code: for the loglik function we have two
arguments: par= the parameters to be estimated, and args=a list
with data. The reason for only having these two arguments is that
it is easier to use when we later perform optimization (with optim)
of the loglikelihood to find the ML estimates.



Problem 3: Score function

1. What is the definition of the score function? What is the
dimension of the score function?

2. Derive the score function for the logit model (individual data).
The result should be

s(β) =
n∑

i=1
xi(yi − πi) =

n∑
i=1

xi(yi − exp(xT
i β)

1 + exp(xT
i β)

)

3. What do we need the score function for?



Problem 4: Fisher information.
(We did not cover this in the lecture week 1, but we know one of
the definitions from Module 2. Either you skip Problem 4 and
move to Problem 5, or you look at the section “Properties of the
score function”, and “The expected Fisher information matrix
F(β)” together.)

1. What is the definition of the expected (and the observed)
Fisher information matrix? What is the dimension of thise
matrix (matrices)?

2. What is the role of these matrices in ML estimation?
3. For the logit model with grouped data the expected and the

observed Fisher information matrix are equal and given as

F(β) =
G∑

j=1
xjxT

j njπj(1 − πj)

Where is β in this expression?

4. Write the version of the expected Fisher information for
individual data (i.e. nj = 1 and G = n).



Problem 5: Maximum likelihood
To find the ML estimate for β we may either use the function glm
or optimize the log-likelihood manually. We will do both.

1. First we use the glm function in R, and we also check that the
individual and the grouped data give the same parameter
estimates for the β. Read the R-code, notice the different
input structures and check the results.

# the beetle.ds was made above
fitind = glm(killed ~ ldose, family = "binomial", data = beetleds) # individual data
summary(fitind)

##
## Call:
## glm(formula = killed ~ ldose, family = "binomial", data = beetleds)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.4922 -0.5986 0.2058 0.4512 2.3820
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -60.717 5.181 -11.72 <2e-16 ***
## ldose 34.270 2.912 11.77 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 645.44 on 480 degrees of freedom
## Residual deviance: 372.47 on 479 degrees of freedom
## AIC: 376.47
##
## Number of Fisher Scoring iterations: 5

fitgrouped = glm(cbind(y, n - y) ~ ldose, family = "binomial", data = investr::beetle) # grouped data. response is #success AND #fails (here we have defined a dead beetle as a success)
summary(fitgrouped)

##
## Call:
## glm(formula = cbind(y, n - y) ~ ldose, family = "binomial", data = investr::beetle)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5941 -0.3944 0.8329 1.2592 1.5940
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -60.717 5.181 -11.72 <2e-16 ***
## ldose 34.270 2.912 11.77 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 284.202 on 7 degrees of freedom
## Residual deviance: 11.232 on 6 degrees of freedom
## AIC: 41.43
##
## Number of Fisher Scoring iterations: 4

2. What is the default convergence criterion for the glm? (Note:
IRWLS used in glm - more in Module 5.)

3. We implemented the log-likelihood as a function in item 2
above. Now we will use this together with the optim function
on the beetle data set to optimize the loglikelihood. Read the
R-code, take notice of how we put data into the args slot and
how the optimization is called with optim. (In Compulsory
exercise 2 you will use this in a Poisson regression.)

loglik_gr <- function(par, args) {

y <- args$y
x <- args$x
n <- args$n

res <- y %*% x - t(t(n * x) %*% ((1 + exp(-x %*% par))^(-1)))
return(res)

}

opt <- optim(c(-60, 30), fn = loglik, gr = loglik_gr, args = list(y = beetleds$killed,
x = cbind(rep(1, nrow(beetleds)), beetleds$ldose), n = rep(1, nrow(beetleds))),
control = list(fnscale = -1), hessian = TRUE, method = "BFGS")

opt

## $par
## [1] -60.71748 34.27034
##
## $value
## [1] -186.2354
##
## $counts
## function gradient
## 24 9
##
## $convergence
## [1] 0
##
## $message
## NULL
##
## $hessian
## [,1] [,2]
## [1,] -58.48417 -104.0105
## [2,] -104.01047 -185.0941

sqrt(diag(-solve(opt$hessian))) # calculate the standard deviations of the parameters

## [1] 5.180709 2.912138



Problem 6: Interpreting results

1. Interpret the estimated β´s. Odds ratio is useful for this.
2. Plot the predicted probability of a beetle dying against the

dosage and discuss what you see. (Yes, since this is the last
question you may try to program by yourself!)



SECOND WEEK

Remember the beetle and infant respitory disease examples?
First, we look back at the model requirements for the binary
regression - and the loglikelihood and score function.



Likelihood and derivations thereof - continued

Individual data (not grouped):
Loglikelihood:

l(β) =
n∑

i=1
[yi ln πi − yi ln(1 − πi) + ln(1 − πi)]

Score function:
s(β) =

n∑
i=1

xi(yi − πi)



Properties of the score function
Since the score function depends on Yi = yi we may regard the
score function as a random vector. We will now calculate the mean
and covariance matrix for the score function. The expected value is

E(s(β)) = E(
n∑

i=1
(Yi−πi)xi) =

n∑
i=1

E((Yi−πi)xi) =
n∑

i=1
(E(Yi)−πi)xi = 0

as E(Yi) = πi. We also see that E(si(β)) = E((Yi − πi)xi) = 0 ∀i.



The expected Fisher information matrix F(β)

The covariance of s(β) is called the expected Fisher information
matrix, F(β) and is given by

F(β) = Cov(s(β)) =
n∑

i=1
Cov(si(β)) (4)

=
n∑

i=1
E
[(

si(β) − E(si(β))
)(

si(β) − E(si(β))
)T]

(5)

=
n∑

i=1
E(si(β)si(β)T) =

n∑
i=1

Fi(β) (6)

where it is used that the responses Yi and Yj are independent, and
that E(si(β)) = 0 ∀i.



Remember that si(β) = (Yi − πi)xi, then:

Fi(β) = E(si(β)si(β)T) = E((Yi − πi)xi(Yi − πi)xT
i )

= xixT
i E((Yi − πi)2) = xixT

i πi(1 − πi)

where E((Yi − πi)2) = Var(Yi) = πi(1 − πi) is the variance of Yi.
Thus

F(β) =
n∑

i=1
xixT

i πi(1 − πi).



A useful relationship: Under mild regularity conditions (so we
can change the order of

∫
and ∂

∂β ):

Cov(s(β) = F(β) = E
(

− ∂2l(β)
∂β∂βT

)
= E(−Hessian matrix of l)

which relates the expected to the observed Fisher information
matrix.
Do you want to see an explanation?



Observed Fisher information matrix H(β)

H(β) = − ∂2l(β)
∂β∂βT = −∂s(β)

∂βT = ∂

∂βT

[ n∑
i=1

(πi − yi)xi

]

because s(β) =
∑n

i=1(yi − πi)xi and hence
−s(β) =

∑n
i=1(πi − yi)xi. Note that πi = πi(β).

H(β) =
n∑

i=1

∂

∂βT [xiπi − xiyi] =
n∑

i=1

∂

∂βT xiπi =
n∑

i=1
xi

∂πi
∂ηi

∂ηi
∂βT



Use that

∂ηi
∂βT = ∂xT

i β

∂βT =
(

∂xT
i β

∂β

)T
= xT

i

and

∂πi
∂ηi

=
∂
(

exp(ηi)
1+exp(ηi)

)
∂ηi

= (1 + exp(ηi)) exp(ηi) − exp(ηi) exp(ηi)
(1 + exp(ηi))2

= πi(1 − πi).



And thus

H(β) =
n∑

i=1
xiπi(1 − πi)xT

i =
n∑

i=1
xixT

i πi(1 − πi).

Note that the observed and the expected Fisher information matrix
are equal (see below - canonical link - that this is a general
finding). This is not the case for the probit or complementary
log-log models.



Overview of the results for individual and grouped data

▶ Individual data: i = 1, . . . , n, and pairs (xi, yi).
▶ Grouped data: j = 1, . . . , G with nj observations for group j,

and Yj =
∑Yi for all i member of group j. In total ∑G

j=1 nj
observations. For each pair (xj, yj), where xj the covariate
pattern for group j.

NB: we keep that ηi = ln( πi
1−πi

) - not changed for grouped data
(but now µj = njπj).



Log-likelihood:

Individual:

l(β) =
n∑

i=1
[yi ln πi − yi ln(1 − πi) + ln(1 − πi)]

Grouped:

l(β) =
G∑

j=1
[yj ln πj − yj ln(1 − πj) + nj ln(1 − πj) + ln

(
nj
yj

)
]

The last part is usually not include in calculations.



Score function:

Individual:
s(β) =

n∑
i=1

xi(yi − πi)

Grouped:

s(β) =
G∑

j=1
xj(yj − njπj)



Expected Fisher information matrix:

Individual:

F(β) =
n∑

i=1
xixT

i πi(1 − πi)

Grouped:

F(β) =
G∑

j=1
xjxT

j njπj(1 − πj)

The observed Fisher information matrix equals the expected Fisher
information matrix - because the logit model is the canonical link
for the binomial distribution.



Look back at MLR - what is s(β) and F(β) then?

1. Yi ∼ N(µi, σ2)
2. ηj = xT

i β

3. µi = ηi (identity response function and link function)

Likelihood:

L(β) =
( 1
2π

)n/2 ( 1
σ2

)n/2
exp

(
− 1
2σ2 (y − Xβ)T(y − Xβ)

)

Loglikelihood:

l(β) = ln L(β) = −n
2 ln(2π) − n

2 ln(σ2) − 1
2σ2 (y − Xβ)T(y − Xβ)



Since (y − Xβ)T(y − Xβ) = YTY − 2YTXβ + βTXTXβ, then

s(β) = ∂l(β)
∂β

= − 1
2σ2 (2XTXβ − 2XTY) = 1

σ2 (XTY − XTXβ)

and s(β̂) = 0 gives XTY − XTXβ = 0 which can be solved on
closed form giving β̂ = (XTX)−1XTY. So, no need for iterative
methods.



Finally, observed Fisher information matrix.

H(β) = ∂s(β)
∂βT = − ∂

∂βT
( 1
σ2 XTY − 1

σ2 XTXβ) = 1
σ2 XTX

which is independent on β, and also we see that
F(β) = E(H(β)) = H(β) since no random variables are present.
The identity link is also the canonical link. Finally, the
(asymptotic) covariance of the ML estimate is
F−1(β̂) = (XTX)−1σ2 which we know as Cov(β̂).



Exponential family - and canonical link
In Module 1 we introduced distributions of the Yi, that could be
written in the form of a univariate exponential family

f(yi | θi) = exp
(yiθi − b(θi)

ϕ
· wi + c(yi, ϕ, wi)

)
where

▶ θi is called the canonical parameter and is a parameter of
interest

▶ ϕ is called a nuisance parameter (and is not of interest to
us=therefore a nuisance (plage))

▶ wi is a weight function, in most cases wi = 1
▶ b and c are known functions.

It can be shown that E(Yi) = b′(θi) and Var(Yi) = b′′(θi) · ϕ
wi
.



In Module 1 we found that the binomial distribution
Yi ∼ bin(ni, πi) is an exponential family (derivation from Module 1:
https://www.math.ntnu.no/emner/TMA4315/2017h/
Module1ExponentialFamily.pdf)
and that

▶ θi = ln( πi
1−πi

) is the canonical parameter
▶ ϕ = 1, no nuisance
▶ wi = 1
▶ b(θi) = ni ln(1 + exp(θi))

https://www.math.ntnu.no/emner/TMA4315/2017h/Module1ExponentialFamily.pdf
https://www.math.ntnu.no/emner/TMA4315/2017h/Module1ExponentialFamily.pdf


Recall that in a GLM we choose a link function g, linking the linear
predictor and the mean: ηi = g(µi). For the logit model we had
that ηi = ln( πi

1−πi
).

Now (new to us) - every exponential family has a unique canonical
link function such that

θi = ηi

Since ηi = g(µi) this means to us that we need

g(µi) = θi

to have a canonical link.
Q: Is the logit link the canonical link for the binary model?



Properties of a GLM with canonical link

1. The log-likelihod is always concave so that the ML estimated
is always unique (given that it exists).

2. The observed Fisher information matrix H(β) equals the
expected Fisher information matrix F(β). That is,

− ∂2l
∂ββT = E(− ∂2l

∂ββT )

Proving this is beyond the scope of this course.



Parameter estimation - in practise

To find the ML estimate β̂ we need to solve

s(β̂) = 0

We have that the score function for the logit model is:

s(β) =
G∑

j=1
xj(yj − njπj)

where πj = exp(xT
j β̂)

1+exp(xT
j β̂) . Observe that this is a non-linear function in

β, and has no closed form solution.



Iterative gradient-based methods
Back to the general case - we may use a first order multivariate
Taylor approximation for s(β̂), around some chosen reference value
β(0):

s(β̂) ≈ s(β(0)) + ∂s(β)
∂β

∣∣
β=β(0)(β̂ − β(0))

Let H(β(0)) = −∂s(β)
∂β

∣∣
β=β(0) . Setting s(β̂) = 0 solving for β̂ gives

β̂ = β(0) + H(β(0))−1s(β(0))

where H(β(0))−1 is the matrix inverse of H(β(0)).
If we start with some value β(0) and then find a new value β(1) by
applying this equation, and then continue applying the equation
until convergence we have the Newton-Raphson method:

β(t+1) = β(t) + H(β(t))−1s(β(t))



Replacing the observed Fisher information matrix F with the
expected Fisher information matrix F yields the Fisher-scoring
method.
For the logit model these two methods are the same since the
observed and expected Fisher information matrix is the same for
canonical link functions (like the logit is for binary regression).
This algorithm is run until the relative difference in Euclidean
distance between two iterations “(new-old)/old” is smaller than
some chosen constant.



Requirements for convergence
For the Newton-Raphson algorithm we see that the observed Fisher
information matrix H needs to be invertible for all β, alternatively
for the Fisher scoring algorithm the expected Fisher information
matrix F needs to be invertible.
In our logit model

F(β) =
G∑

j=1
xjxT

j njπj(1 − πj)

Let X be the design matrix, where the rows are xT
j . Then

XTX =
∑G

j=1 xjxT
j .

If we require that the design matrix has full rank (G) then also
XTX will have full rank (it will also be positive definite) and and in
addition πj(1 − πj) > 0 for all πj ∈ (0, 1), so then F(β) will be
positive definite and all is good.



Why is F(β) positive definite if we require that the design
matrix has full rank? Formally, let X be a n × p matrix and Λ a
n × n diagonal matrix where all the diagonal elements are positive
(like our πj(1 − πj), yes, put them on the diagonal). Let X have
independent columnes (full rank) ⇔ XTΛX is positive definite.
Proof: ⇒: Let v be a p dimensional column vector. Assume
0 = vTXTΛXv = (Λ1/2Xv)T(Λ1/2Xv) =

∑n
i=1 w2

i where
W = Λ1/2Xv. Then, w must be 0, that is Λ1/2Xv = 0 since
multiplication with Λ1/2 is to multiply each element in Xv with a
number different from 0. That is, we must have v = 0 since X has
independent columns.
⇐: Assume that Xv = 0. Then vTXTΛXv = 0 so v = 0 since
XTΛX is positive definite. This is, X has independent columns.
End of proof



Therefore, for GLMs we will also - as for the multiple linear
regression model in Module 2 - assume that the design matrix has
full rank!
We will see in Module 5 that this is the requirement needed for
GLMs in general.
However, it is possible that the algorithm does not converge. This
may happen for “unfavorable” data configurations (especially for
small samples). Accoring to our text book, Fahrmeir et al (2013),
page 284, the conditions for uniqueness and existence of ML
estimators are very complex, and the authors suggest that the
GLM user instead checks for convergence in practice by performing
the iterations.



Asymptotic properties of ML estimates
Results
Under some (weak) regularity conditions (including that β falls in
the interior of the parameter space and p is fixed that n increases,
Agresti (2015) page 125):
Let β̂ be the maximum likelihood (ML) estimate in the GLM
model. As the total sample size increases, n → ∞:

1. β̂ exists
2. β̂ is consistent (convergence in probability, yielding

asymptotically unbiased estimator, variances goes towards 0)
3. β̂ ≈ Np(β, F−1(β̂))

Observe that this means that asymptotically Cov(β̂) = F−1(β̂):
the inverse of the expected Fisher information matrix evaluated at
the ML estimate.
Observe: The result requires that the total sample size goes to
infinity (not the individual nj for the covariate patterns).



The proof (for the univariate case) is given in the course
TMA4295 Statistical Inference course, Casella and Berger
(2002):“Statistical inference”, page 472. It starts by a first order
Taylor expansion of the score function (derivative of loglikelihood)
around the true parameter, and utilizes the fact that the maximum
likelihood estimate is defined as the zero of the score function.



The following is not a formal proof, but a sketch - and I use the
parameter of interest θ in the exponential family version of the
distribution (and then there is a connection to the mean µ and
then to η and finally β):
We start with the multivariate version of the first order Taylor
expansion around the true parameter value θ:

0 = s(θ̂) ≈ s(θ) − H(θ)(θ̂ − θ)

We assume that θ̂ is the maximum likelihood estimate, and there
the score function is 0 so we get:

s(θ) ≈ H(θ)(θ̂ − θ)

And premultiplying with H−1(θ) gives
(θ̂ − θ) ≈ H−1(θ)s(θ)

Then, to use the central limit theorem we need some smart
manipulations with n, so we start by multiplying with √n and split
that into n and 1√

n .



√
n(θ̂ − θ) ≈

√
nH−1(θ)s(θ) = (1nH(θ))−1 1√ns(θ)

From the central limit theorem:

1. 1
nH(θ) goes to the expected value which is F(θ) (in
probability),

2. the part 1√
ns(θ) asymptoticalle goes to a random variable W

that follows a multivariate normal with

▶ mean E( 1√
ns(θ)) = 0 and the

▶ covariance matrix is Cov( 1√
ns(θ)) = 1

nF(θ)

W ∼ N(0,
1
nF(θ))



√
n(θ̂ − θ) ≈ F−1(θ)W

On the right side here we have a multivariate normal distributed
random variable F−1(θ)W with mean 0 and covariance matrix

Cov(F−1(θ)W) = F−1(θ)1nF(θ)F−1(θ) = 1
nF−1(θ)

This leads to the wanted result:

θ̂ ≈ N(θ, F−1(θ))



Parameter estimation
Parameter estimation can be based on grouped data - so now we
use Yj ∼ bin(nj, πj) from 1 above, but keep 2 and 3 unchanged.
The number of groups is G and the total number of observations is∑G

j=1 nj.

▶ Likelihood=joint distribution, exponential family.

f(y | θ) = exp
(yθ − b(θ)

ϕ
· w + c(y, ϕ, w)

)
where we have that θ = ln( π

1−π ) for the binomial distribution,
which means that our logit model is gives the canonical link
(remember, good properties!).

▶ Log-likelihood

l(β) =
G∑

j=1
[yj ln πj − yj ln(1 − πj) + nj ln(1 − πj) + ln

(
nj
yj

)
]



▶ Score function=vector of partial derivatives of log-likelihood.
Find ML by solving s(β̂)) = 0 - but no closed form solutions.

s(β) =
G∑

j=1
xj(yj − njπj)

▶ Expected Fisher information matrix

F(β) =
G∑

j=1
xjxT

j njπj(1 − πj)

▶ β̂ found iteratively using Newton-Raphson or Fisher scoring

β(t+1) = β(t) + F(β(t))−1s(β(t))

▶ β̂ ≈ Np(β, F−1(β̂))



Further statistical inference

Our further statistical inference (confidence intervals and
hypotheses tests) are based on the asymptotic distribution of the
parameter estimates

β̂ ≈ Np(β, F−1(β̂))

where F−1(β̂)) is the inverse of the expected Fisher information
matrix inserted β̂.
For the logit model we found that

F(β) =
G∑

j=1
xjxT

j njπj(1 − πj)

So we would need to do πj = exp(η−j)
1+exp(ηj) and ηj = xT

j β as “usual”,
and then replace β with β̂.



If we make a diagonal matrix W with njπj(1 − πj) on the diagonal,
then we may write the matrix F(β) in matrix notation. As before
X is the G × p design matrix.

F(β) =
G∑

j=1
xjxT

j njπj(1 − πj) = XTWX.

which means that Cov(β̂) = (XTWX)−1 for the binomial model
(remember that β̂ comes in with π̂j in W).
Q: How is this compared to the normal case?
A: F(β) = 1

σ2 XTX, and the inverse Cov(β̂) = (XTX)−1σ2.



Let A(β) = F−1(β), and akk(β) is diagonal element number k.
For one element of the parameter vector:

Zk = β̂k − βk√
akk(β̂)

is standard normal. We will use this now!
Q: Where can you find β̂ and F−1(β̂) in the print-out below?



library(investr)
fitgrouped = glm(cbind(y, n - y) ~ ldose, family = "binomial", data = investr::beetle)
summary(fitgrouped)

##
## Call:
## glm(formula = cbind(y, n - y) ~ ldose, family = "binomial", data = investr::beetle)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5941 -0.3944 0.8329 1.2592 1.5940
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -60.717 5.181 -11.72 <2e-16 ***
## ldose 34.270 2.912 11.77 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 284.202 on 7 degrees of freedom
## Residual deviance: 11.232 on 6 degrees of freedom
## AIC: 41.43
##
## Number of Fisher Scoring iterations: 4

summary(fitgrouped)$cov.scaled

## (Intercept) ldose
## (Intercept) 26.83966 -15.082090
## ldose -15.08209 8.480525

sqrt(diag(summary(fitgrouped)$cov.scaled))

## (Intercept) ldose
## 5.180701 2.912134

Note: cov.unscaled is the estimated covariance matrix for the
estimated coefficients, and cov.scaled is the the cov.unscaled
scaled with the dispersion parameter. For the binomial the
dispersion is equal to 1, so no difference between the two.



Confidence intervals
In addition to providing a parameter estimate for each element of
our parameter vector β we should also report a (1 − α)100%
confidence interval (CI) for each element.
We focus on element k of β, called βk. It is known that
asympotically

Zk = β̂k − βk√
akk(β̂)

is standard normal. We use that to form confidence intervals.
Let zα/2 be such that P(Zk > zα/2) = α/2. REMARK: our
textbook would here look at area to the left instead of to the right
- but we stick with this notation.



We then use
P(−zα/2 ≤ Zk ≤ zα/2) = 1 − α

insert Zk and solve for βk to get

P(β̂k − zα/2

√
akk(β̂) ≤ βk ≤ β̂k − zα/2

√
akk(β̂)) = 1 − α

A (1 − α)% CI for βk is when we insert numerical values for the
upper and lower limits.
Q: We write akk(β̂). Why not akk(β̂kk)?



Example with the beetle data
Again, we study our beetle data - in the grouped version.
Here we calculate the upper and lower limits of the confidence
interval using the formula. Then, there is also an R function
confint.glm that can be used. This function may give a slightly
different answer to our calculations because here an extra
“profiling” step is done to check the convergence of the glm, and
to recalculate the estimated covariance matrix for the regression
parameter estimate.

fitgrouped = glm(cbind(y, n - y) ~ ldose, family = "binomial", data = investr::beetle)
coeff = fitgrouped$coefficients
sds = sqrt(diag(summary(fitgrouped)$cov.scaled))
alpha = 0.05
lower = coeff - qnorm(1 - alpha/2) * sds
upper = coeff + qnorm(1 - alpha/2) * sds
cbind(lower, upper)

## lower upper
## (Intercept) -70.87144 -50.56347
## ldose 28.56265 39.97800

confint(fitgrouped)

## 2.5 % 97.5 %
## (Intercept) -71.44263 -51.07902
## ldose 28.85403 40.30069

Q: Explain what is done in the R-print-out.



Hypothesis testing
There are three methods that are mainly used for testing
hypotheses in GLMs - these are called Wald test, likelihood ratio
test and score test. We will look at the first two.
First, look at linear hypotheses: We study a binary regression
model with p = k + 1 covariates, and refer to this as model A (the
larger model). As for the multiple linear model we then want to
investigate the null and alternative hypotheses of the following
type(s):

H0 : βj = 0 vs. H1 : βj ̸= 0
H0 : β1 = β2 = β3 = 0 vs. H1 : at least one of these ̸= 0
H0 : β1 = β2 = · · · = βk = 0 vs. H1 : at least one of these ̸= 0



We call the restricted model (when the null hypotesis is true)
model B, or the smaller model.
These null hypotheses and alternative hypotheses can all be
rewritten as a linear hypothesis

H0 : Cβ = d vs. Cβ ̸= d

by specifying C to be a r × p matrix and d to be a column vector
of length d.



The Wald test
The Wald test statistic is given as:

w = (Cβ̂ − d)T[CF−1(β̂)CT]−1(Cβ̂ − d)

and measures the distance between the estimate Cβ̂ and the value
under then null hypothesis d, weighted by the asymptotic
covariance matrix of Cβ̂. Remember: Cov(Cβ̂) = CF−1(β̂)CT.
Asymptotically it is found that w under the null hypothesis follows
a χ2 distribution with r degrees of freedom (where r is the number
of hypotheses tested). Why is that?
P-values are calculated in the upper tail of the χ2-distribution.
Observe: to perform the test you only need to fit the larger model
(and not the smaller).



For the special case that we only test one regression parameter, for
example βk:

H0 : βk = 0 vs. H1 : βk ̸= 0.

Now Cβ̂ = βk and C[F(β̂)]−1CT = CA(β)CT = akk(β), and the
Wald test becomes

(β̂k − βk)[akk(β̂)]−1(β̂k − βk) =

 β̂k − βk√
akk(β̂)

2

= Z2
k

so, asymptotically the square of the standard normal, which we
know follows a χ2-distribution with 1 degree of freedom.
Q: Explain what you find in the columns named z value and
Pr(>|z|) below, and which hypothesis tests these are related to.
Are the hypothesis tests performed using the Wald test?



library(investr)
fitgrouped = glm(cbind(y, n - y) ~ ldose, family = "binomial", data = investr::beetle)
summary(fitgrouped)

##
## Call:
## glm(formula = cbind(y, n - y) ~ ldose, family = "binomial", data = investr::beetle)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5941 -0.3944 0.8329 1.2592 1.5940
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -60.717 5.181 -11.72 <2e-16 ***
## ldose 34.270 2.912 11.77 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 284.202 on 7 degrees of freedom
## Residual deviance: 11.232 on 6 degrees of freedom
## AIC: 41.43
##
## Number of Fisher Scoring iterations: 4



The score test
We use the notation that

▶ A: the larger model and
▶ B: the smaller model (under H0),
▶ and the smaller model is nested within the larger model (that

is, B is a submodel of A).

The score statistics is based on the score function, and subtracts
the mean and scales with the covariance to form the test statistic.

▶ Under the null hypothesis investigated let β̃ be the ML
estimate (that is, model B, the smaller model), and * under
H1 we have the larger model (A) with maximum likelihood β̂.

When the null hypothesis is true E(β̃) = 0, and we have that
Cov(β̃) = F(β̃).



The score statistics:

U = (s(β̃) − 0)TF−1(β̃)(s(β̃) − 0)

When the null hypothesis is true U as an asymptotic
χ2-distribution with r degrees of freedom (difference in number of
estimated parameters between the large and small model).
Remark: only the smaller - not the larger model - need to be fitted.



library(statmod)
small.glm = glm(cbind(y, n - y) ~ 1, family = "binomial", data = investr::beetle)
summary(small.glm)

##
## Call:
## glm(formula = cbind(y, n - y) ~ 1, family = "binomial", data = investr::beetle)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -8.105 -5.294 1.099 5.615 7.766
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.42630 0.09327 4.571 4.87e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 284.2 on 7 degrees of freedom
## Residual deviance: 284.2 on 7 degrees of freedom
## AIC: 312.4
##
## Number of Fisher Scoring iterations: 4

z = glm.scoretest(small.glm, x2 = investr::beetle$ldose)
z

## [1] 15.08576

2 * pnorm(abs(z), lower.tail = FALSE)

## [1] 2.009337e-51



The likelihood ratio test
An alternative to the Wald test is the likelihood ratio test (LRT),
which compares the likelihood of two models.
We stick with the notation of A: the larger model and B: the
smaller model (under H0), and the smaller model is nested within
the larger model (that is, B is a submodel of A).

▶ First we maximize the likelihood for model A (the larger
model) and find the parameter estimate β̂A. The maximum
likelihood is achieved at this parameter estimate and is
denoted L(β̂A).

▶ Then we maximize the likelihood for model B (the smaller
model) and find the parameter estimate β̂B. The maximum
likelihood is achieved at this parameter estimate and is
denoted L(β̂B).



The likelihood of the larger model (A) will always be larger or
equal to the likelihood of the smaller mode (B). Why? How is this
compared to our result for SSE for small and large model in MLR?
The likelihood ratio statistic is defined as

−2 ln λ = −2(ln L(β̂B) − ln L(β̂A))

(so, −2 times small minus large).



Under weak regularity conditions the test statistic is approximately
χ2-distributed with degrees of freedom equal the difference in the
number of parameters in the large and the small model. This is
general - and not related to the GLM! More in TMA4295
Statistical Inference!
P-values are calculated in the upper tail of the χ2-distribution.
Observe: to perform the test you need to fit both the small and
the large model.
Notice: asymptotically the Wald and likelihood ratio test statistics
have the same distribution, but the value of the test statistics
might be different. How different?



For the beetle data we compare model A=model with ldose as
covariate with model B=model with only intercept. We use the
loglikelihood-function that we made for the lecture session for week
2.

library(investr)
fitgrouped = glm(cbind(y, n - y) ~ ldose, family = "binomial", data = investr::beetle)
fitnull = glm(cbind(y, n - y) ~ 1, family = "binomial", data = investr::beetle)

loglik <- function(par, args) {
y <- args$y
x <- args$x
n <- args$n
res <- sum(y * x %*% par - n * log(1 + exp(x %*% par)))
return(res)

}

# call this with parameters estimated under model A=larger model
beetleargs = list(y = investr::beetle$y, x = cbind(rep(1, nrow(investr::beetle)),

investr::beetle$ldose), n = investr::beetle$n)

llA = loglik(matrix(fitgrouped$coefficients, ncol = 1), args = beetleargs)

# then the smaller model, then we set the coeff for ldose to 0. B=smaller
# model
llB = loglik(matrix(c(fitnull$coefficients, 0), ncol = 1), args = beetleargs)
lrt = -2 * (llB - llA)
lrt

## [1] 272.9702

pchisq(lrt, df = 1)

## [1] 1

anova(fitgrouped, fitnull, test = "LRT")

## Analysis of Deviance Table
##
## Model 1: cbind(y, n - y) ~ ldose
## Model 2: cbind(y, n - y) ~ 1
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 6 11.232
## 2 7 284.202 -1 -272.97 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Q and A: Here the small model is the model with only intercept
and the large is the one with dose as covariate. This means that
the null hypothesis is that “the small model is preferred” and our
p-value is very small, so we reject the null hyptheses and stick with
the model with dose as covariate. Observe that the LRT can be
performed using anova.



Deviance
The deviance is used to assess model fit and also for model choice,
and is based on the likelihood ratio test statistic.
The derivation assumes that data can be grouped into covariate
patterns, with G groups and nj observations in each group
(individual data later).
Saturated model: If we were to provide a perfect fit to our data
then we would estimate πj by the observed frequency for the group:
π̃j = yj

nj
. Then π̃ is a G-dimensional column vector with the

elements π̃j.
This “imaginary model” is called the saturated model. This would
be a model where each group was given its own parameter.
Candidate model: The model that we are investigated can be
thought of as a candidate model. Then we maximize the likelihood
and get β̂ which through our linear predictor and link function we
turn into estimates for each group π̂j. Then π̂ is a G-dimensional
column vector with the elements π̂j.



The deviance is then defined as the likelihood ratio statistic, where
we put the saturated model in place of the larger model A and our
candidate model in place of the smaller model B:

D = −2(ln L(candidate model)−ln L(saturated model)) = −2(l(π̂)−l(π̃)) = −2
G∑

j=1
(lj(π̂j)−lj(π̃j))

For our logit model this can be written as (after some maths):

D = 2
G∑

j=1
[yj ln( yj

njπ̂j
) + (nj − yj) ln( nj − yj

nj − njπ̂j
)]

Verify this by yourself.



The reasoning behind this is that if our model is good, it should
not be too far from the saturated model, and we measure this
distance by the deviance.
If we want to investigate the null hypothesis that “our model fits
the data well” to the negation, it is useful to know that
asymptotically D is distributed as χ2 with G − p degrees of
freedom (same reason as for the likelihood ratio test statistic).
This result depends on that nj is large, hard to say how large (at
least 5 is a rule of thumb).



The deviance is in summary.glm outputted as “Residual deviance”,
which we read off as 11.2322311. Let’s check for our beetle
example by computing the formula for D directly:

D = deviance(fitgrouped)
D

## [1] 11.23223

G = dim(investr::beetle)[1]
G

## [1] 8

p = 2
1 - pchisq(D, G - p)

## [1] 0.08145881

So, do we have a good fit?



Well, at level 0.05 we do not reject that the saturated model is
significantly better.
In the summary from glm also the socalled NULL deviance is given.
This is the deviance when the candicate model is the model with
only intercept term present. This deviance asymptotically
distributed as χ2 with G − 1 degrees of freedom.



summary(fitgrouped)

##
## Call:
## glm(formula = cbind(y, n - y) ~ ldose, family = "binomial", data = investr::beetle)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5941 -0.3944 0.8329 1.2592 1.5940
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -60.717 5.181 -11.72 <2e-16 ***
## ldose 34.270 2.912 11.77 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 284.202 on 7 degrees of freedom
## Residual deviance: 11.232 on 6 degrees of freedom
## AIC: 41.43
##
## Number of Fisher Scoring iterations: 4

Q: where is the deviance(s) here and how do we use these?



Analysis of deviance
In MLR we have seen that we may produce a sequential analysis of
variance (Type I) by adding more and more terms to the model
and comparing the scaled decrease in SSE by the scaled SSE of a
full model.
For the binary regression we may adapt a similar strategy, but with
using the scaled change in deviance instead of the SSE.
We use the infant respiratory disease data as an example



library(faraway)
fit = glm(cbind(disease, nondisease) ~ sex * food, family = binomial(link = logit),

data = babyfood)
summary(fit)

##
## Call:
## glm(formula = cbind(disease, nondisease) ~ sex * food, family = binomial(link = logit),
## data = babyfood)
##
## Deviance Residuals:
## [1] 0 0 0 0 0 0
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.59899 0.12495 -12.797 < 2e-16 ***
## sexGirl -0.34692 0.19855 -1.747 0.080591 .
## foodBreast -0.65342 0.19780 -3.303 0.000955 ***
## foodSuppl -0.30860 0.27578 -1.119 0.263145
## sexGirl:foodBreast -0.03742 0.31225 -0.120 0.904603
## sexGirl:foodSuppl 0.31757 0.41397 0.767 0.443012
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2.6375e+01 on 5 degrees of freedom
## Residual deviance: 2.6401e-13 on 0 degrees of freedom
## AIC: 43.518
##
## Number of Fisher Scoring iterations: 3

anova(fit, test = "Chisq")

## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: cbind(disease, nondisease)
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 5 26.3753
## sex 1 5.4761 4 20.8992 0.01928 *
## food 2 20.1772 2 0.7219 4.155e-05 ***
## sex:food 2 0.7219 0 0.0000 0.69701
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Q: is it recommended (from the test) to add an interaction term to
the model? What does it mean that the Residual deviance is 0 for
the sex*food model?



Deviance residuals
The deviance residuals are given by a signed version of each
element in the sum for the deviance, that is

dk = sign(yk−nkπ̂k)·
{
2[yk ln( yk

nkπ̂k
) + (nk − yk) ln( nk − yk

nk − nkπ̂k
)]
}1/2

where the term sign(yk − nkπ̂k) makes negative residuals possible.



Model assessment and choice

The fit of the model can be assessed based on goodness of fit
statistics (and related tests) and by residual plots. Model choice
can be made from analysis of deviance, or by comparing the AIC
for different models.

Deviance test for grouped data
We may use the deviance test presented before to test if the model
under study is preferred compared to the saturated model.



Pearson test and residuals
An alternative to the deviance test is the Pearson test. We will
look in more detail at this test in a Module 4. The Pearson test
statistic can be written as a function of the Pearson residuals,
which for the binomial regression is given as:

rj = yj − njπ̂j√
njπ̂j(1 − π̂j)

Remark: A standardized version scales the Pearson residuals with√
1 − hkk similar to the standardized residuals for the normal

model. Here hkk is the diagonal element number k in the hat
matrix H = X(XTX)−1XT.



The Pearson χ2-goodness of fit statistic is given as

X2
P =

G∑
j=1

r2
j =

G∑
j=1

(yj − njπ̂j)2

njπ̂j(1 − π̂j)

The Pearson χ2 statistic is asymptotically equivalent to the
deviance statistic and thus is asymptotically χ2

G−p.

The Pearson χ2 statistic is not a good choice if any of the groups
have a low expected number of observations, i.e. njπ̂j is small
(below 1).



Model assessment with continuous covariates
If data have continuous covariates it is possible to form groups
based making intervals for continuous covariates. Alternatively
grouping on predicted probabilites can be done.
For continuous data the Hosmer Lemeshow test can be used - not
on our reading list.



Plotting residuals
Deviance and Pearson residuals can be used for checking the fit of
the model, by plotting the residuals against fitted values and
covariates.
If nj is small for the covariate patterns the residual plots may be
relatively uninformative.
Residual plots for the logistics regression - and for the GLM in
general - is highly debated, and we will not put much emphasis on
residual plots for this module.



df = data.frame(fitted = fitgrouped$fitted.values, dres = residuals(fitgrouped,
type = "deviance"), ldose = investr::beetle$ldose)

ggplot(df, aes(x = fitted, y = dres)) + geom_point()
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Other plots
A useful plot is to show observed and fitted proportions (grouped
data) plotted against the linear predictor or covariates.

df = data.frame(fitted = fitgrouped$fitted.values, dres = residuals(fitgrouped,
type = "deviance"), ldose = investr::beetle$ldose, frac = investr::beetle$y/investr::beetle$n)

ggplot(df, aes(x = ldose)) + geom_point(aes(y = frac, colour = "observed")) +
geom_point(aes(y = fitted, colour = "fitted"))
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AIC
It is known to us from multiple linear regression that if a model is
chosen based on a goodness of fit statistic (like the SSE or R2 in
multiple linear regression) will in general result in us choosing a to
big model (to many parameters fit). The Akaike informations
criterion - that we studied for multiple linear regression - can also
be used for binary regression: Let p be the number of regression
parameters in our model.

AIC = −2 · l(β̂) + 2p

A scaled version of AIC, standardizing for sample size, is sometimes
preferred.
To use AIC for model selection you use the model with the smallest
AIC.
We may also use the BIC, where 2p is replaced by log(G) · p or
log(n) · p.



library(faraway)
fit1 = glm(cbind(disease, nondisease) ~ 1, family = binomial(link = logit),

data = babyfood)
fit2 = glm(cbind(disease, nondisease) ~ sex, family = binomial(link = logit),

data = babyfood)
fit3 = glm(cbind(disease, nondisease) ~ food, family = binomial(link = logit),

data = babyfood)
fit4 = glm(cbind(disease, nondisease) ~ food + sex, family = binomial(link = logit),

data = babyfood)
fit5 = glm(cbind(disease, nondisease) ~ food * sex, family = binomial(link = logit),

data = babyfood)
AIC(fit1, fit2, fit3, fit4, fit5)

## df AIC
## fit1 1 59.89324
## fit2 2 56.41710
## fit3 3 43.21693
## fit4 4 40.23987
## fit5 6 43.51795

Q: Which of these 5 models would you prefer?



Overdispersion and estimating overdispersion parameter

When we have grouped data: Yj ∼ Bin(nj, πj) and
Var(Yj) = njπj(1 − πj).
It is possible to estimate the variance (within a group) by
njȳj(1 − ȳj) where ȳj = yj/nj (this is an estimate of πj for group j).
We call this the empirical variance.
In a logistic regresson we estimate π̂j = h(xT

j β̂) (h(·) is the inverse
link function) which is

π̂j =
exp(xT

j β̂)
1 + exp(xT

j β̂)

for a logistic regression. This would give the estimated binomial
variance for Yj as njπ̂j(1 − π̂j).



Some times the empirical variance is much larger than the
estimated binomial variance of the model. This is called
overdispersion and may occur when the individual responses within
the groups are correlated, or when the model could be improved
upon (missing/unobserved covariates?).
Positively correlated binary variables will give a variance of the sum
that is larger than for uncorrelated variables, e.g.

Var(
K∑

k=1
Yk) =

K∑
k=1

Var(Yk) + 2
∑
k<l

Cov(Yk, Yl).



This can be handeled by including an overdispersion parameter,
named ϕ, in the variance formula:

Var(Yj) = ϕnjπj(1 − πj)



The overdispersion parameter can be estimated as the average
Pearson statistic or average deviance

ϕ̂D = 1
G − pD

where D is the deviance. Note that similarity to
σ̂2 = 1/(n − p) · SSE in the MLR. The Cov(β̂) can then be
changed to ϕ̂F−1(β̂).
Remark: We are now moving from likelihood to quasi-likelihood
theory, where only E(Yj) and Var(Yj) - and not the distribution of
Yj - are used in the estimation.
In Modules 7 and 8 we will look at using multilevel models to
handle correlated observations.



library(investr)
estpi = investr::beetle$y/investr::beetle$n
empvars = investr::beetle$n * estpi * (1 - estpi)
fit = glm(cbind(y, n - y) ~ ldose, family = "binomial", data = investr::beetle)
modelestvar = investr::beetle$n * fit$fitted.values * (1 - fit$fitted.values)
cbind(empvars, modelestvar)

## empvars modelestvar
## 1 5.389831 3.254850
## 2 10.183333 8.227364
## 3 12.774194 14.321308
## 4 14.000000 13.378891
## 5 9.079365 10.261038
## 6 5.389831 5.156652
## 7 0.983871 2.653383
## 8 0.000000 1.230704

est.dispersion = fit$deviance/fit$df.residual
est.dispersion

## [1] 1.872039

summary(fit, dispersion = est.dispersion, correlation = TRUE)

##
## Call:
## glm(formula = cbind(y, n - y) ~ ldose, family = "binomial", data = investr::beetle)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5941 -0.3944 0.8329 1.2592 1.5940
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -60.717 7.088 -8.566 <2e-16 ***
## ldose 34.270 3.984 8.601 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1.872039)
##
## Null deviance: 284.202 on 7 degrees of freedom
## Residual deviance: 11.232 on 6 degrees of freedom
## AIC: 41.43
##
## Number of Fisher Scoring iterations: 4
##
## Correlation of Coefficients:
## (Intercept)
## ldose -1.00

fitquasi = glm(cbind(y, n - y) ~ ldose, family = "quasibinomial", data = investr::beetle)
# preferred method of estimation is to use quasilikelihood
summary(fitquasi)$dispersion

## [1] 1.671141



Prospective vs. retrospective sampling
This section is optional - but it is very useful if you will work within
biostatistics. (Examples motivated by Faraway (2006), Extending
the linear model with R, Section 2.6.)
In a prospective sampling strategy we sample individuals from a
population (covariates are then fixed) and wait for a predefined
period to check if an event has happend (e.g. disease). This is also
called a cohort study. An example might be that we select a
sample of newborn babies (girls and boys) where the parents had
decided on the method of feeding (bottle, breast, breast with some
supplement), and then monitored the babies during their first year
to see if they developed infant respiratory disease (the event we
want to model). For rare events the sample may then include few
individuals with success (disease), which might lead to wide
confidence intervals for parameters.
An alternative strategy is called retrospective sampling. Here we
have access to medical registers and select a sample of n1 babies
where we know that they developed infant respiratory disease (the
cases) and a sample of n2 babies where we know that they did not
develop infant respiratory disease (the controls). We require that
the samples are selected independently of the values of the
covariates (here: sex and food=method of feeding). This is called
a case–control study.
If we aim to model the relationship between the covariates and the
response (here: infant respiratory disease) we would naturally by
default choose the cohort design, however, we will now show that
the case–control design is also a valid design if we use the logit
model to analyse the data.
To illustrate this we use a data set from a prospective study,

library(faraway)
data(babyfood)
head(babyfood)

## disease nondisease sex food
## 1 77 381 Boy Bottle
## 2 19 128 Boy Suppl
## 3 47 447 Boy Breast
## 4 48 336 Girl Bottle
## 5 16 111 Girl Suppl
## 6 31 433 Girl Breast

xtabs(disease/(disease + nondisease) ~ sex + food, babyfood)

## food
## sex Bottle Breast Suppl
## Boy 0.16812227 0.09514170 0.12925170
## Girl 0.12500000 0.06681034 0.12598425

and for simplicity we focus on girls who were breast or bottle fed:

babyfood[c(4, 6), ]

## disease nondisease sex food
## 4 48 336 Girl Bottle
## 6 31 433 Girl Breast

Notice - we now look at the observed data within the different
covariate patterns. This would be the same as fitting a binomial
glm with sex, food and the interaction thereof as covariates.
We read off: given that the infant is breast fed: 31/433= 0.07 is
the estimated odds of respiratory disease, and the log-odds is -2.64.
And, given that the infant is bottle fed: 48/336= 0.14 is the
estimated odds of respiratory disease, and the log-odds is -1.95.
The difference between these two log-odds represents the increased
risk of infant respiratory disease caused by bottle feeding relative
to breast feeding:
∆= -1.95- -2.64= 0.69.
But, what if we instead had performed a case–control study, and
then wanted to compute the log odds difference between feeding
type given respiratory disease status.
We read off: given that the infant got the disease (case): 48/31=
1.55 is the estimated odds for bottle compared to breast, and the
log-odds is 0.44. Given that the infant did not get the disease
(control): 336/433= 0.78 is the estimated odds for bottle
compared to breast, and the log-odds is -0.25. The difference
between these two log-odds represents the “increased risk” of
bottle feeding relative to breast feeding “caused by respiratory
disease”.
∆∗=0.44- -0.25=0.69.
Observe that ∆ and ∆∗ are equal, and shows (with a numerical
example) why a retrospective design can be use to estimate change
in log-odds. But, this argumentation is only valid for our logit
model (where we estimate changes in odds), and not for the probit
or complementary-log-log model.
We would like to use the retrospective case–control design instead
of the prospective cohort design because it is more convenient to
get a sample of cases on the same size as a sample of controls -
which give us better properties of the parameter estimators.
However, to use the case–control design it is important that
covariates are reliably measured retrospective (rely on records).
In a mathematical comparison between logit models for pro- and
retrospective designs we will find that the regression parameters
β1, . . . , βk will be the same in the two models, but the intercept
terms will differ.
In the prospectictive study we model πi, the probability of sucess
(e.g. respiratory disease) for covariates xi1, xi2, . . . , xik (e.g. sex and
food). Using the logit model in the proseptive study, the regression
model is

ln( πi
1 − πi

) = ηi = β0 + β1xi1 + β2xi2 + · · · + βkxik

and we write
πi = exp(ηi)

1 + exp(ηi)
.

In a retrospective study we consider ρi, the probability of sucess for
covariates xi1, xi2, . . . , xik, given that individual i was sampled to be
part of the case-control study.
Let S denote the event ‘sampled’, and let D denote event ‘disease’
(or sucess). Then, using Bayes’ rule and the law of total
probability, we have

ρi = Pi(D|S) = Pi(D ∩ S)
Pi(S) = Pi(S|D)Pi(D)

Pi(S|D)Pi(D) + Pi(S|Dc)Pi(Dc)
where Pi(D) = πi and Pi(Dc) = 1 − πi.
In the retrospective study, the probability of being sampled is equal
for any individual with the disease; τ1 = P(S|D) = Pi(S|D) and
similarly for individuals who do not have the disease;
τ0 = P(S|Dc) = Pi(S|Dc). Then,

ρi = τ1πi
τ1πi + τ0(1 − πi)

=
τ1

exp(ηi)
1+exp(ηi)

τ1
exp(ηi)

1+exp(ηi) + τ0
1

1+exp(ηi)

Dividing by τ0 and multiplying by 1 + exp(ηi) in the numerator and
denominator gives

ρi = (τ1/τ0) exp(ηi)
(τ1/τ0) exp(ηi) + 1 = exp(ln(τ1/τ0) + ηi)

exp(ln(τ1/τ0) + ηi) + 1

Using the logit model for ρi in the retrospective model, the
regression model is

ln( ρi
1 − ρi

) = ln(τ1/τ0)+ηi = ln(τ1/τ0)+β0+β1xi1+β2xi2+· · ·+βkxik

We see that the only difference between the parameters of interest
in the retrospective study and the parameters of interest in the
prospective study is the intercept of the regression model. All
other covariates are equal.



Interactive lecture - second week
We will use a data set on contraceptive use in Fiji (data from
1975). The data is to be analysed with “current use of
contraceptive” as response and some (or all of) “age”, “level of
education”, “desire for more children” as covariates
The data is available at
http://data.princeton.edu/wws509/datasets/cuse.dat with the
following description:

▶ Contraceptive use: yes (using) or no (notUsing)
▶ age: categorical variable with 5 levels: “<25”, “25-29”,
“30-39”, “40-49”

▶ education: categorical variable with 2 levels giving highest
level of education obtained: Lower and Upper

▶ wantsMore: Desires more children: yes or no

ds = read.table("http://data.princeton.edu/wws509/datasets/cuse.dat", header = TRUE)
names(ds)

## [1] "age" "education" "wantsMore" "notUsing" "using"

summary(ds)

## age education wantsMore notUsing using
## 25-29:4 high:8 no :8 Min. : 8.00 Min. : 4.00
## 30-39:4 low :8 yes:8 1st Qu.: 31.00 1st Qu.: 9.50
## 40-49:4 Median : 56.50 Median :29.00
## <25 :4 Mean : 68.75 Mean :31.69
## 3rd Qu.: 85.75 3rd Qu.:49.00
## Max. :212.00 Max. :80.00

dim(ds)

## [1] 16 5

We will study binary regression using the logit model, and we will
work with grouped data.
Plan: Start with Problem 2, then move to 3 and 4, and if
you have time you look at Problem 1. We will do a team
Kahoot! in the end of the IL - on one device go to kahoot.it
or use an app version.

Problem 1: The null model - no covariates included.
(This is the most theoretical of the problems and rather technical -
but with some cool results on the null model.)
a) Fit the null model and call it fit0. Explain what you see.

fit0 = glm(cbind(using, notUsing) ~ 1, data = ds, family = binomial(link = logit))
summary(fit0)

##
## Call:
## glm(formula = cbind(using, notUsing) ~ 1, family = binomial(link = logit),
## data = ds)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -4.3264 -2.4619 -0.7162 2.1273 5.4591
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.77455 0.05368 -14.43 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 165.77 on 15 degrees of freedom
## Residual deviance: 165.77 on 15 degrees of freedom
## AIC: 239.28
##
## Number of Fisher Scoring iterations: 4

Observe: When we only have an intercept in the model, the model
matrix will be an n × 1-matrix with only ones. Then xT

j β = β0.
The log-likelihood can be written as (let j = 1, . . . , G)

l(β) =
G∑

j=1
(yjxT

j β − nj log(1 + exp(xT
j β))) =

G∑
j=1

(yjβ0 − nj log(1 + exp(β0)))

(7)

= β0
G∑

j=1
yj − log(1 + exp(β0))

G∑
j=1

nj = β0N1 − log(1 + exp(β0))N

(8)

where N1 =
∑G

j=1 yj is the total number of successes and
N =

∑G
j=1 nj is the total number of trials (over all covariates

patterns, that is, here the number of individuals in the data set).
Also N2 = N − N1 is the total number of failures.
We will use this loglikelihood in the next question.
b) What is the relationship between your estimated coefficient and
the proportion in the data set using contraception (N1/N)? (Hint
0: What would be your intuitive estimator for π (common to all
groups). Hint 1: Find the derivative of the log-likelihood with
respect to β0, and use this to find the MLE for β0. Hint 2: maybe
easier to see what π̂ is, where π̂ = exp β̂0

1+exp β̂0
(so plogis), and then

β̂0 = logit(π̂) (so qlogis). Hint 3: You can verify by using the
estimate from glm.)

N = sum(ds$using + ds$notUsing)
N

## [1] 1607

N1 = sum(ds$using)
N1

## [1] 507

N2 = N - N1
N2

## [1] 1100

qlogis(N1/N)

## [1] -0.7745545

fit0$coefficients

## (Intercept)
## -0.7745545

c) We know that the (asymptotic) estimated covariance matrix of
the ML estimate is the inverse of the expected Fisher information
matrix, here the matrix is only a scalar and the covariance matrix
is just the variance. Find the mathematical expression for the
estimated variance of our estimated intercept. (Hint 1: We have
F(β) =

∑G
j=1 xjxT

j njπj(1 − πj), and then insert xj = 1 and
πj(1 − πj) = π(1 − π), and hopefully you found above that
π̂ = N1/N in our model with only intercept. Hint 2:

N
N1·N2

= 1
N1

+ 1
N2

to make things prettier.)
d) What is the estimated (numerical value) standard deviation of
the parameter estimate? Hint: vcov(fit0). Did your calculation
above gives the same result?

vcov(fit0)

## (Intercept)
## (Intercept) 0.002881477

e) What is the asymptotic distribution of the estimated regression
coefficient? Use this to write down the formula for the 95%
confidence interval for the intercept, and calculate the interval in R.
Compare numerically to confint.default and confint.

ci = confint.default(fit0)
ci

## 2.5 % 97.5 %
## (Intercept) -0.8797641 -0.6693448

confint(fit0)

## 2.5 % 97.5 %
## -0.8804716 -0.6700014

f) Translate the 95% CI to probability scale (Hint: plogis is the
inverse logit.)

plogis(ci)

## 2.5 % 97.5 %
## (Intercept) 0.2932267 0.3386436

fit0$family$linkinv(ci)

## 2.5 % 97.5 %
## (Intercept) 0.2932267 0.3386436

Problem 2: We then study the effect of the covariate
“wantsMore”
(a little less maths)
a) Fit a regression with wantsMore as covariate, and call this
fit1. Explain what the estimated coefficient (β1) means. Hint:
Interpretation using odds – if ‘wantsMore´ goes from 0=no to
1=yes, then…

fit1 = glm(cbind(using, notUsing) ~ wantsMore, data = ds, family = binomial)
summary(fit1)

##
## Call:
## glm(formula = cbind(using, notUsing) ~ wantsMore, family = binomial,
## data = ds)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -4.7091 -1.2756 -0.3467 1.4667 3.5505
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.18636 0.07971 -2.338 0.0194 *
## wantsMoreyes -1.04863 0.11067 -9.475 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 165.772 on 15 degrees of freedom
## Residual deviance: 74.098 on 14 degrees of freedom
## AIC: 149.61
##
## Number of Fisher Scoring iterations: 4

exp(fit1$coefficients)

## (Intercept) wantsMoreyes
## 0.8299712 0.3504178

b) Is this covariate significant? Write down the null and alternative
hypothesis to test. Then test using the Wald test - write down the
formula yourself. Use vcov(fit1) to access the inverse of the
Fisher information matrix. What is the degrees of freedom for this
test? Compare to the print-out from summary.

vcov(fit1)

## (Intercept) wantsMoreyes
## (Intercept) 0.006354067 -0.006354067
## wantsMoreyes -0.006354067 0.012248298

c) Alternatively, the likelihood ratio test can be used. Write down
the formula for the likelihood ratio test statistic. Use this in
combination with the fit0 and fit1 objects to calculate the
likelihood ratio statistic. Then calculate the p-value.

loglik <- function(par, args) {
y <- args$y
x <- args$x
n <- args$n
res <- sum(y * x %*% par - n * log(1 + exp(x %*% par)))
return(res)

}

args0 <- list(y = ds$using, n = ds$using + ds$notUsing, x = cbind(rep(1, nrow(ds))))
args1 <- list(y = ds$using, n = ds$using + ds$notUsing, x = cbind(rep(1, nrow(ds)),

as.numeric(ds$wantsMore) - 1))

betas0 <- fit0$coefficients
betas1 <- fit1$coefficients

ll0 <- loglik(betas0, args0)
ll0

## [1] -1001.847

ll1 <- loglik(betas1, args1)
ll1

## [1] -956.0096

d) The likelihood ratio test statistic can alternatively be calculated
using the residual deviance in fit1 and fit0, and is given as
fit0$deviance-fit1$deviance. Do you see why?

fit0$deviance - fit1$deviance

## [1] 91.6744

e) Are the two test statistics (Wald and LRT) equal? Do the two
tests give the same conclusions?

Problem 3: Now two covariates - deviance and model
comparison
(no maths - only definitions and print-out)
Now we study the response together with age and wantsMore.
We will consider the following 5 models. See R-code and print-out
below. a) Explain what each of these models include.
b) What is the definition of the deviance and df. What can we use
the deviance for? Optional: derive the formula for the deviance for
the logit model (the derivation is not given on the module pages.)
c) Perform a likelihood ratio test - based on the deviance results
given in the data frame in the R chunk- to compare the additive
and interact models. First write down the null and alternative
hypothesis you are testing. Which of the two models would you
prefer?
d) What if you use the AIC for model selection, which model (out
of the 5) will you then use?

ds$Y <- cbind(ds$using, ds$notUsing)
models <- list(null = glm(Y ~ 1, family = binomial, data = ds), age = glm(Y ~

age, family = binomial, data = ds), desire = glm(Y ~ wantsMore, family = binomial,
data = ds), additive = glm(Y ~ age + wantsMore, family = binomial, data = ds),
interact = glm(Y ~ age * wantsMore, family = binomial, data = ds))

models

## $null
##
## Call: glm(formula = Y ~ 1, family = binomial, data = ds)
##
## Coefficients:
## (Intercept)
## -0.7746
##
## Degrees of Freedom: 15 Total (i.e. Null); 15 Residual
## Null Deviance: 165.8
## Residual Deviance: 165.8 AIC: 239.3
##
## $age
##
## Call: glm(formula = Y ~ age, family = binomial, data = ds)
##
## Coefficients:
## (Intercept) age30-39 age40-49 age<25
## -1.0465 0.5876 0.9640 -0.4607
##
## Degrees of Freedom: 15 Total (i.e. Null); 12 Residual
## Null Deviance: 165.8
## Residual Deviance: 86.58 AIC: 166.1
##
## $desire
##
## Call: glm(formula = Y ~ wantsMore, family = binomial, data = ds)
##
## Coefficients:
## (Intercept) wantsMoreyes
## -0.1864 -1.0486
##
## Degrees of Freedom: 15 Total (i.e. Null); 14 Residual
## Null Deviance: 165.8
## Residual Deviance: 74.1 AIC: 149.6
##
## $additive
##
## Call: glm(formula = Y ~ age + wantsMore, family = binomial, data = ds)
##
## Coefficients:
## (Intercept) age30-39 age40-49 age<25 wantsMoreyes
## -0.5020 0.4400 0.6548 -0.3678 -0.8241
##
## Degrees of Freedom: 15 Total (i.e. Null); 11 Residual
## Null Deviance: 165.8
## Residual Deviance: 36.89 AIC: 118.4
##
## $interact
##
## Call: glm(formula = Y ~ age * wantsMore, family = binomial, data = ds)
##
## Coefficients:
## (Intercept) age30-39 age40-49
## -0.8199 0.9058 1.1289
## age<25 wantsMoreyes age30-39:wantsMoreyes
## -0.6354 -0.3312 -0.8233
## age40-49:wantsMoreyes age<25:wantsMoreyes
## -1.0999 0.2672
##
## Degrees of Freedom: 15 Total (i.e. Null); 8 Residual
## Null Deviance: 165.8
## Residual Deviance: 20.1 AIC: 107.6

lapply(models, summary)

## $null
##
## Call:
## glm(formula = Y ~ 1, family = binomial, data = ds)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -4.3264 -2.4619 -0.7162 2.1273 5.4591
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.77455 0.05368 -14.43 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 165.77 on 15 degrees of freedom
## Residual deviance: 165.77 on 15 degrees of freedom
## AIC: 239.28
##
## Number of Fisher Scoring iterations: 4
##
##
## $age
##
## Call:
## glm(formula = Y ~ age, family = binomial, data = ds)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -4.5141 -1.5019 0.3857 0.9679 3.5907
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.0465 0.1134 -9.225 < 2e-16 ***
## age30-39 0.5876 0.1406 4.181 2.9e-05 ***
## age40-49 0.9640 0.1831 5.265 1.4e-07 ***
## age<25 -0.4607 0.1727 -2.667 0.00765 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 165.772 on 15 degrees of freedom
## Residual deviance: 86.581 on 12 degrees of freedom
## AIC: 166.09
##
## Number of Fisher Scoring iterations: 4
##
##
## $desire
##
## Call:
## glm(formula = Y ~ wantsMore, family = binomial, data = ds)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -4.7091 -1.2756 -0.3467 1.4667 3.5505
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.18636 0.07971 -2.338 0.0194 *
## wantsMoreyes -1.04863 0.11067 -9.475 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 165.772 on 15 degrees of freedom
## Residual deviance: 74.098 on 14 degrees of freedom
## AIC: 149.61
##
## Number of Fisher Scoring iterations: 4
##
##
## $additive
##
## Call:
## glm(formula = Y ~ age + wantsMore, family = binomial, data = ds)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.7870 -1.3208 -0.3417 1.2346 2.4577
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.5020 0.1364 -3.682 0.000232 ***
## age30-39 0.4400 0.1443 3.050 0.002291 **
## age40-49 0.6548 0.1906 3.436 0.000591 ***
## age<25 -0.3678 0.1754 -2.097 0.035951 *
## wantsMoreyes -0.8241 0.1171 -7.037 1.97e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 165.772 on 15 degrees of freedom
## Residual deviance: 36.888 on 11 degrees of freedom
## AIC: 118.4
##
## Number of Fisher Scoring iterations: 4
##
##
## $interact
##
## Call:
## glm(formula = Y ~ age * wantsMore, family = binomial, data = ds)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.67001 -0.85288 0.02621 0.72300 2.18925
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.8199 0.1973 -4.155 3.25e-05 ***
## age30-39 0.9058 0.2284 3.966 7.31e-05 ***
## age40-49 1.1289 0.2624 4.303 1.69e-05 ***
## age<25 -0.6354 0.3564 -1.783 0.07463 .
## wantsMoreyes -0.3312 0.2414 -1.372 0.17008
## age30-39:wantsMoreyes -0.8233 0.2975 -2.767 0.00566 **
## age40-49:wantsMoreyes -1.0999 0.4276 -2.572 0.01011 *
## age<25:wantsMoreyes 0.2672 0.4091 0.653 0.51366
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 165.772 on 15 degrees of freedom
## Residual deviance: 20.099 on 8 degrees of freedom
## AIC: 107.61
##
## Number of Fisher Scoring iterations: 4

data.frame(deviance = round(unlist(lapply(models, deviance)), 2), df = unlist(lapply(models,
df.residual)), aic = round(unlist(lapply(models, AIC))))

## deviance df aic
## null 165.77 15 239
## age 86.58 12 166
## desire 74.10 14 150
## additive 36.89 11 118
## interact 20.10 8 108

Note: The function lapply (list apply) will apply a function to
each element of a list.

Problem 4: Plotting
(yes, mainly R and trying to understand)
Finally, we want to use the additive model with all three covariates:
Y~age+education+wantsMore to study different plots.

fit3add = glm(cbind(using, notUsing) ~ age + education + wantsMore, data = ds,
family = binomial)

summary(fit3add)

##
## Call:
## glm(formula = cbind(using, notUsing) ~ age + education + wantsMore,
## family = binomial, data = ds)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.5148 -0.9376 0.2408 0.9822 1.7333
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.4188 0.1401 -2.990 0.002786 **
## age30-39 0.5192 0.1478 3.513 0.000443 ***
## age40-49 0.7999 0.1993 4.012 6.01e-05 ***
## age<25 -0.3894 0.1759 -2.214 0.026809 *
## educationlow -0.3250 0.1240 -2.620 0.008789 **
## wantsMoreyes -0.8330 0.1175 -7.091 1.33e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 165.772 on 15 degrees of freedom
## Residual deviance: 29.917 on 10 degrees of freedom
## AIC: 113.43
##
## Number of Fisher Scoring iterations: 4

exp(fit3add$coefficients)

## (Intercept) age30-39 age40-49 age<25 educationlow
## 0.6578105 1.6807361 2.2252234 0.6774757 0.7225312
## wantsMoreyes
## 0.4347628

a) Comment on the output from summary. Use the deviance to
test if this is a good model. Which model do you then compare to
(what is the saturated model here)?.
b) Look at the plot of fitted values vs. deviance residuals. Do you
see a trend?

library(ggplot2)
plotdf <- data.frame(dres = fit3add$residuals, fitted = fit3add$fitted.values,

age = ds$age)
ggplot(plotdf, aes(x = fitted, y = dres)) + geom_point() + labs(x = "Fitted values",

y = "Deviance residuals")
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c) Here is a code to produce a plot of fitted values for the 16
covariate patterns together with a saturated model (called frac) -
on the logit scale. How can you see from the dots for fitted values
that we are assuming an additive model on the logit scale (that is,
the pattern for each panel for logit fitted vs age is the same for
each panel if we have an additive model on the logit scale - you see
that from the fitted points)? Do you also see that for the observed
values? Implication? Any other observations?

library(ggplot2)
frac = ds$using/(ds$using + ds$notUsing)
logitdf = data.frame(lfitted = qlogis(fit3add$fitted), lfrac = qlogis(frac),

age = ds$age, wantsMore = ds$wantsMore, education = ds$education)
ggplot(logitdf, aes(x = age)) + geom_point(aes(y = lfrac, colour = "saturated")) +

geom_point(aes(y = lfitted, colour = "fitted")) + facet_wrap(facets = ~wantsMore *
education) + labs(x = "age", y = "")

yes

high

yes

low

no

high

no

low

25−29 30−39 40−49 <25 25−29 30−39 40−49 <25

−2

−1

0

1

−2

−1

0

1

age

colour

fitted

saturated

To see what Rodríguez have found to be the best model, look at
the bottom of http://data.princeton.edu/wws509/R/c3s6.html.
Note: This exercise is based on the excellent notes of Germán
Rodríguez at Princeton, see in particular the R logs at
http://data.princeton.edu/wws509/R/c3s1.html.

http://data.princeton.edu/wws509/datasets/cuse.dat
http://data.princeton.edu/wws509/R/c3s6.html
http://data.princeton.edu/wws509/R/c3s1.html


Exam questions
For this module the following are exam questions to work with

▶ 2012 – Problem 1
▶ 2011 – Problem 1

In addition these essay-type exam questions are closely related to
this module.
December 2014
There are two main asymptotic results that are behind essentially
everything we have done with respect to inference for generalized
linear models. These are

1. asymptotic normality of maximum likelihood estimators
(MLE), and

2. asymptotic result for likelihood ratio tests (LRT).

State, describe and discuss the main assumptions behind these two
asymptotic results, how these results are used in practice to do
inference for parameters, testing various hypotheses and comparing
nested models, for logistic regression.

December 2016
We will consider (binomial or binary) logistic regression, where we
have independent observations

Yi ∼ Binomial(ni, πi) i = 1, . . . , n

so that

P(Yi) =
(

ni
yi

)
πyi

i (1 − πi)ni−yi , yi = 0, 1, . . . , ni

The linear predictor is
ηi = xT

i β

and
πi = exp(ηi)

1 + exp(ηi)
or

logit(πi) = ηi.

Here, xi is a vector of the p covariates for the ith observation yi
with size (number of trials) ni, and β is the vector of p unknown
regression coefficients.
Write an introduction to logistic regression and its practical usage,
for a student with a good background in statistics, but no
knowledge about Generalized Linear Models (GLM). Topics you
may want to consider, are

▶ When to use it? Underlying assumptions.
▶ Parameter estimation, limiting results for the MLE, Fisher

information and observed Fisher information, confidence
intervals and hypothesis testing.

▶ Output analysis, residual plots (when it is possible) and
interpretation of the β-coefficients

▶ Deviance and its usage.

https://www.math.ntnu.no/emner/TMA4315/Exam/GLMeksamen2012E.pdf
https://www.math.ntnu.no/emner/TMA4315/Exam/eksDes11e.pdf


R packages

install.packages(c("tidyverse", "investr", "knitr", "kableExtra", "faraway",
"viridis", "statmod"))



References for further reading

▶ A. Agresti (2015): “Foundations of Linear and Generalized
Linear Models.” Wiley.

▶ A. J. Dobson and A. G. Barnett (2008): “An Introduction to
Generalized Linear Models”, Third edition.

▶ J. Faraway (2015): “Extending the Linear Model with R”,
Second Edition. http://www.maths.bath.ac.uk/~jjf23/ELM/

▶ P. McCullagh and J. A. Nelder (1989): “Generalized Linear
Models”. Second edition.

http://www.maths.bath.ac.uk/~jjf23/ELM/

