$$\frac{f_{nl}l_{lple}l_{linear} (c_{greension}: f_{acus on information})}{f_{acus}} = \frac{f_{acus}f_{acus}}{f_{acus}}$$
The Girf way & likelihood / same / Risker information $XX = \frac{f_{acus}}{f_{acus}}$
The Girf way & likelihood / same / Risker information $XX = \frac{f_{acus}}{f_{acus}}$
 $1, Y_{1}, vN(\mu_{1}, \sigma^{2})$
 $2, q_{1}: x_{1}^{c}p$
 $2, q_{1}: x_{2}^{c}p$
 $3, \mu_{1}: q_{1}$
 $\beta = (XTX)^{c}XTY$
 $XY, \frac{f_{acus}}{f_{acus}}$
 $3, \mu_{1}: q_{1}$
 $\beta = NP((P, \sigma^{c}(XTX)^{-1})$
 $A^{2} = \frac{f_{1}}{r_{1}} (Y_{1} - Xp)T((-Xp)) = \frac{f_{1}}{r_{1}} (Y_{1} - Xp)^{T}$
 $A^{2} = \frac{h_{1}}{r_{1}} (f_{1} - Xp)T((-Xp)) = \frac{f_{1}}{r_{1}} (Y_{1} - Xp)^{T}$
 $A^{2} = \frac{h_{1}}{r_{1}} (f_{1} - Xp)T((-Xp)) = \frac{f_{1}}{r_{1}} (Y_{1} - Xp)^{T}$
 $A^{2} = \frac{f_{1}}{r_{1}} (f_{2} - Xp) + f_{1} - p$
 $f_{1} = \frac{f_{1}}{r_{1}} (f_{2} - f_{2}) + f_{1} - p$
 $f_{2} = \frac{f_{1}}{r_{2}} (Y_{1} - Xp)^{T}$
 $A^{2} = \frac{f_{1}}{r_{2}} (Y_{1} - Xp)^{T} + f_{2} - f_{1} - p$
 $f_{2} = \frac{f_{1}}{r_{2}} (Y_{1} - Xp)^{T}$
 $A^{2} = \frac{f_{1}}{r_{2}} (Y_{1} - Xp)^{T} + f_{2} - f_$

(but
(but
(rested)) A: large (H.)
Aut: compare two/resolutions

$$E: smell - maded (H)$$

 $E: smell - maded (H)$
 $U(\beta_{R_{1}}, \widetilde{O}_{R})$: (maximum) huelthood et $\beta_{R_{1}}, \widetilde{O}_{R}$
 T under nodel A because
 $Maximum likelihood estimates ($-\frac{1}{2\overline{G}^{2}} (Y - \underline{X}_{R}^{2})^{T}(Y - \underline{X}_{R}^{2})$
 $L(\beta_{R_{1}}, \widetilde{O}_{R}) : (maximu)$ huelthood at $\beta_{R_{1}}, \widetilde{O}_{R}$
 $L(\beta_{R_{1}}, \widetilde{O}_{R}) : (maximu)$ huelthood at $\beta_{R_{1}}, \widetilde{O}_{R}$
 $L(\beta_{R_{1}}, \widetilde{O}_{R}) : (maximu)$ huelthood at $\beta_{R_{1}}, \widetilde{O}_{R}$
 $L(\beta_{R_{1}}, \widetilde{O}_{R}) = (\frac{1}{2\pi} \overline{O}_{R}^{2})^{N/2} e^{-\frac{n}{2}} \sum_{\substack{i \leq i \\ i \leq i \\ i$$

The likelihood relia test stehistic

$$-2\ln A = -2\left(\ln L(\hat{p}_{B}, \tilde{G}_{B}) - \ln L(\hat{p}_{A}, \tilde{G}_{A})\right)$$
nild
regularly \mathcal{R} \mathcal{X}_{af}^{2}
ondshow \mathcal{R} $\left(number of personales in A - number of personales in A$
- number of personal in B)
Reject Ho when $\left(prefer A + b B\right) p$ -value $< \alpha$: $P(\mathcal{X}_{af} > -2hA)$
Comment: Can be shown that
 $-2\ln \lambda = n\left(\ln \tilde{G}_{B}^{2} - \ln \tilde{G}_{A}^{2}\right)$ and $\lambda = \left(1 + \frac{p_{A} - p_{O}}{n - p_{A}} + F_{O}b_{O}\right)^{-\frac{1}{2}}$
(Ex: munich rent index) 3

6) Devience
$$\leftarrow$$
 used for nodel assessment and to explose Autoromy
Assume all 1 observations have different convertex pettrus.
Condidete nodel: the model we fit
Orderided nodel: the model that would give the best
fit to the data: $hi = y$:
and we have $\gamma_{C} = \mu^{C}$ (so not $\gamma_{C} = xT \rho$)
The likelihood of the schreted nodel is (inters $x^{T} \cdot order)$
the likelihood of the schreted nodel is (inters $x^{T} \cdot order)$
 $(n(\int_{i=1}^{m} (AT o^{1/2} eq(-2\sigma^{C} (y_{C} - \mu_{C})^{2}))) ded lat $\mu^{C} = y_{C}^{C}$
 $-\frac{1}{2} ln(pro)^{1/2} = \frac{1}{2} ln(pro)^{1/2} = -\frac{1}{2} ln(2\pi\sigma^{2})$
The logilulihood for the consider model
 $-\frac{1}{2} ln(2\pi\sigma^{2}) - \frac{1}{2}\sigma^{2} \int_{i=1}^{m} (y_{i} - x_{i}^{2}\rho)^{2}$
The desnence is here subset for solved is consider
 $Q = -2(-\frac{2}{2}ln(2\pi\sigma^{2}) - \frac{1}{2}\sigma^{2} Ilg_{C} - x_{i}^{2}\rho)^{2} - (-\frac{2}{2}ln(2\pi\sigma^{2}))$
 $= \frac{1}{2^{2}} I(y_{i} - x_{i}^{2}\rho)^{2} = \frac{525}{\sigma^{2}}$ iscolard devices a '
unscaled devence $qD = T^{2}D = 5SE$$

$$SSE(p_{1}, p_{2}, ..., p_{u}) \quad \text{is SSE of our conditate nodel with}$$

$$SSE(p_{1}) = SSE when \quad p_{1} = p_{0} + p_{1} \times_{1} + p_{2} \times_{2}$$

$$SSE(p_{1}, p_{2}) = SSE \text{ when } p_{2} = p_{0} + p_{1} \times_{1} + p_{2} \times_{2}$$

$$NEW : \quad SSE(p_{2}(p_{1})) = SSE(p_{1}, p_{2}) - SSE(p_{1})$$

$$added = floot of model with p_{1} = nd p_{0} as$$

$$Composed to model with only p_{1}.$$

$$F = \frac{f}{1} \frac{SSE(p_{2}|p_{1})}{n-p}$$

$$f = 1 \text{ here}$$

$$f = \frac{f}{1} \frac{SSE(p_{1},...,p_{u})}{n-p}$$

$$f = 1 \text{ here}$$

$$f = \frac{f}{1} \frac{SSE(p_{1},...,p_{u})}{n-p}$$

$$f = 1 \text{ here}$$

$$f = \frac{f}{1} \frac{SSE(p_{1},...,p_{u})}{n-p}$$

$$f = 1 \text{ here}$$

$$f = \frac{f}{1} \frac{SSE(p_{1},...,p_{u})}{n-p}$$

$$f = 1 \text{ here}$$

$$f = \frac{f}{1} \frac{SSE(p_{1},...,p_{u})}{n-p}$$

$$f = 1 \text{ here}$$

$$f = 1 \text{ here$$

"Next": ANO Devence not ANO Varene. 15" similer way"