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Overview

**Aim:** Present methods for analysing correlated responses in a
generalized linear models setting - LMM meets GLM to become
GLMM.
Also here (as in module LMM) we will only consider two-level
models and in particular focus on random intercept models for
binomial and Poisson responses. Emphasis will be on
understanding.

Aim:**


Learning material

▶ Textbook: Fahrmeir et al (2013): Chapter 7.5: 389-394, 7.7.
▶ Classnotes (15.11.2018)

https://www.math.ntnu.no/emner/TMA4315/2018h/M8PL.pdf


Topics

▶ beaches example - revisited
▶ notation
▶ the generalized linear mixed effect model (three ingredients)
▶ the GLMM with random intercept
▶ the marginal model
▶ parameter estimation and Laplace approximation
▶ summing up: what do we need to know about the GLMM?
▶ additional info on different software (not on reading list)

Jump to interactive.



Beaches example - revisited

This example is taken from Zuur et al. (2009, chapter 5, pages
101-142), and data are referred to as RIKZ. Data were collected on
nine different beaches in the Netherlands with the aim to
investigate if there is a relationship between the

▶ richness of species (number of species observed) and
▶ NAP: the height of the sampling station compared to mean

tidal level.

Data: 45 observations, taken at 9 beaches:

▶ beach: the beach that the samples were taken, for each beach
5 different samples were taken.
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We want to use the richness of species as the response in a regression
model. In Module LMM we assumed that the response could be viewed
as a normal variable, but now we rather assume that the response comes
from a Poisson distribution.

Q: Why do we want to assume a Poisson distribution?



A:
We observe events that may occur within a time interval or a
region.

1. The number of events occuring within a time interval or a
region, is independent of the number of events that occurs in
any other disjoint (non-overlapping) time interval or region.

2. The probability that a single event occurs within a small time
interval or region, is proportional to the length of the interval
or the size of the region.

3. The probability that more than one event may occur within a
small time interval or region is negligable.

When all of these three properties are funfilled we have a Poisson
process.

▶ The number of events in a Poisson process follows a Poisson
distribution.



We go ahead and fit a Poission GLM with log-link and NAP as
covariate. In Module LMM we talked about possible solutions to
how to handle multiple observations for each beach and came up
with:



Possible solutions:

1. Use all 45 observations in a Poisson regression - with a
common intercept and linear effect in NAP. Problem:
violation of assumption of independent observations lead to
wrong estimates for variances of parameter estimates.

2. Add beach as covariate to Poisson regression - then we
estimate one regression coefficient for each beach (intercepts)
in addition to the linear effect in NAP. Problem: why do we
want to add 8 extra parameters to estimate (why 8?) values
for the 9 beaches? Loss of power and what would we use the
beach estimates for?

3. Add beach as a random covariate to the Poisson regression:
this is called random intercept models. Problem: new stuff -
slightly complicated. We do this because beaches not of
interest in themselves, only random sample from population of
beaches, and therefore we only need to account for beaches,
not estimate separate parameters.



But - first: what do we remember about GLMs (and Poission
regression with log-link in particular)?



Assumptions for GLM model (Poisson):

1. Random component from exponential family: We have for our
beaches: Yi ∼ Poisson(λi), with E(Yi) = λi, and Var(Yi) = λi.

2. Linear predictor: ηi = xT
i β.

3. Log link
ηi = ln(λi) = g(λi)

and (inverse thereof) response function

λi = exp(ηi)

Canonical link for Poisson is log.

Parameter estimation is performed using the method of maximum
likelihood, numerically using Fisher scoring.



Solution 1: all observations in one GLM together - standard errors
not correct since assumption of independent obsevations is
violated.
Remember: For interpretation. If xi1 increases by one unit to
xi1 + 1 then the mean E(Yi) will in our model change by a factor
exp(β1). Not so easy to compare to the normal case.
fitall = glm(Richness ~ NAP, data = RIKZ, family = poisson(link = log))
summary(fitall)
fitall$coefficients[2]
exp(fitall$coefficients[2])

##
## Call:
## glm(formula = Richness ~ NAP, family = poisson(link = log), data = RIKZ)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.2029 -1.2432 -0.9199 0.3943 4.3256
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.79100 0.06329 28.297 < 2e-16 ***
## NAP -0.55597 0.07163 -7.762 8.39e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 179.75 on 44 degrees of freedom
## Residual deviance: 113.18 on 43 degrees of freedom
## AIC: 259.18
##
## Number of Fisher Scoring iterations: 5
##
## NAP
## -0.5559735
## NAP
## 0.5735136



library(ggplot2)
library(ggpubr)
df=data.frame("Y"=RIKZ$Richness,"x"=RIKZ$NAP,"fitted"=fitall$fitted.values,"dres"=residuals(fitall,type="deviance"),"pres"=residuals(fitall,type="pearson"),catBeach=as.factor(RIKZ$Beach))
gg1=ggplot(df)+geom_point(aes(x=x,y=Y,colour=catBeach))+geom_line(aes(x=x,y=fitted))+xlab("NAP")+ylab("Richness")
gg2=ggplot(df)+geom_point(aes(x=fitted,y=dres,color=catBeach))+xlab("fitted")+ylab("deviance residuals")
ggarrange(gg1,gg2)
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**Q: What is the formula for the black line on the left panel?
A**: see classnotes.



Solution 2: fixed effects for each beach - many estimates not so
much of interest when population is in focus.
RIKZ$beachfactor = as.factor(RIKZ$Beach)
fitbeach = glm(Richness ~ NAP + beachfactor, data = RIKZ, contrasts = list(beachfactor = "contr.sum"),

family = poisson(link = "log"))
summary(fitbeach)

##
## Call:
## glm(formula = Richness ~ NAP + beachfactor, family = poisson(link = "log"),
## data = RIKZ, contrasts = list(beachfactor = "contr.sum"))
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.8849 -0.5240 -0.1194 0.3805 2.6037
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.64239 0.07356 22.326 < 2e-16 ***
## NAP -0.49467 0.07642 -6.473 9.61e-11 ***
## beachfactor1 0.45928 0.14943 3.074 0.002115 **
## beachfactor2 0.88808 0.13527 6.565 5.20e-11 ***
## beachfactor3 -0.49422 0.22710 -2.176 0.029540 *
## beachfactor4 -0.59982 0.26525 -2.261 0.023740 *
## beachfactor5 0.58824 0.16469 3.572 0.000355 ***
## beachfactor6 -0.27433 0.21124 -1.299 0.194068
## beachfactor7 -0.47708 0.28070 -1.700 0.089202 .
## beachfactor8 -0.16553 0.21057 -0.786 0.431786
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 179.753 on 44 degrees of freedom
## Residual deviance: 47.073 on 35 degrees of freedom
## AIC: 209.07
##
## Number of Fisher Scoring iterations: 5



library(ggplot2)
library(ggpubr)
df=data.frame("Y"=RIKZ$Richness,"x"=RIKZ$NAP,"fitted"=fitbeach$fitted.values,"dres"=residuals(fitbeach,type="deviance"),"pres"=residuals(fitbeach,type="pearson"),catBeach=as.factor(RIKZ$Beach))
gg1=ggplot(df)+geom_point(aes(x=x,y=Y,colour=catBeach))+geom_line(aes(x=x,y=fitted))+xlab("NAP")+ylab("Richness")+facet_wrap(~catBeach)
gg2=ggplot(df)+geom_point(aes(x=fitted,y=dres,color=catBeach))+xlab("fitted")+ylab("deviance residuals")
ggarrange(gg1,gg2)

7 8 9

4 5 6

1 2 3

−1 0 1 2 −1 0 1 2 −1 0 1 2

0

5

10

15

20

25

0

5

10

15

20

25

0

5

10

15

20

25

NAP

R
ic

hn
es

s

catBeach

1

2

3

4

5

6

7

8

9

−3

−2

−1

0

1

2

5 10 15 20 25

fitted

de
vi

an
ce

 r
es

id
ua

ls

catBeach

1

2

3

4

5

6

7

8

9



Generalized linear mixed effects models

Notation
combining GLM (Module 5) and LMM (Module 7)
We have ni repeated observations (j = 1, . . . , ni) from each of
i = 1, . . . , m clusters (or individuals).

▶ Responses: Yi1, Yi2, . . . , Yini (e.g. species richness at beach i
sample j)

▶ Covariates: xi1, xi1, . . . , xini (e.g. NAP for beach i sample j)

The covariates xij are p × 1 vectors (as before, k covariates and
one intercept so p = k + 1).



Repetition GLM

1. Random component - exponential family (now yij)

f(yij | θij) = exp
(yijθij − b(θij)

ϕ
· wij + c(yij, ϕ, wij)

)

▶ θij is called the canonical parameter and is a parameter of
interest

▶ ϕ is called a nuisance parameter (and is not of interest to
us=therefore a nuisance (plage))

▶ wij is a weight function, in most cases wij = 1
▶ b and c are known functions.

We looked in detail into the binomial, Poisson and gamma
distribution (in addition to the normal).



2. Linear predictor (previously “systematic component”):

ηij = xT
ij β

3. Link function g- and response function h

ηij = g(µij)

µij = h(ηij)



New element
we add a random component (effect) to the linear predictor!

2.
ηij = xT

ij β + uT
ij γi

and we make the same assumptions as for the LMM

γi ∼ N(0, Q)

and independent from covariates. Observe: we still assume
normality for the random effects!
In addition, the mean µij = E(Yij | γi) is now to be seen to be
conditional on the random effect γi. This means that the specified
response distribution is conditional on the random effect: f(yij | γi).



GLMM model assumptions

Distributional assumptions
(previously “1. Random component from exponential family”)

▶ Given the random effects γi and the covariates xij and uij
▶ the responses Yij are conditionally independent and
▶ the conditional distribution f(yij | γi) belongs to and

exponential family.



Structural assumptions
(previously “2. Systematic component” and “3. Link function”)

▶ The conditional mean µij = E(Yij | γi) is linked to
▶ the linear predictor ηij = xT

ij β + uijγi
▶ through the link function

ηij = g(µij)

▶ or equivalently through the response function

µij = h(ηij)

▶ where h−1 = g (inverse functions).



Distributional assumptions for random effects

▶ The random effects γi, i = 1, . . . , m are independent and
identically distributed

γi ∼ N(0, Q)

▶ where the covariance matrix Q is a (q + 1) × (q + 1) positive
definite.

▶ An important special case is Q = diag(τ2
0 , τ2

1 , . . . , τ2
q ).

Q: Any questions? Notice that we still have normal distribution for
the random effects!
Remark: for LMMs we used that ε ∼ N(0, σ2I), but said that it
was possible to let the error terms be correlated ε ∼ N(0, R) where
R could har non-zero off-diagonal elements. However, for GLMMs
this is much more complicated.



Alternative two-step formulation
Consider a random variable Yij and a random effect γi for cluster i.
Alternative two step formulation:

1. γi ∼ N(0, Q)
2. Given the realization of γi, then the Yijs are independent and

each have the distribution f(yij | γi) with mean µij = h(ηij)
and linear predictor ηij = xT

ij β + uT
ij γi.

Remark: this conditional formulation is “easy” to write down, but
to do inference we need the marginal distribution of all Yijs
together to construct the likelihood. We will soon see that this is
hard.
Q: How would you proceed to generate a GLMM data set -
e.g. based on the beaches example?
A: see class notes



GLMM random intercept model

Distributional assumptions: we will focus on binomial and
Poisson responses.
Structural assumptions: The random effect is added to the linear
predictor

ηij = xT
ij β + γ0i

and we only consider canonical links, so logit for binomial and log
for Poisson.
Distributional assumptions for random effects

The γ0i, i = 1, . . . , m are independent and identically distributed

γ0i ∼ N(0, τ2
0 )



Poisson random intercept model
Distributional assumptions: The conditional distribution of the
response Yij is Poisson with mean λij

f(yij | γi) =
λ

yij
ij

yij!
exp(−λij) for y = 0, 1, 2, . . .

This is conditional on λij, which means that it is really conditional
on the linear predictor - since the mean is a function of the linear
predictor, and in the linear predictor we have fixed and random
effects. So, conditional on the values for the fixed and random
effects.
Then the observations Yij are conditionally independent for all i
and j - but, not marginally independent.



Structural assumptions:

ηij = xT
ij β + γ0i

ln(λij) = ηij or λij = exp(ηij)

Distributional assumptions for random effects

The γ0i, i = 1, . . . , m are independent and identically distributed

γ0i ∼ N(0, τ2
0 )

Remark: It is not necessary that ni > 1 to use this model, and this
model can be used to take care of overdispersion (when all ni = 1).



Beach-example: Poisson GLMM with beach as random
intercept
(we will talk about parameter estimation soon)

library("AED")
data(RIKZ)
library(lme4)
fitRI = glmer(Richness ~ NAP + (1 | Beach), data = RIKZ, family = poisson(link = log))
summary(fitRI)

## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: Richness ~ NAP + (1 | Beach)
## Data: RIKZ
##
## AIC BIC logLik deviance df.resid
## 220.8 226.2 -107.4 214.8 42
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.9648 -0.6155 -0.2243 0.2236 3.1869
##
## Random effects:
## Groups Name Variance Std.Dev.
## Beach (Intercept) 0.2249 0.4743
## Number of obs: 45, groups: Beach, 9
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.66233 0.17373 9.569 < 2e-16 ***
## NAP -0.50389 0.07535 -6.687 2.28e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## NAP 0.013

Q: Comment on what you see.
A: glmer, “Laplace approximation”, we now have p-values, and for
the fixed effects we read z and not t. No estimate for σ2 (or
residual term in random effects part) - since the model does not
contain any dispersion parameter.



library(sjPlot)
library(ggplot2)

plot_model(fitRI, type = "re") + ylab("BLUP") + xlab("Beaches")
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df <- data.frame(Y = RIKZ$Richness, x = RIKZ$NAP, fitted = fitted(fitRI), dres = residuals(fitRI,
scale = TRUE, type = "deviance"), catBeach = as.factor(RIKZ$Beach))

ggplot(df) + geom_point(aes(x = x, y = Y, col = catBeach)) + geom_line(aes(x = x,
y = fitted)) + xlab("NAP") + ylab("Richness") + facet_wrap(~catBeach)

7 8 9

4 5 6

1 2 3

−1 0 1 2 −1 0 1 2 −1 0 1 2

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

NAP

R
ic

hn
es

s

catBeach

1

2

3

4

5

6

7

8

9



xx <- rep(seq(min(RIKZ$NAP), max(RIKZ$NAP), length.out = 100), each = 9)
df <- data.frame(x = xx, eta = coef(fitRI)$Beach[, 1] + coef(fitRI)$Beach[,

2] * xx, Beach = factor(rep(1:9, times = 100)))
ggplot(df, aes(x = x, y = exp(eta), col = Beach)) + geom_line(size = 1) + labs(x = "NAP",

y = "Predicted incidents", title = "Predicted incidents of NAP on Richness") +
facet_wrap(~Beach)
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df <- data.frame(fitted = fitted(fitRI), resid = residuals(fitRI, scaled = TRUE,
type = "deviance"), Beach = factor(RIKZ$Beach))

ggplot(df, aes(x = log(fitted), y = resid)) + geom_hline(yintercept = 0) + geom_point(aes(col = Beach)) +
geom_smooth(method = "loess") + labs(x = "Log-predicted values", y = "Deviance residuals",
title = "Residuals plot")
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df <- data.frame(NAP = RIKZ$NAP, resid = residuals(fitRI, scaled = TRUE, type = "deviance"),
Beach = factor(RIKZ$Beach))

ggplot(df, aes(x = NAP, y = resid)) + geom_hline(yintercept = 0) + geom_point(aes(col = Beach)) +
geom_smooth(method = "loess") + labs(x = "NAP", y = "Residuals", title = "Relationship between predictor and residuals")

−3

−2

−1

0

1

2

3

−1 0 1 2

NAP

R
es

id
ua

ls

Beach

1

2

3

4

5

6

7

8

9

Relationship between predictor and residuals



df <- data.frame(Beach2 = RIKZ$Beach, resid = residuals(fitRI, scaled = TRUE,
type = "deviance"), Beach = factor(RIKZ$Beach))

ggplot(df, aes(x = Beach2, y = resid)) + geom_hline(yintercept = 0) + geom_point(aes(col = Beach)) +
geom_smooth(method = "loess") + labs(x = "Beach", y = "Residuals", title = "Relationship between Beach and residuals")
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plot_model(fitRI, type = "diag")$Beach
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Simulation example
Aim: to show the difference between random intercept and random
slope log Poisson models, and to compare the cluster curves, mean
of cluster curves and the marginal mean
This example a slightly modified version (added line and changed
to ggplot) of an example in the Lecture notes by Magne Aldrin,
Norwegian Computing Centre (which is way the notation differs
slightly from what we have used).



The model we use is(
γ0i
γ1i

)
∼ N

((
0
0

)
,

(
0.22 0
0 0.072

))

and then
ηij = β0 + β1xij + γ0i

for the random intercept model and

ηij = β0 + β1xij + γ0i + γ1ixij

for the random slope model.
Values chosen are β0 = −2 and β1 = 0.3.
Log-link is used so ηij = ln(µij).
Only data for the random intercept and slope are simulated, while
parameter estimates are considered known. The number of clusters
is m = 1000 and ni = 201 value of x from −10 to 10 are studied.



Below 30 random lines are plotted together (in different colours).
The black dashed line is exp(β0 + βix) (denoted “not mean” in the
plot) and the black solid line is the population mean (really, the
average of the m curves).
(Q: what would happen if we simulate data and estimate
parameters instead of only plotting means?)
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Q: comment on what you see. Would you expect that the solid
and dashed curve were identical?



Binomial random intercept model
We will study this model in the interactive session.

Simulation example
Aim: to show the difference between random intercept and random
slope logit models, and to compare the mean cluster curve with
the population curve (as for the Poisson model).
This example a slightly modified version (added line and changed
to ggplot) of an example in the Lecture notes by Magne Aldrin,
Norwegian Computing Centre (which is way the notation differs
slightly from what we have used).



The model we use is(
γ0i
γ1i

)
∼ N

((
0
0

)
,

(
4 0
0 1

))

and then
ηij = β0 + β1xij + γ0i

for the random intercept model and

ηij = β0 + β1xij + γ0i + γ1ixij

for the random slope model where β0 = 3 and β1 = 1. Logit-link is
used so ηij = ln( πij

1−πij
).

Only data for the random intercept and slope are simulated, while
parameter estimates are considered known. The number of clusters
is m = 1000 and ni = 201 value of x from −10 to 10 are studied.



Below 30 random lines are plotted together (in different colours).
The black dashed line is exp(β0 + βix)/(1 + exp(β0 + βix))
(denoted “not mean” in the plot) and the black solid line is the
population mean (really, the average of the m curves).
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Q: comment on what you see.



Conditional and marginal model

To do parameter estimation in the LMM we started with the
marginal model for Yij.

f(yij) =
∫

γi
f(yij | γi)f(γi)dγi

where
f(γi) is N(0, Q)

and f(yij | γi) might be the binomial, Poisson, normal, gamma, …
distribution - chosen as an exponential family.
It turns out that this integral can only be written out analytically
in special cases.
In the special case that f(yij | γi) is normal we saw in Module LMM
that the marginal distribution was also multivariate normal.



Another special case is the log-linear Poisson random intercept
where all ni = 1. See pages 393-394 in our textbook to see the
solution (that can be used to handle overdispersion in Poisson
regression).
Remark: for the random intercept Poisson GLMM with log-link the
expected marginal mean is (Agresti, 2015, page 309)

E(Yij) = E[E(Yij | γ0i)] = exp(xT
ij β + τ2

0 /2)
The solid line in the plot to the left above gives this curve, while
the dashed is exp(xT

ij β). In Agresti (2015, page 310) the variance
of the marginal distribution is given as

Var(Yij) = · · · = E(Yij) + [E(Yij)2(exp(τ2
0 ) − 1)]

so we see that the variance is larger than that of a Poisson
distribution.
Remark: the conditional mean is exp(xT

ij β + γ0i), while the
marginal mean is exp(xT

ij β + τ2
0 /2).

(If the link function chosen had been the identity link then the
marginal mean would have been xT

ij β.)



Parameter estimation
The most popular method for parameter estimation for regression
is maximum likelihood. The likelihood of the data is given by the
marginal distribution of all Yijs jointly. However, this can not be
found analytically (as we saw above), so we must resort to
numerial methods to evaluate the likelihood of a general GLMM.
The parameters we want to estimate are the fixed effects βs, and
the parameters in Q for the random effects - denoted by ϑ.
The contribution from observations in the ith cluster is

f(yi | β, ϑ) =
∫

γ i
f(yi | γ i, β)f(γ i | Q)dγ i =

∫
γ i

ni∏
j=1

f(yij | γ i, β)f(γ i | Q)dγ i

And the likelihood is then (since the clusters are independent)

L(β, ϑ) =
m∏

i=1
f(yi | β, ϑ)



To arrive at parameter estimates we need to maximize the
likelihood with respect to β and ϑ, which is a complicated
numerical problem.
There are several solution to this, and the glmer function in lme4
uses the Laplace approximation. Other solutions are adaptive
Gaussian quadratures, penalized quasilikelihood and various
Bayesian methods (study the posterior distribution of the
parameters). This is an active area of research.



Gauss-Hermite Quadrature
If the dimension of γ i is small, for example our random intercept
model, then the Gauss-Hermite quadrature may be used to
approximate the integral above. This will be of the form

∫ ∞

−∞
h(γ) exp(−γ2)dγ

which can be written as a sum of weights and quadrature points
that are roots of Hermite polynomials. This can then be
maximized using Newton-Raphson methods.
When the dimension of γ gets more than two, other methods are
used.



Laplace approximation (for the interested student)

The notation in this section is taken from Kristensen et al (2016):
“TMB: Automatic Differentiation and Laplace Approximation”,
Journal of Statistical Software, 70, 5. doi:10.18637/jss.v070.i05,
which is the background for the glmmTMB package. The notation is
different from what is used in this module, but this reflects that
often different notation is used for the same models.
Let f(u, θ) be the joint log-likelihood of the data and the random
effects. This will in our case be related to ln[f(yi | γi, β)f(γi | Q)].
Observe that f(u, θ) depends on the unknown random effects u and
the parameters in θ (here we have the fixed effects and the
parameters in Q for the random effects).

doi:10.18637/jss.v070.i05


The maximum likelihood estimate for θ maximized

L(θ) =
∫

u
exp(f(u, θ))du

with respect to θ. Observe that the random effects u are now
integrated out and the marginal likelihood L(θ) is the likelihood of
the data as a function of the parameters only.
Let û(θ) be the minimizer of f(u, θ), and H(θ) is the Hessian
(matrix of partial second derivatives) of f(u, θ) evaluated at û(θ).
The Laplace approximation for the marginal likelihood L(θ) is

L∗(θ) = (2π)n/2det(H(θ))−1/2 exp(f(û, θ))



Some more details: Let g(u) = ln(f(y | u)f(u)), and look at the
second order Taylor expansion around û(θ):

g(u) ≈ g̃(u) = g(û)+(u−û)g‘(û)+1
2(u−û)2g′′(û) = g(û)−1

2(u−û)2(−g′′(û))

This means that exp(g̃(u)) is proportional to the normal density
with mean µ = û and variance σ2 = −1/g′′(û). Putting this back
into our integral

L(θ) =
∫

u
exp(g(u))du ≈

∫
u

exp(g̃(u))du = exp(g(û))
∫

u
exp(− 1

2σ2 (u−µ)2)du = exp(g(û)
√
2πσ2

This last part was taken from http://people.math.aau.dk/~rw/
Undervisning/Topics/Handouts/6.hand.pdf.

http://people.math.aau.dk/~rw/Undervisning/Topics/Handouts/6.hand.pdf
http://people.math.aau.dk/~rw/Undervisning/Topics/Handouts/6.hand.pdf


What have we not covered?

▶ We have skipped a lot of technicalities about the parameter
estimation.

▶ How to predict the random effects γi: “the conditional modes”
of the random effects.

▶ What is fitted values, and how are residuals calculated.
▶ How to test hypotheses?
▶ AIC to compare models (very similar to LMM).
▶ And, surely, much more.



Summing up - what have we learned about the GLMM?

▶ The GLMM can be formulated using three ingredients:
▶ distributional assumption: f(yij | γi) from exponential family
▶ structural assumptions: linear predictor ηij = xT

ij β + uijγi and
link function ηij = g(µij) where µij = E(Yij | γi).

▶ distributional assumptions for the random effects:
γi ∼ N(0, Q).

▶ The GLMM likelihood function is expressed as an integral
with respect to the random effects and does (in general) not
have a closed form solution.

▶ Numerical approximation methods need to be used to find
parameter estimates, and one possibility is to use the Laplace
approximation, but many competing method exists.



▶ Three R packages that can be investigated is lme4(function
glmer) and glmmTMB (template model builder), and the
NTNU-flagship inla. How to use these three packages on a
simulated data set (binary data, logit link, random intercept
and slope) is shown in the end of the module page (NOT on
our reading list but for the interested student).



Interactive session week

This is the last interactive session in the course.

▶ First hours: Problem 1
▶ Second hours: work on (and get help) with Compulsory 3!



Problem 1: Taken from UiO, STK3100, 2011, problem 2
a) Show that the binomial distribution is a member of the
exponential family of distributions. What do we mean with
canonical link, and which advantages do we get when using
canonical link? What is the canonical link for the binomial
distibution?
b) This excercise is modified!
Assume the following model:

yij ∼ Bin(1, πij)

g(πij) = β0 + β1x1,ij + β2x2,i

where g(·) is a suitable link function and all yij are independent.
What kind of model is this?
The table below shows AIC-values for three different link functions
often used with binary response data:

Link function AIC
probit 57.51571
cloglog 58.30338
logit 57.69237

Explain what AIC is, and argue why it is reasonable to use such
criteria in this situation (instead of other tests from this course).
Based on these three values, which link-function do you prefer?
Why?
We will, as we did a few weeks back, look at a fish dataset
consisting of observations of cod from the year 2000, but we are
now interested in the age of each fish, rather than the weight. The
dataset is from Havforskningsinstituttet in Bergen, and we use only
a subset of a large dataset with information about fish in
Barentshavet. The following variables are available on a random
sample within each catch (a draft of trawl (trål)):

▶ length: the length of fish (in cm)
▶ weight: the weight of fish (in grams)
▶ age: the age of fish (in years)
▶ haulsize: the size of the total catch (in ton (1000 kg))

Let i be the index for catch, and j be the index for an individual
fish in a given catch.
Age is a categorical variable between 2 and 12, but we create a
new variable Aij:

Aij =
{
1 if ageij > 6
0 else

which is a binary variable, and we use this for the response.
Remark: before we used weight as response (normal), but
now we use dichotomized age as a binary response.
We look at the following model:

Aij|γ0i ∼ Bin(1, πij)

g(πij) = β0 + β1 log(lengthij) + log(haulsizei) + γ0i

γ0i ∼ N(0, τ2
0 )

where g(·) is the logit link function, and all Aij are conditional
independent (given γi).
c1) New: What kind of model is this? What is γ0i? Compare to
the linear mixed effects model- similarities and differences.
Below you find an excerpt of this model:

## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: A ~ log(length) + log(haulsize) + (1 | haul)
## Data: fish
##
## AIC BIC logLik deviance df.resid
## 2524.7 2551.2 -1258.4 2516.7 5483
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -20.037 -0.176 -0.040 0.138 40.513
##
## Random effects:
## Groups Name Variance Std.Dev.
## haul (Intercept) 1.921 1.386
## Number of obs: 5487, groups: haul, 63
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -89.3202 3.0256 -29.522 <2e-16 ***
## log(length) 20.7783 0.7080 29.348 <2e-16 ***
## log(haulsize) -0.2396 0.1400 -1.711 0.087 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) lg(ln)
## log(length) -0.997
## log(haulsz) 0.021 0.017

c2) New: Explain what it means that the model is fitted by
maximum likelihood. What does Laplace approximation has to do
with the model fit?
Skip d)- not in our reading list to test random effects - so
too advanced.

d) The log-likelihood value for the corresponding model without
any random effects (which corresponds to a model with τ2

0 = 0) is
-1498.04. Use this to perform a likelihood ratio test with
H0 : τ2

0 = 0. Calculate the corresponding p-value and draw a
conclusion.
e) The Havforskningsinstituttet believes that the haulsize is
important in the modelling of age and length of the fish (read: as
a fixed effect). Based on the excerpts above (on dichotomized age)
and below (on weight), what do you think about this?

## Linear mixed model fit by REML ['lmerMod']
## Formula: log(weight) ~ log(length) + log(haulsize) + (1 | haul)
## Data: fish
##
## REML criterion at convergence: -10188.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.1204 -0.6107 -0.0314 0.5813 5.1458
##
## Random effects:
## Groups Name Variance Std.Dev.
## haul (Intercept) 0.003030 0.05505
## Residual 0.008594 0.09270
## Number of obs: 5433, groups: haul, 63
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -4.286029 0.041554 -103.143
## log(length) 2.901037 0.009703 298.984
## log(haulsize) 0.006169 0.005328 1.158
##
## Correlation of Fixed Effects:
## (Intr) lg(ln)
## log(length) -0.980
## log(haulsz) 0.047 0.056

Remark: It is in general a very bad idea to do a dichotomization
of a continuous variable - like what is done here for transforming
the age into Aij, because then information is lost. In a hypothesis
testing set-up this will in general give substantial loss of power to
detect the effect of a covariate.



Software for GLMM: demonstration of glmer, glmmTMB
and inla for analysing GLMMs

This is NOT on the reading list, but an extra service to the
interested students.

install.packages("arm")
install.packages("reshape2")
install.packages("sp")
install.packages("glmmTBM")
install.packages("INLA", repos="https://inla.r-inla-download.org/R/stable", dep=TRUE)
}

library(ggplot2)
library(ggpubr)
library(lme4)
library(glmmTMB)
library(INLA)
library(reshape2)
library(arm)

For this demonstration, we will simulate a dataset with one fixed
effect (x) and random intercept and random slope (always nice to
know the true values for parameters to compare with estimates).
Q: What is the model that we simulate from?

set.seed(90) # to get reproduciability

no.gr <- 15
x1 <- runif(200, 0, 1)

y <- matrix(NA, nrow = 200, ncol = 15)

Q <- matrix(c(0.5, 0.3, 0.3, 0.5), nrow = 2)
random_both <- mvrnorm(no.gr, c(0,0), Q)
random_int <- random_both[,1]; random_slope <- random_both[,2]

# to test out
#random_int <- runif(15, -2, 2) # when we want to simulate from a model that does not fit exactly
#random_slope <- runif(15, -2, 2)

beta_0 <- -0.45
beta_1 <- 0.76

for (i in 1:15){
y[,i] <- beta_0 + beta_1*x1 + random_int[i] + random_slope[i]*x1 + rnorm(200, 0, 1)

}

y_binom <- as.numeric(c(y) > 0)

ggplot(cbind(melt(data.frame(y)), x = rep(x1, 15), y = as.factor(y_binom)),
mapping = aes(x = x, y = value)) +

geom_point(aes(col = y)) + geom_smooth(method = "lm", col = "black", se = FALSE) +
facet_wrap(~ variable) + labs(x = "x", y = "y")
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mydata <- data.frame(y = y_binom, x = x1, group = rep(1:15, each = 200))

head(mydata)

## y x group
## 1 0 0.5307603 1
## 2 0 0.8850698 1
## 3 0 0.4399639 1
## 4 1 0.9422908 1
## 5 1 0.1883275 1
## 6 0 0.6555310 1

Use a binary regression with logit link to model the probability.
That is, we have one covariate and make the following
assumptions.

1. Distributional assumptions: Yij | γi ∼ Bin(ni, πij) for i =
1, . . . , 15, j = 1, . . . , ni = 200, N =

∑
i ni = 3000.

2. Structural assumptions: The linear predictor (with random
effects) with one fixed covariate:

ηij = β0 + β1xij + γ0i + γ1ixij

where we will choose xij = uij. The link function is:

ηij = ln
(

πi
1 − πi

)
3. Distributional assumptions for random effects(

γ0i
γ1i

)
∼ N

((
0
0

)
,

(
τ2

0 τ01
τ01 τ2

1

))
Now we will look at three common ways of analysing such models.
For each type we will fit the model and look at results.

fit_glmer <- glmer(y ~ x + (1 + x | group), data = mydata, family = binomial(link = "logit"))

fit_glmmTMB <- glmmTMB(y ~ x + (1 + x | group), data = mydata, family = binomial(link = "logit"))

n.gr <- max(mydata$group)
mydata$group2 <- mydata$group + n.gr
fit_inla <- inla(y ~ x + f(group, model = "iid2d", n = 2*n.gr) + f(group2, x, copy = "group"),

data = mydata, family = "binomial",
control.compute = list(dic = TRUE),
control.family = list(link = "logit"))

coefdf <- data.frame(mean =
c(summary(fit_glmer)$coefficients[,1],
summary(fit_glmmTMB)$coefficients$cond[,1],
fit_inla$summary.fixed[,1]),

sd =
c(summary(fit_glmer)$coefficients[,2],
summary(fit_glmmTMB)$coefficients$cond[,2],
fit_inla$summary.fixed[,2]),

mod = rep(c("glmer", "glmmTMB", "INLA"), each = length(fit_inla$names.fixed)),
par = rep(fit_inla$names.fixed, 3))

true_frame <- data.frame(par = fit_inla$names.fixed, beta = c(beta_0, beta_1))

critval <- qnorm(0.025, lower.tail = FALSE)
ggplot(coefdf) + geom_point(aes(x = mod, y = mean)) +
geom_hline(aes(yintercept = 0), col = "#D55E00") +
geom_hline(data = true_frame, aes(yintercept = beta), col = "forestgreen", size = 1) +
geom_errorbar(aes(x = mod, ymin = mean-critval*sd, ymax = mean+critval*sd)) +
facet_wrap(~ par, scales = "free_y") + labs (x = "", y = "")

(Intercept) x

INLA glmer glmmTMB INLA glmer glmmTMB

0.0

0.5

1.0

1.5

−1.5

−1.0

−0.5

0.0

randdf_intercept <- data.frame(mean =
c(ranef(fit_glmer)$group[,1],
ranef(fit_glmmTMB)$cond$group[,1],
fit_inla$summary.random$group$mean[unique(mydata$group)],
random_int),

mod = rep(c("glmer", "glmmTMB", "INLA", "true"), each = length(unique(mydata$group))),
x = paste0("y", sprintf("%02d", rep(1:length(unique(mydata$group)), 4))))

critval <- qnorm(0.025, lower.tail = FALSE)
randdf_intercept$low <- c(se.ranef(fit_glmer)$group[,1]*(-critval) + ranef(fit_glmer)$group[,1],

ranef(fit_glmmTMB)$cond$group[,1], # do not know how to get these values for glmmTMB
fit_inla$summary.random$group$`0.025quant`[unique(mydata$group)],
rep(0, 15))

randdf_intercept$high <- c(se.ranef(fit_glmer)$group[,1]*(critval) + ranef(fit_glmer)$group[,1],
ranef(fit_glmmTMB)$cond$group[,1], # do not know how to get these values for glmmTMB
fit_inla$summary.random$group$`0.975quant`[unique(mydata$group)],
rep(0, 15))

randdf_intercept$x2 <- rep(1:15, 4) + rep(c(-0.15,-0.05,0.05,0.15), each = 15)

ggplot(randdf_intercept) + geom_point(aes(x = mean, y = x2, col = mod)) + geom_vline(xintercept = 0, lty = 2) +
geom_segment(aes(x = low, xend = high, y = x2, yend = x2, col = mod)) +
labs(x = "random intercept", y = "") +
scale_y_continuous(breaks = 1:15, labels = paste0("y", sprintf("%02d", rep(1:length(unique(mydata$group))))))
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randdf_slope <- data.frame(mean =
c(ranef(fit_glmer)$group[,2],
ranef(fit_glmmTMB)$cond$group[,2],
fit_inla$summary.random$group$mean[unique(mydata$group2)],
random_slope),

mod = rep(c("glmer", "glmmTMB", "INLA", "true"), each = length(unique(mydata$group))),
x = paste0("y", sprintf("%02d", rep(1:length(unique(mydata$group)), 4))))

critval <- qnorm(0.025, lower.tail = FALSE)
randdf_slope$low <- c(se.ranef(fit_glmer)$group[,2]*(-critval) + ranef(fit_glmer)$group[,2],

ranef(fit_glmmTMB)$cond$group[,2], # do not know how to get these values for glmmTMB
fit_inla$summary.random$group$`0.025quant`[unique(mydata$group2)],
rep(0, 15))

randdf_slope$high <- c(se.ranef(fit_glmer)$group[,2]*(critval) + ranef(fit_glmer)$group[,2],
ranef(fit_glmmTMB)$cond$group[,2], # do not know how to get these values for glmmTMB
fit_inla$summary.random$group$`0.975quant`[unique(mydata$group2)],
rep(0, 15))

randdf_slope$x2 <- rep(1:15, 4) + rep(c(-0.15,-0.05,0.05,0.15), each = 15)

ggplot(randdf_slope) + geom_point(aes(x = mean, y = x2, col = mod)) + geom_vline(xintercept = 0, lty = 2) +
geom_segment(aes(x = low, xend = high, y = x2, yend = x2, col = mod)) +
labs(x = "random slope", y = "") +
scale_y_continuous(breaks = 1:15, labels = paste0("y", sprintf("%02d", rep(1:length(unique(mydata$group))))))
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fittedvalues <- data.frame(mean =
c(fitted.values(fit_glmer),

fitted.values(fit_glmmTMB),
fit_inla$summary.fitted.values$mean),

mod = rep(c("glmer", "glmmTMB", "INLA"), each = nrow(mydata)),
x = rep(mydata$x, 3),
group = rep(mydata$group,3))

ggplot(fittedvalues) + geom_count(data = mydata, aes(x = y*0.8+0.1, y = y*0.8+0.1), col = grey(0.4)) + scale_size_area() +
geom_point(aes(x = x, y = mean, col = mod, pch = mod, size = 1.5)) +
facet_wrap(~ group) + labs(x = "x", y = expression(hat(y)))
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The results are quite similar (as approximation is necessary in the
computations, some differences are expected). We can make more
complicated models, and (especially from INLA) we also get much
more information about the model, but this is way out of the scope
of this course. Models like this require computer intenisve
methods, and if you are interested in learning more about this, you
can take the course TMA4300 - Computer Intensive Statistical
Methods in the spring semester.



R packages

install.packages("arm")
install.packages("reshape2")
install.packages("sp")
install.packages("glmmTBM")
install.packages("INLA", repos = "https://inla.r-inla-download.org/R/stable",

dep = TRUE)
install.packages("lme4")
install.packages("devtools")
library(devtools)
install_github("romunov/AED")
install.packages("sjPlot")
install.packages("sjmisc")



Further reading

▶ Bolker et al. (2008):Generalized linear mixed models: a
practical guide for ecology and evolution

▶ Zuur et al. (2009): “Mixed Effects Models and Extensions in
Ecology with R”, chapter 13 (pages 323-341). Available as
free ebook from Springer for NTNU students. More
explanations and less mathematics than Fahrmeir et al (2013),
more focus on understanding. Link to ebook Chapter 13

▶ Agresti (2015): Foundations of linear and generalized linear
models, Chapter 9.

http://avesbiodiv.mncn.csic.es/estadistica/curso2011/regm26.pdf
http://avesbiodiv.mncn.csic.es/estadistica/curso2011/regm26.pdf
https://link.springer.com/chapter/10.1007/978-0-387-87458-6_13

