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Overview

Learning material

• Textbook: Fahrmeir et al (2013): Chapter 5.4, 5.8.2.
• Classnotes 27.09.2018

Additional notes (with theoretical focus):

• Exponential family from Module 1
• Proof of E and Var for exp fam
• Proof of two forms for F
• Orthogonal parameters
• IRWLS

Topics

• random component: exponential family
– elements: θ, φ, w, b(θ)
– elements for normal, binomial, Poisson and gamma
– properties: E(Y ) = b′(θ) and Var(Y ) = b′′(θ) φw (and proof)

• systematic component= linear predictor
– requirements: full rank of design matrix

• link function and response function
– link examples for normal, binomial, Poisson and gamma
– requirements: one-to-one and twice differentiable
– canonical link

• likelihood inference set-up: θi ↔ µi ↔ ηi ↔ β
• the loglikelihood
• the score function
• expected Fisher information matrix for the GLM and covariance for β̂

– what about covariance of β̂ when φ needs to be estimated?
– estimator for dispersion parameter

• Fisher scoring and iterated reweighted least squares (IRWLS)
• Pearson and deviance statistic
• AIC

– so, for the first time: no practical examples or data sets to be analysed!

Jump to interactive.

GLM — three ingredients

Random component - exponential family

In Module 1 we introduced distributions of the Yi, that could be written in the form of a univariate exponential
family

f(yi | θi) = exp
(
yiθi − b(θi)

φ
· wi + c(yi, φ, wi)

)
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where we said that

• θi is called the canonical parameter and is a parameter of interest

• φ is called a nuisance parameter (and is not of interest to us=therefore a nuisance (plage))

• wi is a weight function, in most cases wi = 1 (NB: can not contain any unknown parameters)

• b and c are known functions.

Elements - for normal, Bernoulli, Poisson and gamma

We have seen:

Distribution θ b(θ) φ w E(Y ) = b′(θ) b′′(θ) Var(Y ) = b′′(θ)φ/w
normal µ 1

2θ
2 σ2 1 µ = θ 1 σ2

Bernoulli ln
(

p
1−p

)
ln(1 + exp(θ)) 1 1 p = exp(θ)

1+exp(θ) p(1− p) p(1− p)
Poisson lnµ exp(θ) 1 1 λ = exp(θ) λ λ
gamma − 1

µ − ln(−θ) 1
ν 1 µ = −1/θ µ2 µ2/ν

Properties

E(Yi) = b′(θi) and Var(Yi) = b′′(θi) φwi
In class we study the handwritten proof together: Proof

b′′(θi) is often called the variance function v(µi).

Systematic component - linear predictor

Nothing new - as always in this course: ηi = xTi β, and we require that the n × p design matrix X =
(xT1 ,xT2 , . . . ,xTn ) has full rank (which is p).

Remark: in this course we always assume that n >> p.

Link function - and response function

Link function
ηi = g(µi)

Response function
µi = h(ηi)

Examples for normal, binomial, Poisson and gamma
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random component response function and link function
normal h(ηi) = ηi and g(µi) = µi, “identity link”.
binomial h(ηi) = eηi

1+eηi and g(µi) = ln
(

µi
1−µi

)
= logit(pi). NB: µi = pi in our set-up.

Poisson h(ηi) = exp(ηi) and g(µi) = ln(µi), log-link.
gamma h(ηi) = − 1

ηi
and g(µi) = − 1

µi
, negative inverse, or h(ηi) = exp(ηi) and g(µi) = ln(µi), log-ink.

Requirements

• one-to-one (inverse exists)
• twice differential (for score function and expected Fisher information matrix)

Canonical link

ηi = θi

so
g(µi) = θi

When the canonical link is used some of the results for the GLM (to be studied in the next sections) are
simplified.

Likelihood inference set-up

θi ↔ µi ↔ ηi ↔ β

A more informative drawing made in class.

See class notes or Fahrmeir et al (2015), Section 5.8.2 for the derivation of the loglikelihood, score and
expected Fisher information matrix.

Loglikelihood

l(β) =
n∑
i=1

li(β) =
n∑
i=1

1
φ

(yiθi − b(θi))wi +
n∑
i=1

c(yi, φ, wi)

Remark: the part of the loglikelihood involving both the data and the parameter of interest is for a canonical
link equal to

n∑
i=1

yiθi =
n∑
i=1

yixTi β =
n∑
i=1

yi

p∑
j=1

xijβj =
p∑
j=1

βj

n∑
i=1

yixij
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Score function

s(β) =
n∑
i=1

(yi − µi)xih′(ηi)
Var(Yi)

= XTDΣ−1(y− µ)

where Σ = diag(Var(Yi)) and D = diag(h′(ηi)) (derivative wrt ηi).

Remark: observe that s(β) = 0 only depends on the distribution of Yi through µi and Var(Yi).

Canonical link:

s(β) =
n∑
i=1

(yi − µi)xiwi
φ

since ∂µi
∂ηi

= b′′(θi).

Expected Fisher information matrix for the GLM and covariance for β̂

F[h,l](β) =
n∑
i=1

xihxil(h′(ηi))2

Var(Yi)

F (β) = XTWX

where W = diag( h
′(ηi)2

Var(Yi) ).

Canonical link:

∂2li
∂βj∂βl

= −xijwi
φ

(∂µi
∂βl

)

which do not contain any random variables, so the observed must be equal to the expected Fisher information
matrix.

Fisher scoring and iterated reweighted least squares (IRWLS)

Details on the derivation: IRWLS

β(t+1) = β(t) + F (β(t))−1s(β(t))

Insert formulas for expected Fisher information and score function.

β(t+1) = (XTW(β(t))X)−1XTW(β(t))ỹ(t)
i

where W is as before W = diag( h
′(ηi)2

Var(Yi) ) - but now the current version of β(t) is used. The diagonal elements
are called the working weights. The ỹ(t)

i is called the working response vector and has element i given as
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ỹ(t)
i = xTi β(t) + yi − h(xTi β(t))

h′(xTi β(t))
.

Remark: Convergens? With full rank of X and positive diagonal elements of W we are certain that the
inverse will exist, but there might be that the temporary version of W can cause problems.

See what is output from glm- observe working weights as weights..
fitgrouped = glm(cbind(y, n - y) ~ ldose, family = "binomial", data = investr::beetle)
names(fitgrouped)
fitgrouped$weights
fitgrouped$residuals

## [1] "coefficients" "residuals" "fitted.values"
## [4] "effects" "R" "rank"
## [7] "qr" "family" "linear.predictors"
## [10] "deviance" "aic" "null.deviance"
## [13] "iter" "weights" "prior.weights"
## [16] "df.residual" "df.null" "y"
## [19] "converged" "boundary" "model"
## [22] "call" "formula" "terms"
## [25] "data" "offset" "control"
## [28] "method" "contrasts" "xlevels"
## 1 2 3 4 5 6 7
## 3.254867 8.227383 14.321313 13.378893 10.261055 5.156671 2.653398
## 8
## 1.230713
## 1 2 3 4 5 6
## 0.78115418 0.38388091 -0.31082206 -0.44081641 0.18557365 -0.05641516
## 7 8
## 0.67002811 1.02139898

Estimator for dispersion parameter

Let data be grouped as much as possible. With G groups (covariate pattern) with ni observations for each
group (then n =

∑G
ni = n):

φ̂ = 1
G− p

G∑
i=1

(yi − µ̂i)2

b′′(θi)/wi

The motivation behind this estimator is as follows:
Var(Yi) = φb′′(θi)/wi ⇔ φ = Var(Yi)/(b′′(θi)/wi)

Distribution of the MLE

As before we have that maximum likelihood estimator β̂ asymptotically follows the multivariate normal
distribution with mean β and covariance matrix equal to the inverse of the expected Fisher information
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matrix. This is also true when we replace the unknown β with the estimated β̂ for the expected Fisher
information matrix.

β̂ ≈ Np(β, F−1(β̂))
and with

F (β̂) = XTŴX

where Ŵ denotes that β̂ is used then calculating W = diag( h
′(ηi)2

Var(Yi) ).

What about the distribution of β̂, φ̂?

The concept of orthogonal parameters

Hypothesis testing

Same as before - for the Wald we insert the formula for the covariance matrix of β̂, for the LRT we insert the
loglikelihoods and for the score test we insert formulas for the score function and expected Fisher information
matrix.

Model assessment and model choice

Pearson and deviance statistic

Group observations together in groups of maximal size (covariate patterns? interval versions thereof?). Group
i has ni observations, and there are G groups. Asymptotic distribution correct if all groups have big ni. For
individual data asymptotic results can not be trusted.

Deviance

D = −2[
g∑
i=1

(li(µ̂i)− li(ȳi))]

with approximate χ2-distribution with G− p degrees of freedom.

Pearson:

X2
P =

G∑
i=1

(yi − µ̂i)2

v(µ̂i)/wi

with approximate φ · χ2-distribution with G− p degrees of freedom.

Remember that the variance function v(µ̂i) = b′′(θi) (this is a function of µi because µi = b′(θi)).

AIC

Let p be the number of regression parameters in our model.

AIC = −2 · l(β̂) + 2p

If the dispersion parameter is estimated use (p+ 1) in place of p.
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Interactive session

Work with Problem 1 and 2 in IL, and work on Problems 3-5 by yourself.

If you have more time after Problem 1 and 2, look through the theoretical proofs and derivations listed under
“Learning material” on the top of this Module page.

Problem 1: Exam 2011, problem 3

a) Define the class of generalized linear models (GLMs), and explicitly list all requirements for each part of
the model.

b) Below are three likelihoods, three link functions, and three linear components listed. Explain which
combinations that give valid GLMs (8 in total), and also comment on these models (you do not have to
mathematically prove which are valid).

Likelihoods:

1. Gaussian, Y ∼ N(µ, σ2)
2. Binomial, Y ∼ Bin(n, π), where n is not fixed (hence is unknown and be estimated)
3. Poisson, Y ∼ Poisson(λ)

Link functions:

1. η = cos(µ)
2. η = µ
3. η = log(µ)

Linear components:

1. η = β0 + β1x1 + β2x2
2. η = β0 + β1x1 + β2x

2
1

3. η = β0 + β1x1 + β2
1x2

Problem 2: December 2005, Problem 2 (modified)

1. Derive the formula for the (scaled) deviance for the binomial distribution.

2. The covariance matix for the estimated coefficents are given as Cov(β̂) = (XTWX)−1 where X is the
design matrix.

a. (New) The matrix W is a diagonal matrix. What is on the diagonal?

b. Calulate the elements of W for a Poisson regression- both with log and identity link. Compare.

c. Calulate the elements of W for a binary regression - both with logit and identity link. Compare.

d. (New) Which insight did this give you into the role of the link function and its effect on the covariance
for the parameter estimates?

Problem 3: Exam 2006, problem 2 (a, b, d)

Let Y1, Y2, . . . , YN be independent and exponentially distributed random variables, where Yi has the density
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f(yi;αi) = αie
−αiyi for yi > 0, αi > 0, i = 1, 2, . . . , N.

a) Show that the distribution of Yi comes from the exponential family. Use the general formulas to find E(Yi)
and Var(Yi) as functions of αi.

b) Show that the log-likelihood for the data y1, . . . , yn can be written as

l =
N∑
i=1
{−αiyi + lnαi}

Use this to show that the deviance for a generalized linear model with estimated expectations µ̂i = ŷi is

D = 2
N∑
i=1

{
yi − ŷi
ŷi

− ln
(
yi
ŷi

)}

d) We want to test the null hypothesis

H0 : α1 = α2 = · · · = αN = α

against the alternative hypothesis that at least one αi is different from the others.
Use b) to find a test statistic for this problem.
What distribution does this test statistic have under H0?

New: could you also use the Wald test? Explain how to do that (no need to calculated the mathematically
explicit test statistic).

Problem 4: Exam 2007, problem 2 a, b, c

Assume that Y1, . . . , YN are independent continuous distributed random variables, where the density of Yi is
given by

f(yi; γi) =
{
γ2
i

2 yie
−γiyi for yi ≥ 0

0 else

where γi is a scalar parameter.

a) Show that the distribution of Yi comes from the exponential family. Hint: usually we choose to let φ = 1
2 .

Use the general formulas to show that E(Yi) = 2/γi and Var(Yi) = 2/γ2
i .

Assume a GLM for Y1, . . . , YN where the distribution of Yi is as above for all i, with the following link
function:

η = g(µ) = ln(µ) = xTβ

where x, β ∈ IRp and µ is the expected value of y.

b) Use general formulas to find the score vector s(β) = [s1(β), . . . , sp(β)]T and the expected Fisher information
matrix F (β) = [Fij(β)]pi,j=1, expressed using y1, . . . , yN , β,N and the covariates x.
Write down the equation that can be used to find the MLE for β. Note that this is a recursive equation.
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c) Write down the log-likelihood for the model above. Use this to find the deviance D for the model as a
function of y1, . . . , yN and ŷ1, . . . , ŷN , where ŷi is the estimated expected value of yi.
Find an expression for the deviance residuals di using yi and ŷi.

Problem 5: Exam UiO December 2017, Problem 2

We assume that the random variable Λ is gamma distributed with pdf

f(λ; ν, µ) = (ν/µ)ν
Γ(ν) λν−1e−λ/µ; λ > 0

and further that given Λ = λ, the random variable Y is Poisson distributed with parameter λ. Thus the
conditional pmf of Y given Λ = λ takes the form

P(Y = y|λ) = λy

y! exp(−λ), y = 0, 1, 2, . . . .

a) Show that the marginal pmf of Y is given by

p(y;µ, ν) = Γ(y + ν)
Γ(ν)Γ(y + 1)

(
µ

µ+ ν

)y (
ν

µ+ ν

)ν
; y = 0, 1, 2, . . .

This is the negative binomial distribution.

We then assume that the parameter ν is fixed, and consider the random variable Y ∗ = Y/ν. Note that

P(Y ∗ = y∗) = P(Y = ky∗) for y∗ = 0, 1
k
,

2
k
, . . .

so Y ∗ has pmf

p∗(y∗;µ, ν) = Γ(νy∗ + ν)
Γ(ν)Γ(νy∗ + 1)

(
µ

µ+ ν

)νy∗ (
ν

µ+ ν

)ν
; y∗ = 0, 1

k
,

2
k
, . . .

b) Show that the pmf of Y ∗ is an exponential family

exp
{
yθ − b(θ)

φ
w + c(y, φ, w)

}
,

with θ = log(µ/(µ+ ν)), b(θ) = − log(1− eθ), w = 1 and φ = 1/ν

c) Use the expressions for b(θ) and φ to determine E(Y ∗) and Var(Y ∗). Show that E(Y ) = µ and find Var(Y ).

Exam questions

December 2015

One of the important concepts we have discussed in this course, is deviance (for Gaussian regression, Poisson
regression and logistic regression).

1. Explain what deviance is, and how it relates to residual sum of squares (RSS) for Gaussian regression.
Remark 2017/2018: we have called this “sums of squares of errors - SSE”
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2. Discuss how it relates to a likelihood ratio test (LRT) for comparing two nested regression models.

3. Discuss how deviance can be used to construct “ANOVA” tables for Poisson regression and logistic
regression. Remark 2017/2018: these are called analysis of deviance tables.

4. Discuss how deviance can be used to define residuals, for Poisson regression and logistic regression.

Further reading

• A. Agresti (2015): “Foundations of Linear and Generalized Linear Models.” Wiley.
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