TMA4315 Generalized linear models H2018

Module 4: Count and continuous positive response data
(Poisson and gamma regression)

Mette Langaas, Department of Mathematical Sciences, NTNU —
with contributions from Ingeborg Hem

27.09.2018 and 04.10.2018 [PL], 28.09.2018 and 05.10.2018 [IL]



(Latest changes: 01.10: small changes for second week. 27.09:
added one Problem for ILwl, moved stuff to w2, added a few
dimensions to score test.)



Overview

Learning material

» Textbook: Fahrmeir et al (2013): Chapter 5.2, 5.3.
» Classnotes 27.09.2018
» Classnotes 04.10.2018


https://www.math.ntnu.no/emner/TMA4315/2018h/TMA4315M4H20180927.pdf
https://www.math.ntnu.no/emner/TMA4315/2018h/TMA4315M4H20181004.pdf

Topics
First week

examples of count data

the Poisson distribution

regression with count data

Poisson regression with log-link

parameter estimation (ML): log-likelhood, score vector,
information matrix to give iterative calculations
asymptotic MLE properties

» confidence intervals and hypothesis tests (Wald, score and
LRT)
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Jump to interactive (week 1)



Second week

» Count data with Poisson regression (continued)

» deviance, model fit and model choice

» overdispersion

» rate models and offset

» Modelling continuous response data: lognormal and gamma
> the gamma distribution

» the gamma GLM model

» gamma likelihood and derivations thereof

» dispersion parameter: scaled and unscaled deviance

Jump to week 2 and interactive (week 2).

FIRST WEEK



Examples of count data

the number of automobile thefts pr city worldwide

the number of UFQO sightings around the world

the number of visits at web pages

the number of male crabs (satellites) residing nearby a female

crab

» the number of goals by the home team and the number of
goals for the away team in soccer

» the number of newspapers sold at newsagents

vVvyYyYyywy



Sales of newspapers

This is a short description of a project run at the Norwegian
Computing Centre a few years ago.

The aim of the project was to provide a statistical model to predict
the number of newspapers to be sold at each of 11 thousand outlets
all over Norway for a given day (“tomorrow” - maybe scaled to
match front page issues). And then based on the prediction to
decide on how many newspapers to be delivered to each outlet in
order to optimize the overall profit (lost sales if outlet are sold out,
return costs if unsold papers).

Response data: number of newspapers (delivered) sold at each
outlet. Covariate data: type of outlet, but mainly calendar
information= weekday, month, season, public holidays,
winter/autumn/easter/xmas, ...


www.nr.no
www.nr.no

Female crabs with satellites

The example is taken from Agresti (1996): “An Introduction to
Categorical Data Analysis”, and the data is from a study of nesting
horseshoe crabs (J. Brockmann, Ethology 1996)

First, the study objects were female crabs (horseshoe crabs). Each
female crab had a male crab attached to her in her nest. The
objective of the study was to investigate factors that affect whether
the female crab had any other males, called satellites, residing near
her. The following covariates were collected for 173 female crabs:

» C: the color of the female crab (1=light medium, 2=medium,
3=dark medium, 4=dark)

» S: spine condition (1=both good, 2=one worn or broken,
3=both worn or broken)

» W: width of carapace (cm)

> Wt: weight (kg)

The response was the number of satellites, Sa= male crabs residing
nearby.



library(ggplot2)

library(GGally)

crab = read.table("https://www.math.ntnu.no/emner/TMA4315/:
colnames(crab) = c("Obs", "C", "S", "w", "Wt", "Sa")

crab = crabl, -1] #remove column with Obs

crab$C = as.factor(crab$C)

crab$S = as.factor(crab$s)

ggpairs(crab)
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Modelling counts with the Poisson distribution

The Poisson process

We observe events that may occur within a time interval or a region.

1. The number of events occuring within a time interval or a
region, is independent of the number of events that occurs in
any other disjoint (non-overlapping) time interval or region.

2. The probability that a single event occurs within a small time
interval or region, is proportional to the length of the interval
or the size of the region.

3. The probability that more than one event may occur within a
small time interval or region is negligable.



When all of these three properties are funfilled we have a Poisson
process. This leads to three distributions

» The number of events in a Poisson process follows a Poisson
distribution.

» Time between two events in a Poisson process follows an
exponential distribution.

» Time between many events in a Poisson process follows a
gamma distribution.

We will first study the Poisson distribution - and link it to a
regression setting.



The Poisson distribution

We study a Poisson process within a time interval or a region of
specified size. Then, the number of events, Y, will follow a Poisson
distribution with parameter A

y
fly)= A—Ie*)‘ fory=0,1,2,...
y!

Here the parameter )\ is the proportionality factor in the requirement
2 (above) for the Poisson process. Another popular parameterization
is 1, or given some interval At, but we will stick with A. In R we
calculate the Poisson point probabilities using dpois.

If you want to see how this distribution function is derived form the
binomial distribution you may watch this video: Poisson process and
distribution


https://mediasite.ntnu.no/Mediasite/Play/5517061a4ada489eb5eb8d90431923fe1d?catalog=0fce6173-7a98-4db7-84b7-50cba3a3a341
https://mediasite.ntnu.no/Mediasite/Play/5517061a4ada489eb5eb8d90431923fe1d?catalog=0fce6173-7a98-4db7-84b7-50cba3a3a341

Cumulative distribution (cdf): The cumulative distribution is
calculated by summing F(y) = >>,<, f(t), and we might calculate
the Poisson cdf in R with ppois.

Expected value and variance: Let Y follow a Poisson distribution
with parameter A. Then

E(Y)=Xand Var(Y) =\

Proof:
=N =N 20l 2\
E(y) = y—e = y—e = L e =2y e
) yZZO y! yzzjl y! yzzjl(y—l)! Zz:%z!

In the first transition we use that the term y = 0 gives no
contribution to the sum. Then we cancel out y in the numerator
with the first term of y! in the denominator. Then we let z=y — 1,
and finally we use that the sum of the Poisson distribution for all
possible outcomes equal 1.

To calculate the variance we first use that
Var(Y) = E(Y?) — (E(Y))

PR N T e



Properties of the Poisson distribution

» A sum of n independent Poisson distributed random variables,
Y; with means \; are Poisson distributed with mean > ; ;.

» When the mean increases the Poisson distribution becomes
more and more symmetric and for large A the Poisson
distribution can be approximated by a normal distribution.



Exponential family

In Module 1 we introduced distributions of the Y;, that could be
written in the form of a univariate exponential family

<Yi9i :bb(ei)

f(yi | 0i) =exp -wi + c(yi, @, Wi))

where we said that

> 0; is called the canonical parameter and is a parameter of
interest

» ¢ is called a nuisance parameter (and is not of interest to
us=therefore a nuisance (plage))

> w; is a weight function, in most cases w; = 1

» b and c are known functions.

It can be shown that E(Y;) = b'(6;) and Var(Y;) = b"(6;) - %, see
derivation from Module 1.


https://www.math.ntnu.no/emner/TMA4315/2017h/M5ExpFamProofEVar.pdf

In Module 1 we found that the Poisson distribution
Y; ~ Poisson();) is an exponential family derivation from Module 1,

and that
» 0; = In()\;) is the canonical parameter
» ¢ =1, no nuisance
> wp = 1
> b(6;) = exp(0)
> i =E(Yi) =X\

For a GLM with linear predictor 7); - to have a canonical link we need
i = ni
Since n; = g(u;) = g(\;) this means to us that we need
g(wi) = g(\i) =0

saying that with the Poisson the canonical link is In(A;).

Q: Why may we want to choose a canonical link?


https://www.math.ntnu.no/emner/TMA4315/2017h/Module1ExponentialFamily.pdf

Regression with count data

Aim

1. Construct a model to help understand the relationship between
a count variable and one or many possible explanatory variables.
The response measurements are counts.

2. Use the model for understanding what can explain count, and
for prediction of counts.



What is we instead want to use the multiple linear regression
model?

When modelling the counts some times the normal approximation
might be used, especially when the counts are high. It is also
possible to use a transformation of the response to get a constant
variance. The transformation \/Y; give an approximate constant
variance, but then it is not clear if there then is a linear relationship
between E(1/Y;) and the covariates.

In general, with count data, we instead use a Possion GLM
regression.



The linear Poisson model

It is possible to construct a linear Poisson model where we have the
direct relationship
Ai =

between the mean of the Poisson distribution and the linear
predictor.

This means that the covariates have an additive effect on the rate
A

However, since the rate \; can not be negative, then to use this

model restrictions on the parameter space of the 3 is needed.

We will not use the linear Poisson model, but instead the log-linear
Poisson model.



The log-linear Poisson model

Assumptions:

1. Y; ~ Poisson()\;), with E(Y;) = A;, and Var(Y;) = ;.
2. Linear predictor: n; = x,-TB.
3. Log link

ni = In(\;) = g(\i)

and (inverse thereof) response function
Ai = exp(n;)
Assumptions 1 and 3 above can be written as

Yi ~ Poisson(exp(n;)), i=1,...,n



Interpreting parameters in the log-linear Poisson model

In the log-linear model the mean, E(Y;) = \; satisfy an exponential
relationship to covariates

Ai = exp(ni) = exp(x] 8) = exp(fBo) - exp(1)* - - - exp(Bi) .
Let us look in detail at 81 with covariate x;; for observation i.

1. If xj1 increases by one unit to x;; + 1 then the mean E(Y;) will
in our model change by a factor exp(51).

2. If B1=0 then exp(/51) = 1, so that a change in xj; does not
change E(Y).

3. If 51 < 0 then exp(B1) < 1 so if x;1 increase then E(Y})
decrease.

4. If B1 > 0 then exp(fB1) > 1 so if xj; increase then E(Y;)
increase.

Thus, the covariates have a multiplicative effect on the rate A;.



Example: interpreting parameters for the female crabs with
satellites

We fit a log-linear model to Sa, assuming the number of satellites
follows a Poisson distribution with log-link.

Q:

1. First the model is fitted with intercept only. What do we
assume then? Interpret the fit.

2. Then width W is added as a covariate in the log-linear model.
What happens if the width increase by one unit (cm)?

3. What is the predicted number of satellites for the average
width?



modell = glm(Sa ~ 1, family = poisson(link = log), data
cat("Intercept only\n")

print (modelil$coefficients)

cat("Intercept only, exp\n")
exp(modeli$coefficients)

print (mean(crab$Sa))

model2 = glm(Sa ~ W, family = poisson(link
cat("Intercept + W\n")

print (model2$coefficients)
cat("Intercept+W, exp\n")
exp(model2$coefficients)

cat("summary of width\n")

log), data

summary (crab$W)
cat("what is this?\n")
print (exp(model2$coefficients[1] + model2$coefficients[2]

## Intercept only
## (Intercept)
## 1.071267



Parameter estimation with maximum likelihood

Our parameter of interest is the vector 3 of regression coefficients,
and we have no nuisance parameters. We would like to estimate 3
from maximizing the likelihood - the presentation here is essentially
the same as for Module 3: Binary regression - with “Poisson and
log” instead of “Bernoulli and logit”. And, also here we will not

A

have a closed form solution for 5 (except for a few special cases).



Likelihood L(3)

We assume that pairs of covariates and response are measured
independently of each other: (x;, Y;), and Y; follows the distribution
specified above, and x; is fixed.

n n no\yi

L(8) = T i(8) = [T F0vii B) = [T =& exp(—A)

=1 i=1 =1 Yi°

Note: still a slight misuse of notation - where is 57

A: n; = In(\;) = x/ B, so replace \; with exp(x; 3).



Loglikelihood /()

The log-likelihood is just the natural log of the likelihood, and we
work with the log-likelihood because this makes the mathematics
simpler - since we work with exponential families. The main aim
with the likelihood is to maximize it to find the maximum likelihood
estimate, and since the log is a monotone function the maximum of
the log-likelihood will be in the same place as the maximum of the
likelihood.

I(B) = InL(B Z InL;(B) =>_h(B) = zn:[y; In(A))—Ai—In(y")]
i=1

i=1

Observe that the log-likelihood is a sum of invidual contributions for
each observation pair i. We often omit the last term since it is not
a function of model parameters, only data.



If we want a function of n; = In(\;) or 3:

Z[ym:—eXP n)+ Gl = Zy, TB- ZeXp (x/ B) +

i=1



Score function s(f3)

The score function is a p x 1 vector, s(/3), with the partial
derivatives of the log-likelihood with respect to the p elements of
the B vector. Remember, the score function is linear in the
individual contributions:

n

s(8) = 2 = > B> s0)

i=1

We work with /;(3) = li(mi(ni(f))) and use the chain rule to find
si(B).

5(5) = oLi(B) _ 9li(B) dmi _ Olymi —exp(ni) + G 9[x/ A]

o om 9B o op

= [yi —exp(ni)] - xi = (yi — Ai)x;

See Module 3 for rules for partial derivatives of scalar wrt vector.



The score function is given as:

s(B) =Y _si(B) =D _(vi — Ai)xi
i=1 i=1
Again, observe that E(s;()) = E((Y; — A\i)x;) = 0 because
E(Y;) = Ai, and thus also E(s(3)) = 0.

To find the maximum likelihood estimate ﬁA we solve the set of p
non-linear equations:

s(3) =0
And, as before we do that using the Newton-Raphson or Fisher
Scoring iterative methods, so we need the derivative of the score
vector (our Fisher information).



The expected Fisher information matrix F(/3)

We saw in Module 3 that the expected Fisher information matrix,
F(B) is equal the covariance matrix of the score function.

F(B) = Cov(s ZCOV si(B)) (1)
—ZE%, um»@m—ammﬂ} )

=2HW%WU=ZH@ (3)

where it is used that the responses Y; and Y] are independent, and
that E(s;(8)) =0 Vi.

Remember that s;(5) = (Y; — Ai)x;, then:



Observed Fisher information matrix H(/3)

We do not really need the observed version of the Fisher information
matrix, and since we use canonical link H(3) = F(3) - so we
already have it.

But, for completeness, we add the direct derivation of H(}3).

021 Os 0 |
H(B) = _(%G(B/B; =— 85(57) = 95T Lz_:l()\i _}’i)xi‘|

= é);)T [Z(eXP(m) - }/i)xf]

i=1

because s(8) = > i1 (¥i — Ai)x; and hence
—S(ﬁ) = 2?21()\,' — y,-)x,-. Note that \; = exp(77,-).



1 8)\,’ 877,'
ZaBT[XI i xl_yl ZaﬁT :gxiaimaBT

Use that
-
877/'_5X;Tﬁ_ 8XiTﬁ T
opT — opT ~\ o ) 7
and
O\i  Oexp(mi) N
on oy PN
And thus

n
= Z x;x] A\
i=1

Note that the observed and the expected Fisher information matrix

Aava AamiiAal fean RalAaias ~rarmAan Al Al #lhat+ +hic e A carmaral faAdimA~)



Parameter estimation - in practice

To find the ML estimate B we need to solve
s(f)=0

We have that the score function for the log-linear model is:

n

s(8) = D_xi( Zx —exp(x{ B)).

i=1

Observe that this is a non-linear function in 3, and has no closed
form solution (except for a few special cases).



Fisher scoring

To solve this we use the Fisher scoring algorithm, were we at
interation t + 1 have

B = 519+ F(5)1s(81)

Remark: what do we need to do to use the Newton-Raphson
method instead? Well, replace F with H, but for canonical link
(which is the log-link for the Poisson) F = H.



Requirements for convergence

For the Fisher scoring algorithm the expected Fisher information
matrix F needs to be invertible, and analogous to what we saw in
Module 3 this is possible if A\; > 0 for all i and that the design
matrix has full rank (p). Since we have the log-link we have that
\i = exp(x; B) which is always positive, so all good. Note, with the
linear link A\; = n; this might be a challenge, and restrictions on 3
must be set.

Again, it is possible that the algorithm does not converge. This may
happen for “unfavorable” data configurations (especially for small
samples). Accoring to our text book, Fahrmeir et al (2013), page
284, the conditions for uniqueness and existence of ML estimators
are very complex, and the authors suggest that the GLM user
instead checks for convergence in practice by performing the
iterations - also for the Poisson log-linear model.



Statistical inference

Asymptotic properties of ML estimates

We repeat what we found for Module 3: Under some (weak)
regularity conditions:

Let 3 be the maximum likelihood (ML) estimate in the GLM model.
As the total sample size increases, n — oc:

1. B exists
2. [ is consistent (convergence in probability, yielding
asymptotically unbiased estimator, variances goes towards 0)

3. B~ Ny(8, F(B))

Observe that this means that asymptotically Cov(3) = F~1(5): the
inverse of the expected Fisher information matrix evaluated at the
ML estimate.



In our case we have
n
=> xix/ A\ = XTWX,
i=1

where W = diag();). This means Cov(ﬁ) (XTwx)~!
(remember that 3 comes in with A; in W).

Let A(8) = F~(B), and a;j(3) is diagonal element number j.

For one element of the parameter vector:

z - B — ﬁf
V ajj(ﬁ)

is standard normal, which can be used to make confidence intervals -
and test hypotheses.




Confidence intervals

In addition to providing a parameter estimate for each element of
our parameter vector /3 we should also report a (1 — a)100%
confidence interval (Cl) for each element.

Let z,/» be such that P(Z; > z,/») = a/2. We then use
P(=z4p < Zj < z4pp) =1 -«

insert Z; and solve for 3; to get

P(Bj — zay2\/ a5(B) < B < By — zajo\/35(B)) =1 — o

A (1 — )% Cl for §j is when we insert numerical values for the
upper and lower limits.



Example: Female crabs with satellites
Q:

1. Explain what is done in the R-print-out.
2. What if we instead want a Cl for By + [1xj1?
3. What if we instead want a Cl for A\; = exp(5o + S1xi1)?



model2 = glm(Sa ~ W, family = poisson(link = log), data = «

summary (model?2)
cat("lower\n")
lower = model2$coefficients - gnorm(0.975) * sqrt(diag(vco
lower

cat ("upper\n")

upper = model2$coefficients + qnorm(0.975)

upper
confint (model?2)

*

sqrt(diag(vco

##

## Call:

## glm(formula = Sa ~ W, family = poisson(link = log), dat:
##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -2.8526 -1.9884 -0.4933 1.0970 4.9221

##

## Coefficients:

NTHTR D D Y o T | ™. =m0



Hypothesis testing

There are three methods that are mainly used for testing hypotheses
in GLMs - these are called Wald test, likelihood ratio test and score
test. In Module 3 we looked at the Wald and likelihood ratio test -
and what we found there still applies for the Poisson GLM. We only

repeat the previous findings, and then add an example with the crab
data.

We will look at null hypotheses and alternative hypotheses that can
be written

Ho:C8=dvs. C3#d

by specifying C to be a r x p matrix and d to be a column vector of
length r,

and/or where we define
» A: the larger model and

» B: the smaller model (under Hp), and the smaller model is
nested within the larger model (that is, B is a submodel of A).



The Wald test

The Wald test statistic is given as:
w = (CA—d)T[CF}(B)CT]"}(CA — d)

and measures the distance between the estimate CB and the value
under then null hypothesis d, weighted by the asymptotic covariance
matrix of C/3, and under the null follows a y2 distribution with r
degrees of freedom (where r is the number of hypotheses tested).

P-values are calculated in the upper tail of the y2-distribution.



The likelihood ratio test

Notation:

> A: the larger model and

» B: the smaller model (under Hp), and the smaller model is
nested within the larger model (that is, B is a submodel of A)

The likelihood ratio statistic is defined as

“2Inx = —2(InL(Bg) — InL(34))

which under the null is asymptotically y2-distributed with degrees of

freedom equal the difference in the number of parameters in the
large and the small model.

Again, p-values are calculated in the upper tail of the
x2-distribution.



The score test

We continue to use the notation that A: the larger model (under
Hi) and B: the smaller model (under Hp), and still assume that the
smaller model is nested within the larger model (that is, B is a
submodel of A).

The score statistics is based on the score function, and measures the
distance to the score function at the maximum likelihood for model
A (which is 0) and scales with the covariance to form the test
statistic.

» Under the null hypothesis investigated let B be the ML
estimate (that is, model B, the smaller model) - that means
that this is a restricted ML estimate, and

» under H; we have the larger model (A) with maximum
likelihood 2.



The score statistics is:

U= (s(B)—0)"F1(B)(s(B) - 0)
Here s(/3) represents a subvector of the score function where only
the elements that is in H; and not in Hp are present (so dimension
is the difference in number of parameters between A and B models),
but the score function is evaluated based on parameter estimates
under Hp (i.e. the value of X in the score and expected Fisher
information is based on B

To calculate F~(3) this is a submatrix of the full inverted matrix
(not invert just the submatrix). The dimension of this matrix is
“difference in number of parameters between A and B models”
squared.

When the null hypothesis is true U as an asymptotic x2-distribution
with r degrees of freedom (difference in number of estimated
parameters between the large and small model).



Remark: In R the function glm.scoretest in the package
statmod calculates the score test for a GLM when the difference
between Hy and H; is one parameter. The output from the
glm.scoretest is the square root of U and must be squared and
related to a X7 distribution (see example below).

The score test is very useful for special situations when the smaller
model is to be tested towards many larger models, because only the
smaller model has to be fitted.

The score test is perhaps the the most complex and least studied of
the three tests, and in this course the main focus will be on the
Wald and LRT tests. But, it is important for you to have heard of
the score test, because in special situation it may be the preferred
test.



Example: Female crabs with satellites - the different tests.

We fit a model with two covariates, one is categorical and we use
effect coding. We want to test if we need to add these covariates.

Q: Comment on what you see in the print-out. Which hypotheses
are we testing? Compare the test statistics.

library(statmod)
model3 = glm(Sa ~ W + C, family = poisson(link = log), dat:
summary (model3)

# possible to use type III in Anova
library(car)

Anova(model3, type
Anova(model3, type

"TII", test.statistic "Wald") #@Q:s
"ITII", test.statistic = "LR") #same

# compare to type I with anova - just to remember the diff
# type I and III anova(model3,test='Chisq') anova(model3,t



Optional: We also include the results for the score test, but to test
an hypothesis for a factor (more than one column in our design
matrix) the glm.scoretest can not be used and then some
manual programming is done below. There exists other packages to
perform score tests for GLMs, but is not considered here.

# for score test we need ML under HO, and we need to fit ti
# models here when HO is model with tintercept and W:
model2a = glm(Sa ~ W, family = poisson(link = log), data
# when HO is model with intercept and C:

model2b = glm(Sa ~ C, family = poisson(link = log), data

# First HO is intercept and C and H1 is to add W (only one
testobs3b = glm.scoretest(model2b, x2 = crab$W) "2
testobs3b

1 - pchisq(testobs3b, 1)

# alternatively, implement from scratch
X = model.matrix(model3)
colnames (X)



Interactive session - first week

Problem 1: Exam 2005 (Problem 1d-f - slightly modified) -
Female crabs and satellites

(Only a subset of 20 crabs in the original data was used in the exam
problems, but we will use the full data set of 173 crabs - so results
will not be the same. Permitted aids for the exam was “all printed
and handwritten material and all calculators” - NB that is not the
case for 2018!)

We assume that the number of satellites for each female crab
follows a Poisson distribution and want to perform a Poisson
regression using a log-link to find if there is a connection between
the expected number of satellites Sa and the width W and colour C
of the carapace of the female crab.

» C: the color of the female crab (1=light medium, 2=medium,
3=dark medium, 4=dark)
» W: width of carapace (cm)

—— - 1 . 1 .. 1



Problem 2: Exam 2017 (Problem 1) - Poisson regression

Consider a random variable Y. In our course we have considered the
univariate exponential family having distribution (probability density
function for continuous variables and probability mass function for
discrete variables)

f(y) = exp <y9—(;)(0)W +c(y, ¢, W))

where 6 is called the natural parameter (or parameter of interest)
and ¢ the dispersion parameter.

The Poisson distribution is a discrete distribution with probability
mass function

\Y
fly)= Wexp(—)\), fory=0,1,...

where A > 0.
a) (10 points)


https://www.uio.no/studier/emner/matnat/math/STK3100/h17/stk3100-4100_2017_2eng.pdf
https://www.uio.no/studier/emner/matnat/math/STK3100/h17/stk3100-4100_2017_2eng.pdf

Poisson regression for count data

What did we do last week?

Examples — GLM model — loglikelihood, score function and Fisher

information matrix — asympototic results for /Aj' and Wald, score
and LRT.



Residuals

Two types of residuals are popular: deviance and Pearson.

Deviance residuals

Recall that the deviance was defined by relating a candidate model
to a saturated model and calculating the likelihood ratio statistic
with these two models.

Saturated model: If we were to provide a perfect fit to our data
then we would estimate the mean \; by the observed count for
observation i. That is, 5\,- = y; Then X is an n dimensional column
vector with the elements 5\;.

Candidate model: The model that we are investigated can be
thought of as a candidate model. Then we maximize the likelihood
and get BA which through our linear predictor and link function we
turn into 3\,-, also called ¥;. Then X is an n-dimensional column
vector with the elements J;, also called y.



D = —2(In L(candidate model)—In L(saturated model)) = —2(/(A)—/(}))

Inserting the Poisson likelihood and \; estimates this gives:

D=2y In(j;) — (i — i)l
i=1 !

Where y; = exp(x,-TBA). Verify this by yourself.

The deviance residuals are given by a signed version of each element
in the sum for the deviance, that is

_ 1/2
o = sign(y; — ) {2l )~ 0 - i}

where the term sign(y; — §;) makes negative residuals possible - and
we get the same sign as the Pearson residuals



Pearson residuals

The Pearson residuals are given as

where o; is the observed count for observation i and ¢; is the
estimated expected count for observation i. We have that o; = y;
and e = §; = \; = exp(x/ B).

Remark: A standardized version scales the Pearson residuals with
v/1 — hj; similar to the standardized residuals for the normal model.
Here hj; is the diagonal element number i in the hat matrix

H= X(XTX)_1XT.



Plotting residuals

Deviance and Pearson residuals can be used for checking the fit of
the model, by plotting the residuals against fitted values and
covariates. Normality of residuals are also assumed, and can be
checked using qg-plots as for the MLR in Module 2.

Below - notice the trend in the residuals, this is due to the discrete
nature of the response. The plot with different shades of blue shows
that the structures are for equal values of y.

model3 = glm(Sa ~ W + C, family = poisson(link = log), dat:
S = "contr.sum"))

df = data.frame(Sa = crab$Sa, fitted = model3$fitted.value:
type = "deviance"), pres = residuals(model3, type = '"p«
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Deviance residuals

Normal Q-Q
glm(formula = Sa ~ W + C, family = poisson(link = log), data = crab,

5.0-

0
Theoretical quantiles



Pearson residuals

Normal Q-Q
glm(formula = Sa ~ W + C, family = poisson(link = log), data = crab,

0
Theoretical quantiles




Model assessment and model choice

The fit of the model can be assessed based on goodness of fit
statistics (and related tests) and by residual plots. Model choice can
be made from analysis of deviance, or by comparing the AIC for
different models.



Deviance test

We may use the deviance test presented in Module 3 to test if the
model under study is preferred compared to the saturated model.

We may write the deviance test as a sum of the squared deviance
residuals.

D= 22[}/,- In(%) — (vi — 1)

Remark: if 3.1, y; = > ¥i then deviance residuals will be equal
to

D=2 yin(%)
i—1 Yi

Q: is this the case for the log-linear model?
A: yes, but only if an intercept is included in the model?

The deviance statistic might be approximately X%—p! at least when
the counts are high.



Pearson test

The Pearson x?-goodness of fit statistic is given as the sum of the
squared Pearson residuals

5 \2
2 2 v, — %)
Xe=2 17 =) 5=
i=1 i=1 Yi

where ; = \; = exp(x] ). The Pearson \? statistic is
asymptotically equivalent to the deviance statistic and thus is
asymptotically x3_,.
Remark: See connection with Pearson residuals.
Remark: the asymptotic distribution of both statistics (deviance
and Pearson) are questionable when there are many low counts.

Agresti (1996, page 990) suggest analysing grouped data, for
example by grouping by width in the crab example.

Remark: The Pearson statistic is also used for testing independence
in contingency tables - we will do that in Compulsory Exercise 2.



Example: goodness of fit with female crabs

Q: Comment on the print-out. Is this a good fit? What might a bad
fit be due to?

model3 = glm(Sa ~ W + C, family = poisson(link = log), dat:
summary (model3)

1 - pchisq(model3$deviance, model3$df.residual)

Xp = sum(residuals(model3, type = '"pearson") 2)

Lp

1 - pchisq(Xp, model3$df.residual)

#i#

## Call:

## glm(formula = Sa ~ W + C, family = poisson(link = log),
## contrasts = 1list(C = "contr.sum"))

#i#

## Deviance Residuals:

## Min 1Q Median 3Q Max

NTHTR -~ AANAr A4 Aro4d " r~r--r N AOONA N r-oon



AIC

Identical to Module 3 - we may use the Akaike informations criterion.
Let p be the number of regression parameters in our model.

N

AIC=—-2-1(B)+2p

A scaled version of AIC, standardizing for sample size, is sometimes
preferred. And, we may also use the BIC, where 2p is replaced by
log(n) - p.

Analysis of deviance

Identical to Module 3 we may also sequentially compare models,
and use analysis of deviance for this.



Overdispersion

Count data might show greater variability in the response counts
than we would expect if the response followed a Poisson distribution.
This is called overdispersion.

Example: newspaper sales with tourist bus.

Our model states that the variance Var(Y;) = A;. If we change the
model to Var(Y;) = ¢\; we may allow for an increased variance due
to heterogeniety among subjects.

Agresti (1996, page 92) explains: “For our crab data set, what if
width, weight, colour and spine affect the number of satellites for a
female crab, and we only fitted a model with width as covariate.
Then the crabs with a certain width are a mixture of crabs of various
weights, colours and spine condition - that is, a mixture of several
Poisson populations, each with its own mean for the response. This
heterogeniety may give an overall response distribution where the
variance is greater than the standard Poisson variance.”



The overdispersion parameter can be estimated as the average
Pearson statistic or average deviance

1
n—p

bp = D

where D is the deviance. Note that similarit}A/ to
02 =1/(n— p)-SSE in the MLR. The Cov(/3) can then be changed
to ®F (), so we multiply the standard error by the square root of

¢p.

Remark: We are now moving from likelihood to quasi-likelihood
theory, where only E(Y;) and Var(Y;) - and not the distribution of
Y; - are used in the estimation.



model.disp = glm(Sa ~ W, family = quasipoisson(link
summary.glm(model.disp)
summary.glm(model .disp)$dispersion

##
##
##
##
##
##
##
##
#Hit
##
#Hit
##
##
##
##

Call:
glm(formula = Sa ~ W, family = quasipoisson(link

Deviance Residuals:
Min 1Q Median 3Q Max
-2.8526 -1.9884 -0.4933 1.0970 4.9221

Coefficients:

Estimate Std. Error t value Pr(>lt])
(Intercept) -3.30476 0.96729 -3.417 0.000793
W 0.16405 0.03562 4.606 7.99e-06

Signif. codes: O 'xxx' 0.001 'sx' 0.01 'x' 0.05

P . . . . . . P

= log)

= log)

*kkk
*k %k k



Rate models and offset

In the Poisson process we might analyse an event that occurs within
a time interval or region in space, and therefore it is often of
interest to model the rate at which events occur.

Examples:

» crime rates in cities
» death rate for smokers vs. non-smokers
» rate of auto thefts in cities

Agresti (1996, page 86): “what if we want to model the number of
auto thefts for a year in a sample of cities. We would make a rate
for each city by dividing the number of auto thefts by the
population size of the city. The model could then describe how this
rate depends on unemployment rate, median income, percentage of
residents having completed high school.”"



Now we don't want a model for Y; but for Y;/t;, where

» Let t; denote the index (population size in the example)
associated with observation i.

» We still assume that Y; follows a Poisson distribution, but we
now include the index in the modelling and focus on Y;/t;.

» The expected value of Y;/t; would then be E(Y;)/t; = \;i/t;.

A log-linear model would be
log(\i/t;) = x/ 3
We may equivalently write the model as
log(A;) — log(t;) = x/ 8

This adjustment term is called an offset and is a known quantity.

The expected number of outcomes will then satisfy

E(Y;) = \i = trexp(x] B).



Example: British doctors and rate models

Count data - the number of times and event occurs - is common. In
one famous study British doctors were in 1951 sent a questionnaire
about whether they smoked tobacco - and later information about
their death were collected.

Research questions that were asked were: 1) Is the death rate higher
for smokers than for non-smokers? 2) If so, by how much? 3) And,
how is this related to age?

library(boot)

7" (breslow)

# mn=person-year, ns=smoker-years, age=midpoint 10 year age
# of deaths due to cad, smoke=smoking status

head (breslow, n = 10)

## age smoke n y ns
## 1 40 0 18790 2 0
# 2 50 0 10673 12 0



To investigate this we will look at different ways of relating the
expected number of deaths and the number of doctors at risk in the
observation period for each smoke and age group. The aim is to
model the rate of cardiovascular mortality.

# first age and smoke (but not interaction thereof)

fitl <- glm(y ~ factor(age) + factor(smoke), offset = log(i
data = breslow)

summary (fit1)

# do we meed interaction?

fit2 <- update(fitl, . ~ . + factor(smoke) * factor(age))
summary (fit2)

anova(fitl, fit2, test = "Chisq")

# yes, significant interaction between age and smoking - h
# compare to a deviance test for fitl?

# reporting on final model - give rate in each possible gr
cbind(fit2$fitted.values, breslow$y) #perfect fit since n
exp(predict(fit2, type = "link"))



Modelling continuous positive response data

Examples of continuous positive responses

Insurance: Claim sizes

Medicine: Time to blood coagulation (main example)
Biology: Time in various development stages for fruit fly
Meteorology: Amount of precipitation (interactive session -
exam question 2012)

vVvyYyYyywy



Models for continuous positive responses

» Lognormal distribution on response
» Gamma distribution on response
» Inverse Gaussian distribution on response (we will not consider

this here)



Time to blood coagulation

This data is described in McCullagh and Nelder (1989, page 300).
The data represents clotting time of blood (in seconds) y for normal
plasma diluted to nine different percentage concentrations u with
socalled prothrombin-free plasma. To induce the clotting a chemical
called thromboplasting was used, and in the experiment two
different lots of the chemical were used - denoted lot. Our aim is
to investigate the relationship between the clotting time and the
dilution percentage, and look at differences between the lots.



clot = read.table("https://www.math.ntnu.no/emner/TMA4315/:
clot$lot = as.factor(clot$lot)

summary (clot)

#it u time lot
## Min. : 5 Min. 1 12, 1:9
## 1st Qu.: 15 1st Qu.: 18. 2:9

## Median : 30 Median : 23.
## Mean : 40 Mean : 32.
## 3rd Qu.: 60 3rd Qu.: 35.
## Max. :100 Max. :118.

O O o1 O O O



Lognormal distribution

Let Y; be the response on the original scale, where Y; > 0.

Transform the response to a logaritmic scale: Y;* = In(Y;). Then,
assume that transformed responses follow a normal distribution (or
follows approximately) and use ordinary MLR. This means we have
a GLM with normal response and identity link (on logarithmic scale
of reponse).

1 N(p;, o*?)
- x/
3 n;i (identity link)



There are two ways of looking at this,

1. either this is just a transformation to achieve approximate
normality, or

2. we assume that the original data follows a lognormal
distribution.

In genomics one usually assume the former, and reports back results
on the exponential scale - just say that the mean of original data is
exp(11}).

However, if on instead assume that the original data really comes
from a lognormal distribution, then it can be shown that

E(Yi) = exp(u}) - exp(c7?/2)
Var(Y;) = exp(c*? — 1) - 12

i.e. standard deviation proportional to expectation. That is in
general a put-off for using the lognormal model.



orgmu = 1
orgsd = 0.3
library(ggplot2)

xrange = range(rlnorm(1000, orgmu, orgsd))
ggplot(data.frame(x = xrange), aes(xrange)) + xlab(express
args = list(meanlog = orgmu, sdlog = orgsd), geom = "I:
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Gamma regression

The gamma distribution

We have seen that a gamma distributed variable may be the result
of the time between events in a Poisson process. The well known

Xg—distribution is a special case of the gamma distribution (HL =2,

V:%).

There are many parameterization for the gamma distribution, but
we will stick with the one used in our textbook (page 643):

Y; ~ Ga(pi,v) with density

v, v—1

f(yi) = W(M )"y eXP(—iy,') fory; >0



mu = 1

nu = 0.3

library(ggplot2)

xrange = range(rgamma(1000, shape = mu/nu, scale = nu))

ggplot(data.frame(x = xrange), aes(xrange)) + xlab(express
args = list(shape = mu/nu, scale = nu), geom = "line",

0.8-

0.6-
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We found in Module 1, see exponential family that the gamma
distribution is an exponential family, with

> 0 = —i is the canonical parameter
| 2 gb = %r

> w; =

> b( ,') = — |n(—9,-)
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https://www.math.ntnu.no/emner/TMA4315/2017h/Module1ExponentialFamily.pdf

For a GLM model we have canonical link if
0 = n;
Since n; = g(u;) this means to us that we need

1

0 = g(ui) = ——
(1) i

saying that with the canonical link is —i.

However, the most commonly used link is g(x;) = In(u;), and the
identity link is also used.

Q: Discuss the implications on 7; when using the canonical link.
What about using log-link?



Remark: often the inverse and not the negative inverse is used, and

since 1
-
glpi)=——=x; p
(:U’I) Mi ]
then 1
—=—x/f=x/p"
i

where % = —f.



Gamma GLM model

1. Y~ Ga(ui,v)
2. mi=x/p
3. Popular link functions:

» n; = u; (identity link)
> = i (inverse link)
» n; = In(p;) (log-link)

Remark: In our model the parameter u; varies with i but v is the
same for all observations.



Example: Time to blood coagulation

A simple model to start with is as follows (dosages often analysed
on log scale):

fitl = glm(time ~ lot + log(u), data = clot, family = Gamma(link = log))
summary (fit1)

##

## Call:

## glm(formula = time ~ lot + log(u), family = Gamma(link = log),
## data = clot)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max
## -0.17470 -0.11596 -0.04281 0.06919 0.27749
##

## Coefficients:

## Estimate Std. Error t value Pr(>|tl)

## (Intercept) 5.44660 0.13453  40.48 < 2e-16 **x*

## lot2 -0.47034 0.07095 -6.63 8.02e-06 **xx

## log(u) -0.58476 0.03772 -15.50 1.22e-10 ***

## -

## Signif. codes: 0 '#%x' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## (Dispersion parameter for Gamma family taken to be 0.02265072)
##

## Null deviance: 7.7087 on 17 degrees of freedom

## Residual deviance: 0.3211 on 15 degrees of freedom
## AIC: 104.28

##

## Number of Fisher Scoring iterations: 5



Gamma regression: likelihood and derivations thereof
Likelihood:

L) =11 exp(— 2 — vinpi +vinw + (v — 1) Iny; — In(T(v)))
i=1 Hi
Log-likelihood:

(OEDYE
i=1 !

Observe that we now- for the first time - have a nuisance parameter
v here.

—vinpi+vinv+ (v —1)Iny; — In(T'(v))]

To produce numerical estimates for the parameter of interest [ we
may proceed to the score function, and solve using Newton Raphson
or Fisher scoring. If we do not have the canonical link the observed
and expected Fisher information matrix may not be equal.

What about ¢ = 1/v? Also estimated using maximum likelihood.

Further analyses: as before we use asymptotic distribution of
parameter estimates, and of Wald, LRT and score test.



Scaled and unscaled deviance

We have defined the deviance as
D = —2(In L(candidate model) — In L(saturated model))

This is often called the scaled deviance.

The unscaled deviance is then defined as ¢D, but is sadly sometimes
also called the deviance - for example by R.

1. For the normal model the

> scaled deviance is D = % S (i — f1i)?, while
» unscaled deviance is ¢D = >_7_; (v — fi;)?

2. For the binomial and Poisson model ¢ = 1 so the scaled and
unscaled deviance are equal.

3. What about the Gamma model?



Some calculations - see IL week 2, problem 2: 1b.

—230 7 [In(%) — Y7
¢
and unscaled as ¢D = =237 1[In( ") — ylu, o P

Compare to print-out from R: the deviance in R is the unscaled
deviance.

D_

deviance(fit1)

nul = 1/summary(fitl)$dispersion

nul

D = -2 * nul * sum(log(fit1$y/fiti$fitted.values) - ((fitil:
D

deviance(fitl) * nul

## [1] 0.3210963
## [1] 44.14871
## [1] 14.17599
## [1] 14.17599



Comparing models

Comparing models based on deviance

fit2 = glm(time ~ lot + log(u) + lot:log(u), data = clot, :
anova(fitl, fit2)

## Analysis of Deviance Table

##

## Model 1: time ~ lot + log(u)

## Model 2: time ~ lot + log(u) + lot:log(u)
##  Resid. Df Resid. Dev Df Deviance

## 1 15 0.32110

## 2 14 0.31576 1 0.0053352

The deviance table does not include ¢, so the unscaled deviance is
reported. If significance testing is done, the estimated ¢ from the
largest model is used, and p-values are based on the scaled deviance.



anova(fitl, fit2, test = "Chisq")

1 - pchisq((deviance(fitl) - deviance(fit2))/summary(fit2):
fit2$df.residual)

anova(fitl, fit2, test = "F")

1 - pf((deviance(fitl) - deviance(fit2))/summary(fit2)$dis)
£fit2$df.residual, fit2$df.residual)

## Analysis of Deviance Table

##

## Model 1: time ~ lot + log(u)

## Model 2: time ~ lot + log(u) + lot:log(uw)

## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 15 0.32110

## 2 14 0.31576 1 0.0053352 0.6355
## [1] 0.6355477

## Analysis of Deviance Table

##t

## Model 1: time ~ lot + log(u)

## Model 2: time ~ lot + log(u) + lot:log(u)

T e = N O™ . ™~ T~ r ~ . T S T\



Comparing models based on AlC

AIC(fitl, fit2)

## df AIC
## fitl 4 104.2763
## fit2 5 105.9738

Q: would you prefer fit1 or £it27?



AIC can also be used when we compare models with different link
functions (models that are not nested).

The literature suggests to plot y; vs. each covariate to get a hint
about which link function or transformation to use.

» Identity: Plot of y; vs x; should be close to linear
» In: Plot of In(y;) vs x; should be close to linear
» Inverse (reciprocal): Plot of 1/y; vs x; should be close to linear



library(ggplot2)

library (ggpubr)
y = clot$time
x = clot$u

df = data.frame(y = y, x = %)

ggl = ggplot(df) + geom_point(aes(x = log(x), y = y))

gg2 = ggplot(df) + geom_point(aes(x = log(x), y = log(y)))
gg3 = ggplot(df) + geom_point(aes(x = log(x), y = 1/y))
gegd = ggplot(df) + geom_point(aes(x = sqrt(1/x), y = log(y!

ggarrange (ggl, gg2, gg3, gg4)

120- o
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Interactive session - second week

Problem 1: Exam 2007 (Problem 1, a bit modified) - Smoking
and lung cancer

(Permitted aids for the exam was “Tabeller og formler i statistikk”,
Matematisk formelsamling (Rottmann), one A5 sheet with your own
handwritten notes, and a simple calculator.)

The dataset given in smoking.txt consists of four variables:

» deaths: number of lung cancer deaths over a period of six
years [remark: incorrectly 1 year in exam question]

» population: the number of people [remark: incorrectly in 100
000 people in exam question]

> age: in five-year age groups (40-44, 45-49, 50-54,
55-59, 60-64, 65-69, 70-74, 75-79, 80+)

» ageLevel: age group as numbers from 1 to 9 (1 corresponds
to 40-44, 2 to 45-59, and so on)

» smoking status: doesn’t smoke (no), smokes cigars or pipe
only (cigarPipeOnly), smokes cigarettes and cigar or pipe


https://www.math.ntnu.no/emner/TMA4315/2018h/smoking.txt
http://data.princeton.edu/wws509/datasets/#smoking
https://www.jstor.org/stable/41983444?seq=1#page_scan_tab_contents
https://www.jstor.org/stable/41983444?seq=1#page_scan_tab_contents

Problem 3: Taken from UiO, STK3100, 2015, problem 2

(For reference: here is the original exam).

Do not look at the dataset before the end of the exercise! You
should solve the exercise without using R, just as if you were at an
exam.

In this problem you shall consider data of survivals from a study of
treatment for breast cancer. The response is the number that
survived for three years. The covariates were the four factors

app: appearance of tumor, two levels, 1 = malignant, 2 =
benign

infl: inflammatory reaction, two levels, 1 = minimal, 2 =
moderate or severe

age: age of patients, three levels, 1 = under 50, 2 = 50 to 69,
3 = 70 or older

country: hospital of treatment, three levels, 1 = Japan, 2 =
US, 3= UK

R [T TR JR I (L & AU LI S Y [N o T AT N JR [ T


http://www.uio.no/studier/emner/matnat/math/STK3100/oppgaver/stk3100-f15eng_final.pdf
https://www.math.ntnu.no/emner/TMA4315/2018h/breastcancer.txt

Work on your own: Exam questions
December 2013 (Essay exam)

We will consider the following Poisson regression
Y; ~ Poisson(exp(n;)), i=1,...,n

where the linear predictor is 7; = x; 3. Here x; is a vector of the p
covariates for the ith observation Y; and 3 is unknown p
dimensional column vector of unknown regression coefficients.

Write an introduction to Poisson regression and its practical usage,
for a student with a good background in statistics, but no

knowledge about Generalized Linear Models (GLM). Topics you may
want to consider, are

» When to use it? Underlying assumptions.

» Parameter estimation, limiting results for the MLE, Fisher
information and observed Fisher information, confidence
intervals and hypothesis testing.
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R packages

install.packages(c("tidyverse", "ggplot2", "statmod", "cor:
"GGally", "boot"))



Further reading

v

A. Agresti (1996): “An Introduction to Categorical Data
Analysis”.

A. Agresti (2015): “Foundations of Linear and Generalized
Linear Models.” Wiley.

» A. J. Dobson and A. G. Barnett (2008): “An Introduction to
Generalized Linear Models”, Third edition.

J. Faraway (2015): “Extending the Linear Model with R",
Second Edition. http://www.maths.bath.ac.uk/~jjf23/ELM/
P. McCullagh and J. A. Nelder (1989): “Generalized Linear
Models". Second edition.
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http://www.maths.bath.ac.uk/~jjf23/ELM/

