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(Warning: some changes may occur before the second week.)

Overview

Aim: Present methods for analysing correlated responses in a (normal/Gaussian) regression setting.

We will only consider two-level models and in particular focus on random intercept and random slope models.

Learning material

• Textbook: Fahrmeir et al (2013): Chapter 2.4, 7.1-7.3, 7.7. In greater detail: pages 349-354 (not
“Alternative view on the random intercept model”), 356-365 (not 7.1.5 “Stochastic Covariates”“), 368-377
(not”Bayesian Covariance Matrix“”), 379-380 (not “Testing Random Effects or Variance Parameters”“,
only last part on page 383), 383 (middle), 401-409 (orange juice). Note: Bayesian solutions not on the
reading list.
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• Alternative readings: Zuur et al. (2009): “Mixed Effects Models and Extensions in Ecology with R”,
chapter 5 (pages 101-142). Available as free ebook from Springer for NTNU students. More explanations
and less mathematics than Fahrmeir et al (2013), more focus on understanding. Link to ebook Chapter
5

• Classnotes 01.11.2018

• Classnotes 08.11.2018

Topics

First week

• correlated responses - when and why?
– repeated measurements: clustered and longitudinal
– example of clustered data from ecology: species richness

• notation
• random intercept models

– intra class correlation (ICC)
• linear mixed effects models

– measurement model and distributional assumptions
– conditional and marginal formulation

• parameter estimation
– with maximum likelihood for fixed effects
– distribution of fixed parameter estimators

Jump to interactive (week 1)

Second week

• what did we do last week: beaches example
• parameter estimation (cont.)

– (restricted) maximum likelihood for random effects
• predicting

– random effects: method, formula, plots
– random errors: two types of residuals

• random slope models
– sleep study
– interpretation of random effects

• hypothesis tests
• model selection
• fitting LMM with function lmer in package lme4
• what have we not covered?

Jump to interactive (week 2)

FIRST WEEK
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Correlated responses

We may get correlated responses when we work with repeated measurements on a set of units. The units
may be:

• subjects, patients, participants
• animal, plants
• families, towns, schools, classes, beaches

We will consider two types of repeated measurements: clustered and longitudinal

Repeated measurements

Clustered data

The data are nested in the sense that a lower level unit can only belong to one higher level unit (cluster), and
there is in general no natural ordering of the units within each cluster.

Two-level clustered - examples

• patients in hospitals
• siblings in families
• pupils in schools

Longitudinal data

The data for each individual are observed at multiple points in time

Two-level longitudinal data - examples

• patients with drug A and drug B monitored over time
• metabolic rate for patients at fasting, then 15, 45, 75 and 135 minutes after a heavy meal

Q: Why not only analyse using linear models?

A: Assuming independent responses when they are correlated does not give the correct estimate for the
standard error of the estimated parameters of interest.

Example from ecology: beaches and species

This example is taken from Zuur et al. (2009, chapter 5, pages 101-142), and data are referred to as RIKZ
because they were collected by a Dutch institute with that name.

Data were collected on nine different beaches in the Netherlands with the aim to investigate if there is a
relationship between the

• richness of species (number of species observed) and
• NAP: the height of the sampling station compared to mean tidal level.

Data: 45 observations, taken at 9 beaches:
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• beach: the beach that the samples were taken, for each beach 5 different samples were taken.
• exposure: an index composed of information about wave action, length of the surf zone, grain size,

depth of anaerobic layer was measured, but we will not be used now.

We want to use the richness of species as the response in a regression model. This is a count, so we could
have used Poisson regression, but to make things simpler we assume that the counts are such that we instead
can assume a normal distribution (in the next module on generalized linear mixed effects models we will use
the Poisson distribution).

library("AED")
data(RIKZ)
summary(RIKZ)

## Sample Richness Exposure NAP
## Min. : 1 Min. : 0.000 Min. : 8.00 Min. :-1.3360
## 1st Qu.:12 1st Qu.: 3.000 1st Qu.:10.00 1st Qu.:-0.3750
## Median :23 Median : 4.000 Median :10.00 Median : 0.1670
## Mean :23 Mean : 5.689 Mean :10.22 Mean : 0.3477
## 3rd Qu.:34 3rd Qu.: 8.000 3rd Qu.:11.00 3rd Qu.: 1.1170
## Max. :45 Max. :22.000 Max. :11.00 Max. : 2.2550
## Beach
## Min. :1
## 1st Qu.:3
## Median :5
## Mean :5
## 3rd Qu.:7
## Max. :9

We first consider models with reponse Richness and one covariate NAP, and analyse data from each beach
separately.
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## 1 2 3 4 5 6
## (Intercept) 10.8218944 13.345694 3.400702 3.087716 12.782828 4.324634
## NAP -0.3718279 -4.175271 -1.755353 -1.248577 -8.900178 -1.388512
## 7 8 9
## (Intercept) 3.520626 4.951455 6.295053
## NAP -1.517613 -1.893066 -2.967530

The intercepts differ but the slopes are not that different.

Q: What if we now want to combine the regression models for the nine beaches into one model (for the
population of beaches), so we can answer the question about relationship between species richness and NAP
on the population level. What can we do then?

Possible solutions:
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1. Use all 45 observations in a regression - with a common intercept and linear effect in NAP.

Problem: violation of assumption of independent observations lead to wrong estimates for variances of
parameter estimates.

2. Add beach as covariate to regression - then we estimate one regression coefficient for each beach
(intercepts) in addition to the linear effect in NAP.

Problem: why do we want to add 8 extra parameters to estimate (why 8?) values for the 9 beaches? Loss
of power and what would we use the beach estimates for?

3. Add beach as a random covariate to the regression: this is called random intercept models.

Problem: new stuff - slightly complicated. We do this because beaches not of interest in themselves, only
random sample from population of beaches, and therefore we only need to account for beaches, not estimate
separate parameters.

Solution 1: all observations together - standard errors not correct
fitall = lm(Richness ~ NAP, data = RIKZ)
summary(fitall)

##
## Call:
## lm(formula = Richness ~ NAP, data = RIKZ)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0675 -2.7607 -0.8029 1.3534 13.8723
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.6857 0.6578 10.164 5.25e-13 ***
## NAP -2.8669 0.6307 -4.545 4.42e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.16 on 43 degrees of freedom
## Multiple R-squared: 0.3245, Adjusted R-squared: 0.3088
## F-statistic: 20.66 on 1 and 43 DF, p-value: 4.418e-05

Solution 2: fixed effects for each beach - many estimates not so much of interest when population is in focus.
RIKZ$beachfactor = as.factor(RIKZ$Beach)
fitbeach = lm(Richness ~ NAP + beachfactor, data = RIKZ, contrasts = list(beachfactor = "contr.sum"))
summary(fitbeach)

##
## Call:
## lm(formula = Richness ~ NAP + beachfactor, data = RIKZ, contrasts = list(beachfactor = "contr.sum"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8518 -1.5188 -0.1376 0.7905 11.8384
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.5556 0.4885 13.421 2.30e-15 ***
## NAP -2.4928 0.5023 -4.963 1.79e-05 ***
## beachfactor1 3.2503 1.3554 2.398 0.0220 *
## beachfactor2 6.3284 1.2908 4.903 2.15e-05 ***
## beachfactor3 -3.1546 1.3020 -2.423 0.0207 *
## beachfactor4 -2.7826 1.2943 -2.150 0.0386 *
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## beachfactor5 2.3520 1.2967 1.814 0.0783 .
## beachfactor6 -1.9728 1.2915 -1.528 0.1356
## beachfactor7 -2.1864 1.3167 -1.661 0.1057
## beachfactor8 -1.3027 1.2926 -1.008 0.3204
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.06 on 35 degrees of freedom
## Multiple R-squared: 0.7025, Adjusted R-squared: 0.626
## F-statistic: 9.183 on 9 and 35 DF, p-value: 5.645e-07

For the rest of this module — we focus on solution 3!

Notation

We have ni repeated observations (j = 1, . . . , ni) from each of i = 1, . . . ,m clusters (or individuals).

• Responses: Yi1, Yi2, . . . , Yini
(e.g. species richness at beach i sample j)

• Covariates: xi1,xi1, . . . ,xini
(e.g. NAP for beach i sample j)

The covariates xij are p× 1 vectors (as before, k covariates and one intercept so p = k + 1).

Random intercept models

Model

Simple linear regression

We start with a simple linear regression (one fixed effect).

First, only one covariate (in addition to the intercept), observed for cluster (beach) i on occation j we have
xij

Yij = β0 + β1xij + εij where εij i.i.d. N(0, σ2)

but, we know that Yi1 and Yi2 are observed for the same cluster and should not be independent (i.e. from
same beach), to fix that we insert a random intercept.

Cluster-specific parameters γ0i

Yij = β0 + β1xij + γ0i + εij where εij i.i.d.N(0, σ2)

• β0: population intercept (fixed)
• γ0i: deviation (for members of cluster i) from the population intercept β0 - not a parameter but a

random variable!
• β0 + γ0i: random intercept for cluster i
• β1: population slope (fixed), common to all clusters

The clusters are assumed to be random samples from a large population, and for the cluster deviation
intercept we assume

γ0i ∼ N(0, τ2
0 )
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and that the γ0is and the εijs are mutually independent random variables. So, we have now two error terms.

Q: What are now our unknown parameters?

A: γ0, β1, σ
2, τ2

0 . Remark that the γ0is are not parameters but random variables.

Beach-example: Parameter estimates

(will talk about parameter estimation with ML and REML later)

Q: Try to identify β̂0, β̂1, σ̂
2, τ̂2

0 in the print-out.
## Linear mixed model fit by REML ['lmerMod']
## Formula: Richness ~ NAP + (1 | Beach)
## Data: RIKZ
##
## REML criterion at convergence: 239.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4227 -0.4848 -0.1576 0.2519 3.9794
##
## Random effects:
## Groups Name Variance Std.Dev.
## Beach (Intercept) 8.668 2.944
## Residual 9.362 3.060
## Number of obs: 45, groups: Beach, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 6.5819 1.0958 6.007
## NAP -2.5684 0.4947 -5.192
##
## Correlation of Fixed Effects:
## (Intr)
## NAP -0.157

A: β̂0 = 6.5818929, β̂1 = -2.5683996 , σ̂2 = 9.3621916, and τ̂2
0 = 8.6675181

Intra class correlation (ICC)

The conditional distribution of Yij given the value of γ0i (=regarding γ0i as known) is

Yij | γ0i ∼ N(β0 + β1xij + γ0i, σ
2)

One motivation for inserting this new random intercept was to make sure that observations from the same
cluster are dependent, but between clusters are independent. This means that we need to look at Cov(Yij , Ykl)
when i = k and when i 6= k. To do that we need the (joint) marginal distribution of the responses.

What is the marginal distribution for Yij?

Yij = β0 + β1xij + γ0i + εij

Yij ∼ N(β0 + β1xij , σ
2 + τ2

0 )

We consider Yij , and Ykl, where

Ykl = β0 + β1xkl + γ0k + εkl ∼ N(β0 + β1xkl, σ
2 + τ2

0 )
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Now to the covariance between Yij and Ykl.

Cov(Yij , Ykl) = E[(Yij − µij)(Ykl − µkl)]

⊕ derivations on the board in class

Cov(Yij , Ykl) =

 τ2
0 + σ2 = Var(Yij) for i = k, j = l
τ2

0 for i = k, j 6= l
0 for i 6= k, j 6= l


If we put this into a covariance matrix for the vector of responses for cluster i this type of structure is called
compound symmetry.

⊕ write this out on the board in class

Cov(Yi) = τ2
0 11T + σ2I

where as before 1 is a ni × 1 vector of 1s and I is a ni × ni identity matrix.

The correlation between Yij and Yil (two observations in the same cluster that is - same beach) is called the
within subject or within cluster correlation coefficient, and is for our random intercept model

Corr(Yij , Yil) = Cov(Yij , Yil)√
Var(Yij)Var(Yil)

= τ2
0

τ2
0 + σ2 for j 6= l

Inserted parameter estimates this is called the intra class correlation (ICC) for the random intercept model.

Beach-example: ICC

## Linear mixed model fit by REML ['lmerMod']
## Formula: Richness ~ NAP + (1 | Beach)
## Data: RIKZ
##
## REML criterion at convergence: 239.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4227 -0.4848 -0.1576 0.2519 3.9794
##
## Random effects:
## Groups Name Variance Std.Dev.
## Beach (Intercept) 8.668 2.944
## Residual 9.362 3.060
## Number of obs: 45, groups: Beach, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 6.5819 1.0958 6.007
## NAP -2.5684 0.4947 -5.192
##
## Correlation of Fixed Effects:
## (Intr)
## NAP -0.157

Q: What is the ICC for our fit? Hint: Corr(Yij , Yil) = τ2
0

τ2
0 +σ2 for j 6= l.

A: 8.688/(8.688+9.362)=0.48.
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Summing up - so far

We have now looked at models with a random intercept, which is a special case of linear mixed models
(LMM). We have now see that we have used two components in our model:

• fixed effects - like we have used so far in our GLM-course. This can be gender, age, time, experimental
condition.

• random effects - used to model correlated responses. Remember the correlation (ICC) in the previous
example.

But, what if we also need the different clusters to have different slopes? The generalization of the random
intercept model is the random slope model which can be written as:

Yij = β0 + β1xij + γ0i + γ1ixij + εij

and where the new parts are

• β1: population slope (fixed), common to all clusters
• γ1i: deviation (for members of cluster i) from the population slope β0 - not a parameter but a random

variable!
• β1 + γ1i: random slope for cluster i.

More about this model in week 2.

We will now imagine that the fixed effects can be of form Xiβ - as before (in previous modules - but now
remember that we have ni observations for cluster i so therefore we write Xi and not xTi ). But it is also
possible to expand the random effects into a similar form Uiγ.

Linear mixed effects model (LMM)

We now define the LMM from a measurement model and distributional assumption for clusters i = 1, . . . ,m.

Measurement model

for the ith cluster:

Yi = Xiβ + Uiγi + εi
• Yi: ni × 1 random vector of responses
• Xi: ni × p design matrix
• Ui: ni × (q + 1) design matrix for random effects
• β: p× 1 vector of fixed coefficients (common for all clusters)
• γi: (q + 1)× 1 random vector
• εi: ni × 1 random vector

Distributional assumptions

for the ith cluster:
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γi ∼ N(0,Q)
εi ∼ N(0, σ2I)

All elements of γ1,γ2, . . . ,γm and ε1, ε2, . . . , εm are mutually independent. The dimension of I is ni × ni,
and Q is (q + 1)× (q + 1).

Remark: one possible generalization is to assume εi ∼ N(0,Σ) where Σ is general, but we will not look into
that in our course. This can be needed for example if time series structure (like AR1) is present.

Questions

Yi = Xiβ + Uiγi + εi
γi ∼ N(0,Q)
εi ∼ N(0, σ2I)

Q:

• What is Ui, γi and Q for the random intercept model?
• General: what is the marginal distribution of Yi?

A:

• We had Ui = 1 (ni × 1) and scalar γi = γ0i, and Q = τ2
0 .

• Yi ∼ N(Xiβ,UiQUT
i + σ2I).

Conditional formulation

Conditional Gaussian model for the response Yi given the random effect γi:

Yi | γi ∼ N(Xiβ + Uiγi, σ
2I)

Marginal Gaussian model

for the response for cluster 8, Yi (Laird and Ware (1982) formulation)

Yi = Xiβ + Uiγi + εi = Xiβ + ε∗
i

ε∗
i = Uiγi + εi

E(ε∗
i ) = 0

Vi = Cov(ε∗
i ) = Cov(Uiγi) + Cov(εi) = UiQUT

i + σ2I
ε∗
i ∼ N(0,Vi)

which gives
Yi ∼ N(µi = Xiβ,Vi = σ2I + UiQUT

i )
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Global model

From the cluster specific model:
Yi = Xiβ + Uiγi + εi

into the global model for all clusters:
Y = Xβ + Uγ + ε

where

Y =


Y1
Y2

...
Ym

 , X =


X1
X2

...
Xm

 , U =


U1 0 . . . 0
0 U2 . . . 0

0 0
. . . 0

0 0 . . . Um

 , γ =


γ1
γ2
...
γm

 , ε =


ε1
ε2
...
εm


Let N =

∑m
i=1 ni, then dimensions are:

• Y, ε: N × 1
• X: N × p
• β: p× 1
• U_: N ×m(q + 1)
• γ: m(q + 1)× 1

Conditional Gaussian model

for the response Y given the random effect γ:

Y | γ ∼ N(Xβ + Uγ, σ2I)

Now I is N ×N where N =
∑m
i=1 ni.

Marginal Gaussian model

for the response Y

Y = Xβ + Uγ + ε = Xβ + ε∗

ε∗ = Uγ + ε
V = Cov(ε∗) = Cov(ε) + Cov(Uγ) = σ2I + UGUT

ε∗ ∼ N(0,V)

Here G is a m(̇q + 1) block-diagonal matrix with Q m times on the diagonal (see below). This gives

Y ∼ N(Xβ,V = σ2I + UGUT )

G =


Q 0 . . . 0
0 Q . . . 0

0 0
. . . 0

0 0 . . . Q
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Parameter estimation

• Fixed effects β: estimated using maximum likelihood
• Random effects parameters σ2 and Q (in V): estimated using restricted maximum likelihood (REML).

For the random effects γi and εi we also provide predictions

• Predicted values for the random effects γi using best linear unbiased predictors (BLUP).
• Prediction values for the random effects εi are our residuals. Two types of residuals possible “response

minus fixed effects”“, or”response minus fixed and predicted random effects“.

Parameter estimation with maximum likelihood for fixed effects

Cluster specific model:
Yi ∼ N(µi = Xiβ,Vi = σ2I + UiQUT

i )

Global model:
Y ∼ N(Xβ,V = σ2I + UGUT )

The log-likelihood function is then (± some constants)

l(β,V) = −1
2 ln|V| − 1

2(y−Xβ)TV−1(y−Xβ)

We assume that the parameters in V are known, and transform our problem with V−1/2 to get the standard
multiple linear regression model.

In TMA4267 Exam 2014 Problem 4, the weighted least squares estimator was derived from a similar situation.
Now we have

Y = Xβ + ε∗

where
ε∗ ∼ N(0,V)

We then define V−1/2 based on eigenvalue-vector decomposition of V, and premultiply the above equation to
get:

V−1/2Y = V−1/2Xβ + V−1/2ε∗

Y• = X•β + ε•

where ε• ∼ N(0, I). We then know that the ML estimator for β is given as

β̂ = (X•TX•)−1X•TY•
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Inserting then for X•T and Y• leads to the weighted least squares solution for β

β̂ = (XTV−1X)−1XTV−1Y

Since we have independence between clusters, we had block-diagonal V and then

β̂ = (
m∑
i=1

XT
i V−1

i Xi)−1
m∑
i=1

XT
i V−1

i Yi

But, we really don’t know V so an estimate must be inserted (week 2 with REML).

Beach-example: parameter estimation for fixed effects

## Linear mixed model fit by REML ['lmerMod']
## Formula: Richness ~ NAP + (1 | Beach)
## Data: RIKZ
##
## REML criterion at convergence: 239.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4227 -0.4848 -0.1576 0.2519 3.9794
##
## Random effects:
## Groups Name Variance Std.Dev.
## Beach (Intercept) 8.668 2.944
## Residual 9.362 3.060
## Number of obs: 45, groups: Beach, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 6.5819 1.0958 6.007
## NAP -2.5684 0.4947 -5.192
##
## Correlation of Fixed Effects:
## (Intr)
## NAP -0.157

Q: Where is the parameter estimat for effect of NAP, with standard deviation? What is the interpretation of
“Correlation of Fixed Effects”?

A:“Fixed effects, NAP, Estimate and Std. Error”. Correlation of fixed effects is the off-diagonal elements of
Cov(β̂) which here is only Cov(β̂0, β̂1).

Properties of parameters estimators

Since β̂ is a linear function of Yi, it has a multivariate normal distribution - let us write with

β̂ = (XTV−1X)−1XTV−1Y = AY

Mean:
E(β̂) = AE(Y) = (XTV−1X)−1XTV−1Xβ = β

so β̂ is unbiased.

Variance-covariance matrix:
Cov(β̂ = ACov(Y)AT = AVAT

= (XTV−1X)−1XTV−1VV−1X(XTV−1X)−1 = (XTV−1X)−1
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Since V is block diagonal this can be written as a sum with the clusters:

Cov(β̂) = (
m∑
i=1

XT
i V−1

i Xi)−1

Also, if we insert V̂ as an estimate for V then

β̂ = (
m∑
i=1

XT
i V̂−1

i Xi)−1
m∑
i=1

XT
i V̂−1

i Yi

is asymptotic multivariate normal (under regularity conditions).

Remark: this is only asymptotically, so we need large samples for this to hold. And, we do not arrive at a
t-distribution here - however approximations for t (and F) exists, but the problem is the number of degrees of
freedom (in particular when we have time varying fixed effects).

In this course we will only use the asymptotic normality for confidence intervals (and when a Wald type test
is desired). We will consider hypothesis testing with likelihood ratio test under “Model selection” in the end
of this module.

Beach-example: confidence interval for fixed effects

## 2.5 % 97.5 %
## .sig01 1.484204 5.100814
## .sigma 2.435429 3.877572
## (Intercept) 4.324560 8.824909
## NAP -3.566901 -1.599779

Q: Interpret! First the last two rows. The first two we have not covered yet - since we don’t know how to
estimate the parameters in V but what do you think this is?

A: Estimate ± 1.96 times standard error of estimate.

Interactive session week 1

Plan:

• Problem 1abcd (not ef - covered in week 2).
• Problem 2abe (not cd - covered in week 2).
• If time: Exam 2017, Problem 3

Exercise 1: Taken from UiO, STK3100, 2011, problem 1

We will in this exercise look at the following model:

Yij = xTijβββ + γ0i + εij , εij ∼ N(0, σ2)
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γ0i ∼ N(0, τ2
0 )

where i ∈ {1, . . . ,m} is the group index, and j ∈ {1, . . . , ni} is the index for repeated measurements in each
group (cluster). We assume that all random variables are independent.

a) What is this model called? Discuss where and when such models are useful.

b) What is the marginal model for Yi = (Yi1, . . . , Yini)? Show how you arrive at your answer and write with
vectors and matrices (for cluster i).

What are the advantages of having an expression for the marginal distribution of Yi when doing estimation?

In the rest of the exercise we will look at a dataset consisting of observations of cod from the year 2000.
The dataset is from Havforskningsinstitutten in Bergen, and we use only a subset of a large dataset with
information about fish in Barentshavet. The following variables are available on a random sample within
each catch (a draft of trawl (trål)):

• length: the length of fish (in cm)
• weight: the weight of fish (in grams)
• age: the age of fish (in years)
• haulsize: the size of the total catch (in ton (1000 kg))

Let i be the index for catch, and j be the index for an individual fish in a catch. We will not use the age
variable in this exercise.

We start by looking at the model

log(weightij) = β0 + β1 log(lengthij) + β2 log(haulsizei) + γ0i + εij

where γ0i ∼ N(0, τ2
0 ), εij ∼ N(0, σ2), and all random effects are independent. Below is an excerpt from the

output from fitting this model in R.
library(lme4)

filepath <- "https://www.math.ntnu.no/emner/TMA4315/2018h/fishdata.dat"
fish <- read.table(filepath, header = TRUE)

fit1 <- lmer(log(weight) ~ log(length) + log(haulsize) + (1 | haul), data = fish)

summary(fit1)

## Linear mixed model fit by REML ['lmerMod']
## Formula: log(weight) ~ log(length) + log(haulsize) + (1 | haul)
## Data: fish
##
## REML criterion at convergence: -10188.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.1204 -0.6107 -0.0314 0.5813 5.1458
##
## Random effects:
## Groups Name Variance Std.Dev.
## haul (Intercept) 0.003030 0.05505
## Residual 0.008594 0.09270
## Number of obs: 5433, groups: haul, 63
##
## Fixed effects:
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## Estimate Std. Error t value
## (Intercept) -4.286029 0.041554 -103.143
## log(length) 2.901037 0.009703 298.984
## log(haulsize) 0.006169 0.005328 1.158
##
## Correlation of Fixed Effects:
## (Intr) lg(ln)
## log(length) -0.980
## log(haulsz) 0.047 0.056

c) Write down the estimates for all the parameters in the model. What is the correlation between two
weight-variables from the same catch (haul)?

d)We are now interested in θ = exp(β0 +β1 log(66)+β2 log(0.46)). The standard deviation of β̂0 +β̂1 log(66)+
β̂2 log(0.46) is 0.007. Explain how you can calculate this value (you do not have to do the calculation). Then
create and calculate a 95 % confidence interval for θ.

Remark: skip (e), we will not focus so much on model selection. However, a top-down-strategy (which this
exam question points to) will be explained in the end of this module page (week 2)

e) Assume that you want to compare different models with respect to which random effects and fixed effects
that should be included in the model. Write down a general strategy for doing model evaluation on these
kinds of models.

New: f) Below is a (horizontal version of a) catepillarplot of the random effects with confidence intervals,
and a density plot for the random effects and a QQ-plot for the random effects. Explain what you see.
library(sjPlot)
plot_model(fit1, y.offset = 0.5, type = "re")
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ggplot() + geom_density(aes(x = ranef(fit1)$haul[[1]])) + theme_minimal() +
labs(x = "x", y = "y", title = "Density")
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x

y

Density

gg <- plot_model(fit1, type = "diag", prnt.plot = FALSE, title = "Quantile plot",
geom.size = 1)

gg[[2]]
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Exercise 2: Taken from UiO, STK3100, 2013, problem 2

The data in this problem is part of a longitudinal study of income in the US, the Panel Study of Income
Dynamics, begun in 1968. The subset consists of 42 heads of household who were aged 25-39 in 1968. The
variables included are

• annual nominal income, which is the response variable
• age, age in 1968
• cyear, coded as -10 in 1968, 0 in 1978 and 10 in 1988
• educ, years of education in 1968
• sex, M = male, F = female
• person, containing information on person id

Below is an excerpt from the output from fitting a linear mixed model (LMM) with the function lmer in R.
The log income (lincm) is the response,

lincmij = β0 + β1agei + β2cyearij + β3educi + β4sexi + γ0i + εij

i = 1, . . . , 42, j = 1968, 1978, 1988

where γ0i represent the random effects.

## Linear mixed model fit by REML ['lmerMod']
## Formula: lincm ~ age + cyear + educ + sex + (1 | person)
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## Data: psid2
##
## REML criterion at convergence: 306
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.4411 -0.4003 0.1071 0.5602 1.6038
##
## Random effects:
## Groups Name Variance Std.Dev.
## person (Intercept) 0.001757 0.04192
## Residual 0.563294 0.75053
## Number of obs: 126, groups: person, 42
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 7.386823 0.631710 11.693
## age -0.020930 0.015207 -1.376
## cyear 0.084163 0.008189 10.278
## educ 0.116343 0.027582 4.218
## sexM 1.311661 0.142247 9.221
##
## Correlation of Fixed Effects:
## (Intr) age cyear educ
## age -0.831
## cyear 0.000 0.000
## educ -0.685 0.201 0.000
## sexM 0.003 -0.217 0.000 0.041

a) Formulate the model on matrix form and explain the meaning of the different parts. State the model
assumptions.

b) Determine an approximate 95 % interval for the coefficient of cyear. Do you think the nominal income
has been constant in the period covered by the survey?

e) Use the values in the R-output to calculate the estimated covariance matrix for the response (Yi1, Yi2, Yi3)T
by hand. Hint: compound symmetry due to random intercept model.

Remark Skip (c), which will be lectured in week 2.

c) Explain how one can test the simultaneous significance of two fixed effects (e.g. age and educ) in LMMs.

d) Describe how the random effects γ0i can be predicted/estimated. What information is missing for you to
calculate these.

In part c) and d) it was not necessary to do any numerical calculations at the exam.

f) New: do c) and d) in R (after you have done c) and d) by hand!!!, i.e., do numerical calculations (choose
i = 2 in d)). The rmd-file of this module contains necessary code to download the dataset, modify it, and fit
the full model. Alternatively use purl to extract the code.

SECOND WEEK
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Notation and LMM

• In the first week we started with models with a random intercept, using the beach-example - which we
saw was a special case of linear mixed models (LMM).

• We looked at observations from clusters (family, beach) and will now also look at longitudinal data
(repeated measurements on the same units).

• For cluster i we wrote the LMM model in a measurement model part and a distributional assumptions
part:

Words to know: measurement model, distributional model, conditional model, marginal model, global model.

Measurement model

Yi = Xiβ + Uiγi + εi

Distributional model

γi ∼ N(0,Q)
εi ∼ N(0, σ2I)

This gave the marginal model for each cluster:

Yi ∼ N(µi = Xiβ,Vi = σ2I + UiQUT
i )

Q: explain what the different parameters and random variables are, and what are their dimensions.

A:

• design matrix for fixed effects for cluster i: Xi is ni × p (intercept included)
• parametervector for fixed effects: β p× 1
• design matrix for random effects for cluster i: Ui is ni × (q + 1) (intercept included)
• random effects - used to model correlated responses: γi ,(q + 1)× 1
• random errors: εi ni × 1
• covariance matrix for the random effects: Q, (q + 1)× (q + 1)
• parameter σ2 for variance of the random errors Cov(εi) = σ2I with dimension ni × ni.

Beach-example: Parameter estimation

## Linear mixed model fit by REML ['lmerMod']
## Formula: Richness ~ NAP + (1 | Beach)
## Data: RIKZ
##
## REML criterion at convergence: 239.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4227 -0.4848 -0.1576 0.2519 3.9794
##
## Random effects:
## Groups Name Variance Std.Dev.
## Beach (Intercept) 8.668 2.944
## Residual 9.362 3.060
## Number of obs: 45, groups: Beach, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 6.5819 1.0958 6.007
## NAP -2.5684 0.4947 -5.192
##
## Correlation of Fixed Effects:
## (Intr)
## NAP -0.157
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Global model

For all cluster together (even more letters now)

Y = Xβ + Uγ + ε

Y =


Y1
Y2
...

Ym

 ,X =


X1
X2
...

Xm

 ,U =


U1 0 . . . 0
0 U2 . . . 0

0 0
. . . 0

0 0 . . . Um



γ =


γ1
γ2
...
γm

 , ε =


ε1
ε2
...
εm



Y = Xβ + Uγ + ε = Xβ + ε∗

ε∗ = Uγ + ε
V = Cov(ε∗) = Cov(ε) + Cov(Uγ) = σ2I + UGUT

ε∗ ∼ N(0,V)

Here G is a m(̇q + 1) block-diagonal matrix with Q m times on the diagonal, which gives

Y ∼ N(Xβ,V = σ2I + UGUT )

Parameter estimation

Fixed effects β (repetition)

estimated using maximum likelihood, with the marginal distribution as starting point:

Y ∼ N(Xβ,V = σ2I + UGUT )

We assume that the parameters in V are known, then we get the weighted least squares solution for β.

β̂ = (XTV−1X)−1XTV−1Y = (
m∑
i=1

XT
i V−1

i Xi)−1
m∑
i=1

XT
i V−1

i Yi

β̂ ∼ N(β, (
m∑
i=1

XT
i V−1

i Xi)−1)
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We insert estimates for Vi (which we will find next), and the same distribution - but only asymptotically - to
be used for inference for the fixed effects.

β̂ = (
m∑
i=1

XT
i V̂−1

i Xi)−1
m∑
i=1

XT
i V̂−1

i Yi

≈ N(β, (
m∑
i=1

XT
i V̂−1

i Xi)−1)

Now follows:

• Random effects parameters σ2 and Q (in V): estimated using restricted maximum likelihood (REML).
We denote all parameters for random effect for ϑ. For the random intercept model this is ϑ = (σ2, τ2

0 ).

Then, for the random effects γi and εi we also provide predictions

• Predicted values for the random effects γi using best linear unbiased predictors (BLUP).
• Prediction values for the random effects εi are our residuals.

Parameter estimation with restricted maximum likelihood (REML) for random
effects

There are two ways to explain the REML - a transformation method (we start with this), and an integration
method (to come next).

Transformation method

To aid in our understanding we start by looking at the REML solution for multippel linear regression
(Module 2),

Y = Xβ + ε with ε ∼ N(0, σ2I)

where X is a n × p design matrix. Remember that SSE = YT (I − H)Y where the hat matrix is H =
X(XTX)−1XT .

• We found that the maximum likelihood estimator for σ2 was σ̂2 = SSE
n , which is found from maximizing

the likelihood inserted our estimate of β̂ (i.e. disregarding the uncertainty in the estimation).

• This estimator is biased, and has mean E(σ̂2) = n−p
n σ2 (too small= biased downwards), where n is the

number of observations and p the number of parameters estimated.
• It is possible to find an n× (n− p) matrix A such that ATY follows a n− p-dimensional multivariate

normal distribution with mean vector 0 and covariance matrix ATAσ2.
• This means that we have eliminated β as unknown parameter and we can proceed to use maximum

likelihood on the n− p-dimensional vector ATY with σ2 as the only unknown parameter, which will
give the parameter estimator

σ̂2 = SSE/(n− p) = YT (I−H)Y/(n− p)

This is called the REML estimate for σ2.
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Remark: There are many solutions to A but to get E(ATY) = ATXβ = 0 then A can be chosen to have
linearly independent columns orthogonal to columns space of the design matrix.

Remark: We can not choose A = I−H since we need A to have dimension n×n−p. But we can for example
choose an (othogonal) basis with n− p vectors for the column space of I−H.

Now, move to our linear mixed effects model. We have the model

Y = Xβ + Uγ + ε

with the marginal distribution
Y ∼ N(Xβ,V = σ2I + UGUT )

• The REML estimator for the parameters in V (called ϑ, and for the random intercept model that is σ2

and τ2
0 ) - and also then V(ϑ) - are now

• found by maximizing the likelihood for ATY
• where A is any N × (N − p) full-rank matrix with columns orthogonal to the columns of the design

matrix X.
• Again ATY follows a multivariate normal distribution with mean vector 0 and now covariance matrix

ATV(ϑ)A, which is independent of β.

• The maximization does not give a closed form solution, but we get a new V̂ - which now will be less
biased (sadly only unbiased in “simple and balanced cases”).

• Even if β is not estimated in this optimization we already know that

β̂ = (XTV−1X)−1XTV−1Y

and now we have a new V̂ which we insert in this equation, and thus get a new REML-estimator for β:

β̂ = (XT V̂−1X)−1XT V̂−1Y

• This means, that when using REML-estimation for our linear mixed effects model this will influence
both the fixed effects and the random effects parameters. However, asymptotically we will still have the
same asymptotic distribution for the fixed effects as with ML estimation.

In addition the main justification for using REML is that in the absence of information on β then no
information about the parameters in ϑ is lost when likelihood estimation is based on ATY instead of on Y.
In statistical inference this is referred to as ATY is marginally sufficient for ϑ (but this is way beyond the
scope of this course).

In addition, according to Verbeke and Molenbergs (2000, page 46, Equation 5.8), the likelihood function of
ATY is

L(ϑ) = C|
m∑
i=1

XT
i V(ϑ)−1

i Xi|−1/2LML(β̂(ϑ), ϑ)

where C is a constant not depending on ϑ, and LML is the marginal likelihood of . Also, the term
|
∑m
i=1 XT

i V(ϑ)−1
i Xi| does not depend on β.

Therefore both β and ϑ can be found by maximizing what is referred to as the REML likelihood function:

LREML(ϑ,β) = |
m∑
i=1

XT
i V(ϑ)−1

i Xi|−1/2LML(β, ϑ)
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Further reading: Theoretical explanation for REML (beyond the scope of this course) by Inge Helland,
UiO and also by Verbeke and Molenberghs (2000), Section 5.3 (free ebook from Springer for NTNU students).

Comparing ML and REML estimation for the beaches example

fitREML = lmer(Richness ~ NAP + (1 | Beach), data = RIKZ)
fitML = lmer(Richness ~ NAP + (1 | Beach), data = RIKZ, REML = FALSE)
REMLest = c(fixef(fitREML), as.data.frame(VarCorr(fitREML))[, 4])
MLest = c(fixef(fitML), as.data.frame(VarCorr(fitML))[, 4])
df = data.frame(REML = REMLest, ML = MLest)
rownames(df) = c("$\\beta_0$", "$\\beta_1$", "$\\tau_0$", "$\\sigma$")
kable(df, digits = 4)

REML ML
$\beta_0$ 6.5819 6.5844
$\beta_1$ -2.5684 -2.5757
$\tau_0$ 8.6675 7.5068
$\sigma$ 9.3622 9.1110

Q: Comment on what you see.

Remark: the default for lmer is REML, and we need to write REML=FALSE to get ML.

Integration method

Y ∼ N(Xβ,V(ϑ) = σ2I + UGUT )

For the fixed effects we started with the log-likelihood function and maximized to get estimator for β
dependent on ϑ. If we now assume that we have found β(ϑ) and insert this estimate into the loglikelihood
then the profile log-likelihood is (discregarding an additive constant)

lP (ϑ) = −1
2 ln|V(ϑ)| − 1

2(y−Xβ̂(ϑ))TV(ϑ)−1(y−Xβ̂(ϑ))

The integration method (can be motivated from the Bayesian perspective by assuming a flat prior on β)
constructs a marginal or restricted log-likelihood by integrating β out of the likelihood

lREML(ϑ) = ln
∫
L(β, ϑ)dβ

It can be shown that the REML log-likelihood is

lREML(ϑ) = lP (ϑ)− 1
2 ln|

m∑
i=1

XT
i V(ϑ)−1

i Xi|

Maximizing of lREML(ϑ) provides the REML estimator for ϑ.
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What do you need to know about REML?

• That REML is used to get a better estimator (less downwards biased) for the random effects parameters
than using ML,

• so REML is the default choice in the lmer function for fitting LMMs in the lme4-package in R.
• Two ways of motivating this: by transformation or by integration.
• But sadly, for LMM this does not in general give unbiased estimates for the parameters ϑ in V - but

less biased.

REML estimation for the beaches example

## Linear mixed model fit by REML ['lmerMod']
## Formula: Richness ~ NAP + (1 | Beach)
## Data: RIKZ
##
## REML criterion at convergence: 239.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4227 -0.4848 -0.1576 0.2519 3.9794
##
## Random effects:
## Groups Name Variance Std.Dev.
## Beach (Intercept) 8.668 2.944
## Residual 9.362 3.060
## Number of obs: 45, groups: Beach, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 6.5819 1.0958 6.007
## NAP -2.5684 0.4947 -5.192
##
## Correlation of Fixed Effects:
## (Intr)
## NAP -0.157

Q: What have we covered so far, and what is missing? Explain the elements of the print-out!

ML estimation for the beaches example

## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: Richness ~ NAP + (1 | Beach)
## Data: RIKZ
##
## AIC BIC logLik deviance df.resid
## 249.8 257.1 -120.9 241.8 41
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4258 -0.5010 -0.1791 0.2452 4.0452
##
## Random effects:
## Groups Name Variance Std.Dev.
## Beach (Intercept) 7.507 2.740
## Residual 9.111 3.018
## Number of obs: 45, groups: Beach, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 6.5844 1.0321 6.380
## NAP -2.5757 0.4873 -5.285
##
## Correlation of Fixed Effects:
## (Intr)
## NAP -0.164

Q: Look for differences between the REML and ML output.
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Prediction of random effects and random errors

Predicted values for random effects γ

Why do we want a prediction? To rank the beaches (or schools, patients?). Small-area-estimations.

Model check can also use this to check that γ is normal is in agreement with our fitted model (same as
when using residuals to check distribution of errors).

Best Linear Unbiased Predictor (BLUP) γ̂i

• linear function in Y (linear)
• E(γ̂i) = 0 (unbiased)
• for any linear combination aTγi of random effects [E(aT γ̂i−aTγi)]2 is minimized among all such linear

unbiased predictors (best)

Beaches random intercept - predicted intercept and estimated fixed effects

fit = lmer(Richness ~ NAP + (1 | Beach), data = RIKZ)
plot_model(fit, type = "re")
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Joint distribution of Y and γ

The joint distribution of Y and γ is:(
Y
γ

)
∼ N(

(
Xβ
0

)
,

(
V = UGUT + σ2I UG

GUT G

)
)

Maximizing the likelihood based on the joint distribution

This is maximized with respect to β and γ, to give

γ̂ = GUTV−1(Y−Xβ̂)

But, here the elements of G and V needs to be estimated, and we get:

γ̂ = ĜUT V̂−1(Y−Xβ̂)

γ̂i = Q̂UT
i V̂−1

i (Yi −Xiβ̂)

Remark: For details on this calculation - involving the Henderson’s mixed model equations, see pages 371-372
of Fahrmeir et al (2013), or pages 98-99 in Verbeke and Molenberghs (2000), Section 5.3 (free ebook from
Springer for NTNU students).

Conditional mean

Remember: (
Y
γ

)
∼ N(

(
Xβ
0

)
,

(
V = UGUT + σ2I UG

GUT G

)
)

(Alternatively) The predicted random effects can be found as the mean of the conditional distribution of γ
given Y. If we also calculate the covariance of the estimated γ we can make approximate prediction intervals
for the predicted random effects.

The general formula for the conditional multivariate normal X (known from TMA4267) is:

X ∼ N(µ,Σ)

X2 | (X1 = x1) ∼ N(µ2 + Σ21Σ−1
11 (x1 − µ1),Σ22 − Σ21Σ−1

11 Σ12)

If we use the formula for the mean with X1 = Y and X2 = γ, then

E(γ | Y) = 0 + GUTV−1(Y−Xβ)

which can be used (inserted parameter estimates) to give our estimated random effects.

We may find the covariance matrix of GUTV−1(Y−Xβ̂) (directly), and for each γ̂i this is given as

QUT
i

(
V−1
i −V−1

i Xi(
m∑
i=1

XT
i V−1

i Xi)−1XT
i V−1

i

)
UiQ

(according to Verbeke and Molenberghs (2000), page 78). We insert estimates Q and Vi (thus underestimating
the variability) and get the estimated covariance matrix for the random effect. Such an estimate is used in
the catepillar plot.

29

https://link.springer.com/book/10.1007%2F978-1-4419-0300-6


Random intercept models: γ̂i

For i = 1, . . . ,m:
Yi = Xiβ + Uiγ0i + εi

where
εi ∼ N(0, σ2I) and γ0i ∼ N(0, τ2

0 )

and Ui is a ni × 1 vector of ones. Further, the ni × ni marginal covariance matrix for Yi is

Vi = σ2I + τ2
0 11T with inverse V−1

i = 1
σ2 (I− τ2

0
σ2 + niτ2

0
11T )

which means that the elements on the main diagonal for V−1 are

1
σ2(σ2 + niτ2

0 )

and the off-diagonal entries are −τ2
0 .

The fixed effect estimate use this inverse matrix as the weighting matrix V−1
i in

β̂ = (
m∑
i=1

XT
i V̂−1

i Xi)−1
m∑
i=1

XT
i V̂−1

i Yi

The predicted random intercepts are

γ̂0i = Q̂UT
i V̂−1

i (Yi −Xiβ̂) = · · · = niτ̂
2
0

σ̂2 + niτ̂2
0
ei

where ei is the average (raw, level 0 - see below) residual

ei = 1
ni

ni∑
j=1

(Yij − xTijβ̂)

Interpretation

γ̂0i = niτ̂
2
0

σ̂2 + niτ̂2
0
ei

Remember
E(γ | Y) = 0 + GUTV−1(Y−Xβ)

The formula for γ̂i0 can be seen as a weighted sum between the conditional expectation 0 and the average
residual ei, with weighting factor niτ̂

2
0

σ̂2+niτ̂2
0
for the average residual (and 1-this for 0). The larger the ni the

closer the weight is to 1 and the smaller the shrinkage. Shrinkage is also high if the error variance σ2 is large
compared to the random effect variance τ2

0 . The latter gives a very small ICC, so then it makes sense to have
random effects close to 0.

30



Plotting predictions of random effects

We can also use the R package sjPlot to produce plots and outputs from fitting linear mixed effects models
with function lmer in the R package lme4. This plotting package can also be used to produce nice plots for
lm and glm. The package uses ggplot2 and other tidyverse packages.

For details see

• sjPlot and more specifically
• sjPlot on CRAN - for vignettes and
• vignette on plotting random effects in LMM

For our beach-example: First the predicted values for the estimated random effect for each Beach - with
confidence intervals. Unsorted and sorted version. (horisontal version of catepillar plot). Then QQ-plots for
the estimated random effects.

plot_model(fit, type = "re", y.offset = 0.4)
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Random effects

plot_model(fit, type = "re", sort.est = "(Intercept)", y.offset = 0.4)
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Random effects

Q: comment on what you see.

Predicted values for random errors εi (residuals)

Let µi denote E(Yi). Fitted values for the LMM can be made on two levels:

Level 0, marginal : µ̂i = Xiβ̂

ei = Yi − Xiβ

Level 1, conditional : µ̃i = Xiβ̂ + Uiγ̂i

ei = Yi − Xiβ − Uiγ̂i

For lmer the function fitted gives the level 1 fitted values (for our two-level models). This means that raw residuals
can also be made on two levels, and the default is level 1 for lmer.

In addition to raw residuals, also Pearson residuals (standardized) are popular.

The residuals can be used in the same way as for the Multiple linear model (module 2).

fit = lmer(Richness ~ NAP + (1 | Beach), data = RIKZ)
df = data.frame(fitted = fitted(fit), resid = residuals(fit, scaled = TRUE))
ggplot(df, aes(fitted, resid)) + geom_point(pch = 21) + geom_hline(yintercept = 0,

linetype = "dashed") + geom_smooth(se = FALSE, col = "red", size = 0.5,
method = "loess") + labs(x = "Fitted values", y = "Residuals", title = "Residuals vs Fitted values")
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Q: any trend? homoscedastic?

ggplot(df, aes(sample = resid)) + stat_qq(pch = 19) + geom_abline(intercept = 0,
slope = 1, linetype = "dotted") + labs(x = "Theoretical quantiles", y = "Standardized residuals",
title = "Normal Q-Q")
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Q: normally distributed?
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Random intercept and slope model

Example: Sleep deprivation study

In a study on the effect of sleep deprivation the average reaction time per day were measured. On day 0
the subjects had their normal amount of sleep. Starting that night they were restricted to 3 hours of sleep
per night. The observations represent the average reaction time on a series of tests given each day to each
subject. This was measured for 18 subjects for 10 days (days 0-9).
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We observe that each subject’s reaction time increases approximately linearly with the number of sleepdeprived
days. But, it appears that subjects have different slopes and intercepts.

As a first model we may assume that there is a common intercept and slope for the population - called fixed
effects, but allow for random deviations for the intercept and slope for each individual. This is called a
random intercept and slope model.

fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
summary(fm1)

## Linear mixed model fit by REML ['lmerMod']
## Formula: Reaction ~ Days + (Days | Subject)
## Data: sleepstudy
##
## REML criterion at convergence: 1743.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.9536 -0.4634 0.0231 0.4634 5.1793
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## Subject (Intercept) 612.09 24.740
## Days 35.07 5.922 0.07
## Residual 654.94 25.592
## Number of obs: 180, groups: Subject, 18
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 251.405 6.825 36.838
## Days 10.467 1.546 6.771
##
## Correlation of Fixed Effects:
## (Intr)
## Days -0.138

Q: What are our parameter estimates and their interpretation?
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A: Here the population fixed effects estimates are an intercept of 251.4 ms and a slope of 10.47 ms/day. The
random effects for the intercept and the slope have estimated standard deviations 24.74 ms and 5.92 ms/day.

library(sjPlot)
plot_model(fm1, type = "re")
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Measurement model

Yij = β0 + β1xij + γ0i + γ1ixij + εij

• β0: population intercept (fixed)
• γ0i: deviation (for members of cluster i) from the population intercept β0 - not a parameter but a

random variable!
• β0 + γ0i: random intercept for cluster i
• β1: population slope (fixed), common to all clusters
• γ1i: deviation (for members of cluster i) from the population slope β0 - not a parameter but a random

variable!
• β1 + γ1i: random slope for cluster i.

Distributional assumptions

εi ∼ N(0, σ2I)

γi =
(
γ0i
γ1i

)
∼ N

((
0
0

)
,Q =

(
τ2

0 τ01
τ01 τ2

1

))
The parameter τ01 gives the covariance beween the random intercept and random slope.

35



Marginal covariances for Yi

Cov(Yij , Ykl) = E[(Yij − µij)(Ykl − µkl)]

Cov(Yij , Ykl) =


τ2

0 + 2τ01xij + τ2
1x

2
ij + σ2 = Var(Yij) for i = k, j = l

τ2
0 τ01xij + τ01xil + τ2

i xijxil for i = k, j 6= l
0 for i 6= k, j 6= l


The correlation between Yij and Yil (two observations in the same cluster, that is, same beach) dependes in a
complicated way on the observed values for x and is rather difficult to interpret.

Corr(Yij , Yil) = Cov(Yij , Yil)√
Var(Yij)Var(Yil)

Hypothesis testing

Testing fixed effects

β̂ = (
m∑
i=1

XT
i V̂−1

i Xi)−1
m∑
i=1

XT
i V̂−1

i Yi ≈ N(β, (
m∑
i=1

XT
i V̂−1

i Xi)−1)

Approximate Wald tests for fixed effects

Cβ = d vs. Cβ 6= d

where C is a r × p constant matrix and d a r × 1 constant vector. Then:

(β̂ − β)TCT [C(
m∑
i=1

XT
i V̂−1

i Xi)−1CT ]−1C(β̂ − β)

asymptotically follows a χ2-distribution with r-degrees of freedom.

Beach-example: Hypothesis testing with normal approximation

fit = lmer(Richness ~ NAP + (1 | Beach), data = RIKZ, REML = FALSE)
summary(fit)
z = (summary(fit)$coefficients[2, 3])
1 - pchisq(z^2, 1)

## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: Richness ~ NAP + (1 | Beach)
## Data: RIKZ
##
## AIC BIC logLik deviance df.resid
## 249.8 257.1 -120.9 241.8 41
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4258 -0.5010 -0.1791 0.2452 4.0452
##
## Random effects:
## Groups Name Variance Std.Dev.
## Beach (Intercept) 7.507 2.740
## Residual 9.111 3.018
## Number of obs: 45, groups: Beach, 9
##
## Fixed effects:
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## Estimate Std. Error t value
## (Intercept) 6.5844 1.0321 6.380
## NAP -2.5757 0.4873 -5.285
##
## Correlation of Fixed Effects:
## (Intr)
## NAP -0.164
## [1] 1.254807e-07

Likelihood ratio tests for fixed effects

Notation:

• A: the larger model and
• B: the smaller model (under H0), and the smaller model is nested within the larger model (that is, B is

a submodel of A).

The random effects parts of these models are assumed to be the same, while the changes are only to the fixed
effects part.

The likelihood ratio statistic is defined as

−2 lnλ = −2(lnL(β̂B)− lnL(β̂A))

which under the null is asymptotically χ2-distributed with degrees of freedom equal the difference in the
number of parameters in the large and the small model. Again, p-values are calculated in the upper tail of
the χ2-distribution.

Remark: this is the log-likelihood, not the REML version.

Remark: this result is not valid if the the models are fitted using REML istead of ML. The reason for this
is that the mean structure of the model fitted under the null hypothesis is not the same mean structure under
the alternative hypothesis, which leads to that different matrices A must be used for the REML method.
Therefore these REML log-likelihoods are based on different observations and are therefore not comparable.

Beach-example: Hypothesis testing with likelihood ratio test

fit = lmer(Richness ~ NAP + (1 | Beach), data = RIKZ, REML = FALSE)
fit0 = lmer(Richness ~ 1 + (1 | Beach), data = RIKZ, REML = FALSE)
anova(fit0, fit)

## Data: RIKZ
## Models:
## fit0: Richness ~ 1 + (1 | Beach)
## fit: Richness ~ NAP + (1 | Beach)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## fit0 3 269.30 274.72 -131.65 263.30
## fit 4 249.83 257.06 -120.92 241.83 21.474 1 3.586e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Q: Which is model A (large) and model B (small)? What do we conclude? Compare to the Wald test result
(above).

37



Testing parameters for random effects

In most situations the fixed effects model is of prime interest, however, a good choice of covariance structure
is useful for interpreting the data and essential to be able to perform valid inference for the fixed effects.

• Overparameterization: gives inefficient estimation.
• Too restrictive specification: invalid inference about the fixed effects.

Wald test can also be used for random effects parameters ϑ in Q and σ2, and

• asymptotically also ϑ̂ follows a multivariate normal distribution (under regularity conditions) with
mean ϑ and covariance matrix given by the inverse of the Fisher information matrix.

• We may use the negative of the second order partial derivatives (Hessian) of the log-likelihood (ML or
REML) wrt. ϑ.

But there is a problem: the performance of the normal approximation depends strongly on the true value of
ϑ and large samples are needed for values of ϑ that are close to the boundary of the parameter space (for the
hyptothesis tested), and when on the boundary the normal approximation fails.

We will not dive deep into this matter in this course, but report that the solution to this - both for the Wald
and the likelihood ratio test (preferably using the REML log-likelihood) is to use a mixture of χ2 distributions
in these cases.

Likelihood ratio test for random effects

• A: the larger model and
• B: the smaller model (under H0), and the smaller model is nested within the larger model (that is, B is

a submodel of A).

The fixed effects parts of these models are assumed to be the same, while the changes are only to the random
effects part - and the changes gives nested models.

The likelihood ratio statistic is defined as

−2 lnλ = −2(lnL(ϑ̂B)− lnL(ϑ̂A))

and the REML-likelihood is preferred.

For testing a random intercept model vs. no random intercept (need for this random effect) then

H0 : Q = 0 vs. H1 : Q = τ2
0

asymptotically −2 lnλ is a mixture of χ2
1 and χ2

0 with equal weights. Here χ2
0 is the distribution that gives

probability mass 1 to the value 0.

If we instead had used the classical null distribution (χ2
1) then the p-values would be too large and the null

hypotheses kept to often.

For testing a random intercept versus a random slope (with Q having three parameters) when p-values is
found from 0.5 times a χ2

1 and a χ2
2 distribution.

Similar strategies for other situations - see Verbeke and Molenberghs (2000) pages 69-72.
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Model selection methods

There are two main strategies:

• Hypothesis testing
– asymptotic Wald tests for fixed effects
– likelihood ratio test for fixed effects and parameters for random effects

• Information criteria: AIC and BIC

AIC and BIC for Maximum likelihood estimation (ML)

AIC = −2 · l(β̂, ϑ̂) + 2 · r

BIC = −2 · l(β̂, ϑ̂) + ln(N) · r

• r: number of parameters in the model, both the βs and the parameters in the variance of the random
effects, i.e. the σ2 from our error and then all variances and covariances for the random effects in Q.

• N =
∑m
i=1 ni

• l(β̂, ϑ̂) is the maximum log-likelihood inserted the parameter estimates

This can be used directly in the ML estimation, and as before BIC will give a smaller model than AIC.

AIC and BIC for Restricted Maximum likelihood estimation (REML)

AIC = −2 · l(β̂, ϑ̂) + 2 · r

BIC = −2 · l(β̂, ϑ̂) + ln(N − p) · r

• r: number of parameters in the model, both the βs and the parameters in the variance of the random
effects, i.e. the σ2 from our error and then all variances and covariances for the random effects in Q.

• l(β̂, ϑ̂) is now the restricted maximum log-likelihood inserted the parameter estimates

Remember:
lREML(ϑ) = lP (ϑ)− 1

2 ln|
m∑
i=1

XT
i V(ϑ)−1

i Xi|

Sleep study - comparing random effects models

fm1 = lmer(Reaction ~ Days + (Days | Subject), data = sleepstudy)
# random slope and intercept, correlated
fm2 = lmer(Reaction ~ Days + ((1 | Subject) + (0 + Days | Subject)), data = sleepstudy)
# random slope and intercept, uncorrelated
fm3 = lmer(Reaction ~ Days + (1 | Subject), data = sleepstudy)
# random intercept
AIC(fm1, fm2, fm3) #with REML
extractAIC(fm1)
extractAIC(fm2)
extractAIC(fm3) #refit and give ML
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## df AIC
## fm1 6 1755.628
## fm2 5 1753.669
## fm3 4 1794.465
## [1] 6.000 1763.939
## [1] 5.000 1762.003
## [1] 4.000 1802.079

Q: What are the three models? Which model to choose?

A:

All three models have a population intercept and a slope in Days, but the random part of the models differ.

• fm1 is the most complex with a random intercept and a random slope, and a full 2× 2 matrix Q
• fm2 also has a random intercept and slope, but the Q-matrix is diagonal.
• fm3 only has a random intercept and only one element in the Q-matrix.

The fm2 model gives the lowest AIC.

Top-down strategy for model selection

1. Start with model with all explanatory variables and possible interactions for the fixed effects - called a
beyond optimal model. (Nothing is really done her, just decide on the largest possible fixed part).

2. With this beyond optimal fixed effects model we now focus on the random effects. The idea is that
since we have many explanatory variables in the fixed effects the random component should not contain
information that we would prefer to have in the fixed effect. To do this we may either use testing or
AIC or BIC. Testing is problematic due to that the null hypotheses tested is on the boundary of the
parameter values tested (τ2 = 0). REML must be used (to get as unbiased estimates as possible).

3. Now we have the optimal random effect, so we focus on the optimal fixed effect model. ML must be
used because different fixed effects will give incomparable REML-log-likelihoods. Testing or AIC or
BIC can be used.

4. The final model is then presented with REML estimates.

Top-down strategy for the beach-data

This example is taken from Zuur et al. (2009), pages 127-128.

1. We deside on fixed model with intercept, main effect of NAP and Exposure and the interaction thereof.
(fExp is just a slight adjustment of Exposure by letting level 8 be 10 - just replicate what Zuur did, so
fExp only has values 10 and 11. )

2. Fit the fixed model from 1 to “no random effect”, “random intercept” and “random interept and slope
for NAP”. Use REML.

B1 = gls(Richness ~ 1 + NAP * fExp, data = RIKZ, method = "REML")
B2 = lmer(Richness ~ 1 + NAP * fExp + (1 | Beach), data = RIKZ)
B3 = lmer(Richness ~ 1 + NAP * fExp + (1 + NAP | Beach), data = RIKZ)
AIC(B1, B2, B3)
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## df AIC
## B1 5 238.5329
## B2 6 236.4925
## B3 8 237.1331

Conclusion: choose the random intercept model (lowest AIC).

3. With the random intercept, now compare the different fixed effects models. Use ML.
F2 = lmer(Richness ~ 1 + NAP * fExp + (1 | Beach), data = RIKZ, REML = FALSE)
confint(F2)
F2a = lmer(Richness ~ 1 + NAP + fExp + (1 | Beach), data = RIKZ, REML = FALSE)
confint(F2a)

## 2.5 % 97.5 %
## .sig01 0.0000000 3.145294
## .sigma 2.3114668 3.681773
## (Intercept) 6.9045813 10.804288
## NAP -4.7299177 -2.275315
## fExp11 -8.1969707 -2.303772
## NAP:fExp11 0.1919491 3.877650
## 2.5 % 97.5 %
## .sig01 0.000000 3.297744
## .sigma 2.435935 3.879425
## (Intercept) 6.562780 10.630777
## NAP -3.578864 -1.644351
## fExp11 -7.563508 -1.505626

F2b = lmer(Richness ~ 1 + NAP + (1 | Beach), data = RIKZ, REML = FALSE)
confint(F2b)
F2c = lmer(Richness ~ 1 + fExp + (1 | Beach), data = RIKZ, REML = FALSE)
confint(F2c)
AIC(F2, F2a, F2b, F2c)

## 2.5 % 97.5 %
## .sig01 1.484204 5.100814
## .sigma 2.435429 3.877572
## (Intercept) 4.324560 8.824909
## NAP -3.566901 -1.599779
## 2.5 % 97.5 %
## .sig01 0.000000 3.95707
## .sigma 3.178126 5.05812
## (Intercept) 5.385254 10.29475
## fExp11 -8.522119 -1.15788
## df AIC
## F2 6 242.1135
## F2a 5 244.7589
## F2b 4 249.8291
## F2c 4 265.4332

Conclusion: keep the full model. No confidence intervals cover 0, and the AIC supports the full model.

Remark: In Zuur et al (2009), page 128, the conclusion was to use the additive model (model F2a above),
based on asymptotic p-values (but this was smaller than 0.05) using the nlme package. We have instead used
AIC for this selection.

summary(B2)

## Linear mixed model fit by REML ['lmerMod']
## Formula: Richness ~ 1 + NAP * fExp + (1 | Beach)
## Data: RIKZ
##
## REML criterion at convergence: 224.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
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## -1.4849 -0.4161 -0.0770 0.1521 3.7313
##
## Random effects:
## Groups Name Variance Std.Dev.
## Beach (Intercept) 3.307 1.819
## Residual 8.660 2.943
## Number of obs: 45, groups: Beach, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 8.8611 1.0208 8.680
## NAP -3.4637 0.6279 -5.517
## fExp11 -5.2556 1.5452 -3.401
## NAP:fExp11 2.0005 0.9461 2.114
##
## Correlation of Fixed Effects:
## (Intr) NAP fExp11
## NAP -0.181
## fExp11 -0.661 0.120
## NAP:fExp11 0.120 -0.664 -0.221

Fitting LMM with function lmer in package lme4

This is based on the article Fitting Linear Mixed-Effects Models Using lme4 by Bates, Bolker, Mächler and
Walker (2015) in Journal of Statistical Software, and in particular pages 30 and onwards.

We use a data set called the ergonometrics experiment data set ergoStool for illustration.

• effort: the effort required (socalled Borg scale) to arise from a stool (krakk) - this is our response
• Type: the type of stool - types T1, T2, T3 and T4 studied.
• Subject: each of nine different subjects tested the four different stools (in random order?). Subjects

Was there any clear winner among the stools, when the goal was to minimize effort?

The ergoStool data set

is found in the MEMSS package.
library(MEMSS)
summary(ergoStool)
table(ergoStool$Subject)
contrasts(ergoStool$Type) #default contrast used

## effort Type Subject
## Min. : 7.00 T1:9 A : 4
## 1st Qu.: 8.00 T2:9 B : 4
## Median :10.00 T3:9 C : 4
## Mean :10.25 T4:9 D : 4
## 3rd Qu.:12.00 E : 4
## Max. :15.00 F : 4
## (Other):12
##
## A B C D E F G H I
## 4 4 4 4 4 4 4 4 4
## T2 T3 T4
## T1 0 0 0
## T2 1 0 0
## T3 0 1 0
## T4 0 0 1

Observe that the type of stool is coded as dummy variable, with T1 as reference category.
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Fit a LMM with lmer: summary

library(lme4)
fit = lmer(effort ~ Type + (1 | Subject), data = ergoStool)
summary(fit)

## Linear mixed model fit by REML ['lmerMod']
## Formula: effort ~ Type + (1 | Subject)
## Data: ergoStool
##
## REML criterion at convergence: 121.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.80200 -0.64317 0.05783 0.70100 1.63142
##
## Random effects:
## Groups Name Variance Std.Dev.
## Subject (Intercept) 1.775 1.332
## Residual 1.211 1.100
## Number of obs: 36, groups: Subject, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 8.5556 0.5760 14.853
## TypeT2 3.8889 0.5187 7.498
## TypeT3 2.2222 0.5187 4.284
## TypeT4 0.6667 0.5187 1.285
##
## Correlation of Fixed Effects:
## (Intr) TypeT2 TypeT3
## TypeT2 -0.450
## TypeT3 -0.450 0.500
## TypeT4 -0.450 0.500 0.500

The model formula gives first the fixed effects, which here is an intercept and then type of stool (with T1 as
reference, so estimate difference from T1). We use a random intercept for each Subject, given as (1|Subject).

From the print-out from summary we see that REML is used to fit the model, and quantiles of scaled Pearson
residuals. Could also have used:
formula(fit)
REMLcrit(fit)
quantile(residuals(fit, "pearson", scaled = TRUE))

## effort ~ Type + (1 | Subject)
## [1] 121.1308
## 0% 25% 50% 75% 100%
## -1.80200345 -0.64316591 0.05783115 0.70099706 1.63142054

Then there is a part on the fitted random effects and residual variation. The intra class correlation could also
be calculated from VarCorr(fit) (an object of class VarCorr.merMod). Observe the very high ICC of 0.6.
vc = VarCorr(fit)
print(vc, comp = "Variance")
df = as.data.frame(vc)
print(df)
print(vc)
nobs(fit)
ngrps(fit)
sigma(fit)
ICC = df[4][[1]][1]/sum(df[4][[1]])
ICC
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## Groups Name Variance
## Subject (Intercept) 1.7755
## Residual 1.2106
## grp var1 var2 vcov sdcor
## 1 Subject (Intercept) <NA> 1.775463 1.332465
## 2 Residual <NA> <NA> 1.210648 1.100295
## Groups Name Std.Dev.
## Subject (Intercept) 1.3325
## Residual 1.1003
## [1] 36
## Subject
## 9
## [1] 1.100295
## [1] 0.5945736

Then to the fitted fixed effects, which is interpreted as for lm with treatment contrast (dummy effect coding),
but without any p-values, and anova gives the analysis of variance table. See help("pvalues") to explore
your options to find p-values for testing fixed effects.
fixef(fit)
coef(summary(fit))
anova(fit)
help("pvalues")

## (Intercept) TypeT2 TypeT3 TypeT4
## 8.5555556 3.8888889 2.2222222 0.6666667
## Estimate Std. Error t value
## (Intercept) 8.5555556 0.5760123 14.853079
## TypeT2 3.8888889 0.5186838 7.497610
## TypeT3 2.2222222 0.5186838 4.284348
## TypeT4 0.6666667 0.5186838 1.285304
## Analysis of Variance Table
## Df Sum Sq Mean Sq F value
## Type 3 81.194 27.065 22.356

It is easiest to rise from the stool of Type T1, followed by Type T4 and the Type T3 and finally Type T2.

We may also get confidence intervals for the fixed effects (and random effects variances), based on the profile
likelihood, which might be thought of as analogues to p-values. However, keep in mind our coding of Type
(dummy), so if the intervals contain 0 the Type is not different from the reference Type T1 (the best type
wrt effort to arise). The confidence intervals are made using the Wald approximation for the fixed effects. A
bootstrap confidence interval can also be provided.
confint(fit)

## 2.5 % 97.5 %
## .sig01 0.7342354 2.287261
## .sigma 0.8119798 1.390104
## (Intercept) 7.4238425 9.687269
## TypeT2 2.8953043 4.882473
## TypeT3 1.2286377 3.215807
## TypeT4 -0.3269179 1.660251

Finally, there is a part on the correlation between estimated fixed effects, here we have the estimated
correlation between the three levels of type of stool. We can get the variance-covariance matrix with vcov,
and can calculated correlations from that matrix.
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vcov(fit)

## 4 x 4 Matrix of class "dpoMatrix"
## (Intercept) TypeT2 TypeT3 TypeT4
## (Intercept) 0.3317901 -0.1345165 -0.1345165 -0.1345165
## TypeT2 -0.1345165 0.2690329 0.1345165 0.1345165
## TypeT3 -0.1345165 0.1345165 0.2690329 0.1345165
## TypeT4 -0.1345165 0.1345165 0.1345165 0.2690329

Diagnostic plots

Fitted vs. residuals and normal qq-plot (from lattice). Not ggplot - see below for more plotting.
plot(fit, type = c("p", "smooth"))

fitted(.)

re
si

d(
., 

ty
pe

 =
 "

pe
ar

so
n"

)

−2

−1

0

1

8 10 12 14

library(lattice)
qqmath(fit, id = 0.05)
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Comparing models

We may also use anova to compare models. Assume that we want to compare to the (probably very bad)
model where type of stool is not taken into account (which is stupic if we want to investigate the types) - so
just go show (better example for sleep study).
fit0 = lmer(effort ~ 1 + (1 | Subject), data = ergoStool)
anova(fit0, fit)

## Data: ergoStool
## Models:
## fit0: effort ~ 1 + (1 | Subject)
## fit: effort ~ Type + (1 | Subject)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
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## fit0 3 164.15 168.90 -79.075 158.15
## fit 6 134.14 143.65 -61.072 122.14 36.006 3 7.468e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The comparison is based on the likelihood ratio test with ML (not REML), and also gives p-values.

p-values in lme4

Excerpt from Fitting Linear Mixed-Effects Models Using lme4 by Bates, Bolker, Mächler and Walker (2015)
in Journal of Statistical Software page 35:

Computing p values One of the more controversial design decisions of lme4 has been to omit the output of p
values associated with sequential ANOVA decompositions of fixed effects. The absence of analytical results for
null distributions of parameter estimates in complex situations (e.g., unbalanced or partially crossed designs) is
a long-standing problem in mixed-model inference. While the null distributions (and the sampling distributions
of non-null estimates) are asymptotically normal, these distributions are not t distributed for finite size
samples – nor are the corresponding null distributions of differences in scaled deviances F distributed. Thus
approximate methods for computing the approximate degrees of freedom for t distributions, or the denominator
degrees of freedom for F statistics (Satterthwaite 1946; Kenward and Roger 1997), are at best ad hoc solutions.

However, computing finite-size-corrected p values is sometimes necessary. Therefore, although the package
does not provide them (except via parametric bootstrapping, Section 5.1), we have provided a help page to
guide users in finding appropriate methods:

R> help("pvalues")

pvalues {lme4} R Documentation Getting p-values for fitted models

Description

One of the most frequently asked questions about lme4 is “how do I calculate p-values for estimated parameters?”
Previous versions of lme4 provided the mcmcsamp function, which efficiently generated a Markov chain Monte
Carlo sample from the posterior distribution of the parameters, assuming flat (scaled likelihood) priors. Due
to difficulty in constructing a version of mcmcsamp that was reliable even in cases where the estimated random
effect variances were near zero (e.g. https://stat.ethz.ch/pipermail/r-sig-mixed-models/2009q4/003115.html),
mcmcsamp has been withdrawn (or more precisely, not updated to work with lme4 versions >=1.0.0).

Many users, including users of the aovlmer.fnc function from the languageR package which relies on mcmcsamp,
will be deeply disappointed by this lacuna. Users who need p-values have a variety of options. In the list
below, the methods marked MC provide explicit model comparisons; CI denotes confidence intervals; and
P denotes parameter-level or sequential tests of all effects in a model. The starred (*) suggestions provide
finite-size corrections (important when the number of groups is <50); those marked (+) support GLMMs as
well as LMMs.

likelihood ratio tests via anova or drop1 (MC,+)

profile confidence intervals via profile.merMod and confint.merMod (CI,+)

parametric bootstrap confidence intervals and model comparisons via bootMer (or PBmodcomp in the
pbkrtest package) (MC/CI,*,+)

for random effects, simulation tests via the RLRsim package (MC,*)

for fixed effects, F tests via Kenward-Roger approximation using KRmodcomp from the pbkrtest package
(MC,*)
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car::Anova and lmerTest::anova provide wrappers for Kenward-Roger-corrected tests using pbkrtest:
lmerTest::anova also provides t tests via the Satterthwaite approximation (P,*)

afex::mixed is another wrapper for pbkrtest and anova providing “Type 3” tests of all effects (P,*,+)

arm::sim, or bootMer, can be used to compute confidence intervals on predictions.

For glmer models, the summary output provides p-values based on asymptotic Wald tests (P); while this is
standard practice for generalized linear models, these tests make assumptions both about the shape of the
log-likelihood surface and about the accuracy of a chi-squared approximation to differences in log-likelihoods.

When all else fails, don’t forget to keep p-values in perspective: http://www.phdcomics.com/comics/archive.
php?comicid=905

What have we not covered?

• Multi-level models: we have only considered two levels
• Structures for the covariance matrix of εi: we have only considered σ2I.
• Effective sample size.
• Details about testing random effects with mixtures of χ2-distributions.
• External effects and the extended random intercept model to give different scales for the within and

between cluster effects. See pages 353-354 in Fahrmeir et al (2013).
• Penalized least squares view.
• Bayesian view.

Interactive session week 2

Plan:

• First hour: Problem 1, go back to ILw1 to check what you skipped then.
• Second hour: Problem 2 (and Team Kahoot! if not done in PL).

Exercise 1: Taken from UiO, STK3100, 2016, problem 3

The data in this problem is based on four measurements of a particular bone for 20 boys. The meaurements
were taken at 8, 8.5, 9 and 9.5 years of age. The variables in the dataset are

• bone: length of bone in millimeters
• redage: centered age (i.e. age - 8.75)

Below is an excerpt from the output from fitting a linear mixed model (LMM) with the procedure lmer in R
where the length of the bone, bone, is the response,

boneij = β0 + β1redageij + γ0i + γ1iredageij + εij i = 1, . . . , 20, j = 1, 2, 3, 4

where γi = (γ0i, γ1i)T , i = 1, . . . , 20 represent the random effects.
filepath <- "https://www.math.ntnu.no/emner/TMA4315/2018h/bonedata.txt"
bone <- read.table(filepath, header = TRUE)
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library(lme4)
fit2 <- lmer(bone ~ redage + (1 + redage | boy), data = bone)
summary(fit2)

## Linear mixed model fit by REML ['lmerMod']
## Formula: bone ~ redage + (1 + redage | boy)
## Data: bone
##
## REML criterion at convergence: 231
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.80183 -0.30917 -0.09912 0.39174 2.07317
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## boy (Intercept) 6.2267 2.4953
## redage 1.2011 1.0960 0.13
## Residual 0.1794 0.4236
## Number of obs: 80, groups: boy, 20
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 50.0713 0.5600 89.416
## redage 1.8630 0.2593 7.185
##
## Correlation of Fixed Effects:
## (Intr)
## redage 0.122

a) Formulate the model on matrix form and explain the meaning and interpretation of the different parts.
State the usual model assumptions carefully.

New: explain what you see in the code and output below:
library(reshape2)
library(ggplot2)
fit2df <- data.frame(boy = paste0("boy", 1:20), low = coef(fit2)$boy[, 1] +

coef(fit2)$boy[, 2] * min(bone$redage), high = coef(fit2)$boy[, 1] + coef(fit2)$boy[,
2] * max(bone$redage))

fit2df <- melt(fit2df, id.vars = "boy", value.name = "bone", variable.name = "redage")
fit2df$redage <- (as.numeric(fit2df$redage) - 1) * (max(bone$redage) - min(bone$redage)) +

min(bone$redage)
ggplot(data = fit2df, mapping = aes(x = redage, y = bone, colour = boy)) + geom_line()
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b) Describe the distribution of the response yi = (yi1, yi2, yi3, yi4)T , i = 1, . . . , 20, and explain how you can
find numerical values using the R-output.

c) New: derive the joint distribution of (γγγi,yi)?

Find the conditional expectation of a random effect γγγi, i = 1, . . . , 20 given the observations,
i.e. E(γγγi|y1, . . . ,y20). Describe how the random effects, γγγi, i = 1, . . . , 20, can be predicted/estimated.

In the exam, no numerical calculations were necessary in b) and c).

d) New: do b) and c) in R (i.e. do numerical calculations). The R markdown file of this module contains
necessary code to download the dataset, and fit the full model. In addition, plot the distribution of (γ0i, γ1i)T
(this is a multivariate distribution).

Exercise 2: Taken from UiO, STK3100, 2015, problem 3

The data used in this problem conserns expenses in the the social security system Medicare in US. Average
expenses per hospitalization, denoted as ccpd, were in six years recorded for 54 regions: the fifty US states,
Puerto Rico, Virgin Islands, District of Columbia and an unspecified other. Thus there are 6 × 54 = 324
observations. The expenses are treated as response. The covariates are j = YEAR which can take values
1, . . . , 6 and a factor indicating the average length of stay at hospital, AVETD, in each region and year. This
factor has tree levels, 1 = six days or less, 2 = 7-9 days, 3 = 10 days or more. “Six days or less”" is the
reference level and the others are denoted as AVETD2 and AVETD3.

Below you find the output from fitting the linear mixed effects model
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yij = β0 + j × β1 + β2AVETD2ij + β3AVETD3ij + γ0i + j × γ1i + εij

j = 1, . . . , ni, $i = 1, . . . , 54 $ and N =
∑m
i=1 ni = 324.

filepath <- "https://www.math.ntnu.no/emner/TMA4315/2018h/medicare.dat"
medicare <- read.table(filepath, header = TRUE, colClasses = c("numeric", "numeric",

"factor", "factor"))

library(lme4)
fit1 <- lmer(ccpd ~ YEAR + AVETD + (1 + YEAR | fstate), data = medicare)

summary(fit1)

## Linear mixed model fit by REML ['lmerMod']
## Formula: ccpd ~ YEAR + AVETD + (1 + YEAR | fstate)
## Data: medicare
##
## REML criterion at convergence: 5185
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.1929 -0.6034 0.0180 0.6183 3.5134
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## fstate (Intercept) 5811948 2410.8
## YEAR 69022 262.7 0.42
## Residual 184566 429.6
## Number of obs: 324, groups: fstate, 54
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 7419.85 386.05 19.220
## YEAR 706.04 39.55 17.850
## AVETD2 567.72 183.92 3.087
## AVETD3 1008.34 244.25 4.128
##
## Correlation of Fixed Effects:
## (Intr) YEAR AVETD2
## YEAR 0.170
## AVETD2 -0.488 0.168
## AVETD3 -0.468 0.239 0.781

a) Formulate the model in matrix form and explain the what the usual assumptions are.

b) Compute a 95 % confidence interval for the fixed effect coefficient for YEAR.

Remark: for c we have not focus on testing random effects in our course. c) Explain how we can find out if
we can simplify the model by removing the random effect γ1i.

d)What is the expectation and covariate matrix in the marginal model of the response (Yi1, Yi2, Yi3, Yi4, Yi5, Yi6)T ?

e) Explain how the null hypothesis H0 : β3 = 2× β2 versus the alternative hypothesis H1 : β3 6= 2× β2 can
be tested? In this part no numerical calculations are expected.

f) New: Do c) and e) in R. The R Markdown file of this module contains necessary code to download the
dataset, and fit the full model.
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Previous exams

TMA4315 December 2017, Problem 3: Random intercept linear mixed effects
model

[20 points]

New on the reading list this year is how to handle correlated data in a regression setting, with the aid of the
linear mixed effects model. The simplest version of such a model is the random intercept model.

Write a short introduction to the random intercept linear mixed effects model and its practical usage, for a
student with a good background in multiple linear regression. The introduction should include an example
and emphasis should be on:

• Model assumptions.
• The conditional and marginal model.
• What is the intra class correlation and how can it be calculated from a given model fit?
• How are the regression coefficients estimated?

Topics you do not need to address are: REML, hypothesis testing, AIC.

R packages

# packages needed to run this module page
install.packages("lme4")
install.packages("devtools")
library(devtools)
install_github("romunov/AED")
install.packages("lattice")
install.packages("MEMSS")
install.packages("sjPlot")
install.packages("sjmisc")
install.packages("ggpubr")
install.packages("faraway")
install.packages("kableExtra")
install.packages("spcadjust")

Further reading

• Theoretical explanation for REML (beyond the scope of this course) by Inge Helland, UiO
• Verbeke and Molenberghs (2000), Section 5.3 (free ebook from Springer for NTNU students).
• Fitting Linear Mixed-Effects Models Using lme4 by Bates, Bolker, Mächler and Walker (2015) in Journal

of Statistical Software
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