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 384 Miscellanea

 In ? 2, we derive an expression for the likelihood function associated with any n -p linearly indepen-
 dent error contrasts which appears to be more convenient than the one obtained by Patterson & Thomp-
 son. As related in ? 3, this derivation reveals an interesting relationship between the posterior distribu-
 tion of 0 based on only the error contrasts and that based on all the data.

 2. LIKELIHOOD FUNCTION FOR ERROR CONTRASTS

 The maximum possible number of linearly independent contrasts in any set of error contrasts is
 n-p. Following Patterson & Thompson, define the n x n matrix S by S = I-X(X'X)-1 X' and the
 n x (n -p) matrix A by the conditions S = AA' and A'A = I. The vector w = A'y provides a particular
 set of n -p linearly independent error contrasts. Moreover, the likelihood function associated with any
 other set of n-p linearly independent error contrasts is proportional to that associated with w.

 The likelihood function associated with w isfw(A'y I), wherefL( 6 IO) is the probability density function
 of w. We now turn to the problem of deriving a convenient expression forfw(A'y 1I). Take

 G = H-1X(X'H-LX)-1.

 Using well-known results on determinants, we find

 Idet (A, G) I = [det {(A, G)' (A, G)}]*
 = {det (I)}k {det (G'G -G'A'-1A'G)}i = {det (X'X)}-. (1)

 Let ,9 = G'y, and denote byf4i( I 0, /3) andf&,(* 16, /3) the probability density functions of AB and y, respec-
 tively. Using the statistical independence of w and fi, the result (1), and the well known-relationship

 (y - X/)'H-1 (y - X43) = (y - X)'H-l(y - X9) + (/3 -A)' (X'H-1X) (3 -A)
 we have

 f.(A'yI0) = ff(A'YIO)f6(G'y) I, /3) d/3

 = {det (X'X)}I fJf1(yIO, /3) d/3 (2)

 = (27T)-J(n-P) {det (X'X)}i {det (H)}- {det (X'H-1 X)}-*

 exp { - (y - X)'H-l(y - X)}. (3)

 The nonexponential part of the expression obtained by Patterson & Thompson for the likelihood
 function associated with w involves the nonzero characteristic values of HS. The representation (3)
 would appear to be more convenient than theirs for analytical work involving this likelihood function,
 such as deriving the likelihood equations, and to be definitely preferable for numerical computation of

 fw(A'yl).

 3. POSTERIOR DISTRIBUTIONS

 Denote by g(6) the prior probability density function for 0. When only the error contrasts are used,

 the posterior probability density function for 6 is proportional to g(6)fw(AyylI). Now, suppose that the
 joint prior distribution of 6 and /3 is such that 0 and /3 are statistically independent, and the components
 of /3 are independently and uniformly distributed over the real line, i.e. that the joint prior density for
 0 and /3 is improper and is proportional to g(6). Then, from (2), we have that, even when all the data are
 used, the posterior density for 0 is proportional to g(6)f(A'y 6). Thus, from a Bayesian viewpoint, using
 only error contrasts to make inferences on 0 is equivalent to ignoring any prior information on / and
 using all the data to make those inferences.

 The above Bayesian framework gives added insight into the difference between using full maximum
 likelihood to estimate 0 and using the modified maximum likelihood technique of Patterson & Thompson
 to estimate that vector. Suppose that the data are sufficiently informative that the prior density for 0

 and /3 is flat relative to the likelihood function fy1(yI6, /3), so that for all practical purposes the joint
 posterior density for 0 and /3 is proportional to the likelihood function. Then the maximum likelihood
 estimate of 6 corresponds to the 0 component of the mode of the posterior density for 0 and /3. In contrast,
 the modified maximum likelihood estimate is identical to the mode of the marginal posterior density
 for 6.

 The author is indebted to a referee for a suggestion which simplified the development.
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 The variance of the inverse binomial estimator

 By D. J. BEST

 C.S.I.R.O., North Ryde, New South Wales

 SUMMARY

 A closed form for the variance of the unbiased estimator of the proportion defective in a population,
 derived by inverse binomial sampling, is given. Comparisons are made with the maximum likelihood
 estimator which indicate that the unbiased estimator has greater efficiency and smaller mean squared
 error.

 Some key words: Comparison of sampling variances; Estimation of proportion defective; Inverse bi-
 nomial; Mean squared error of estimates; Sequential sampling.

 1. INTRODUCTION

 Suppose that a large population containing a proportion p of defectives is sampled until k defectives
 are obtained and, further, that X is the number of acceptable items sampled up to the kth defective.
 Then

 r(X = x) (k+x-l)pkqx

 where O < k < oo, O < p < 1, p +q = 1, x = O, 1,... and X is said to be distributed as a negative bi-
 nomial or Pascal variate. The sequential sampling procedure is called an inverse binomial scheme.

 2. VARIANCE OF THE ESTIMATOR

 Various estimators of p have been proposed including (Haldane, 1945)

 P,k= (k- 1)/(k + X- 1).

 It is easily seen that AP k iS the unbiased estimator of p. Further, following Haldane (1945) or Kendall
 & Stuart (1967, p. 594) it can be shown that

 E{(i5, k)2} = (k_ -l)pk ql-k| tk-2(1 - t)l-kdt,

 var( u,k) =2 (krl) qr

 When k = 1, var (Pu k) is thus equal to pq. A closed form, however, can also easily be obtained for k > 1.
 First consider the maximum likelihood estimator of p, namely ML, k = k/(k + X). Feller (1968,

 Problem 33, pp. 241, 493) has given

 (k-1

 E(M k) = k f(-p)rq-rl/(r-k)4,(_p)k -klg * )
 _=1

This content downloaded from 132.174.255.116 on Mon, 21 Nov 2016 22:13:08 UTC
All use subject to http://about.jstor.org/terms


	Contents
	p. 383
	p. 384
	p. 385

	Issue Table of Contents
	Biometrika, Vol. 61, No. 2 (Aug., 1974) pp. 207-391
	Front Matter [pp. ]
	Multiplicative and Additive Interaction in Contingency Tables [pp. 207-214]
	Exploratory Latent Structure Analysis Using Both Identifiable and Unidentifiable Models [pp. 215-231]
	On the Small-Sample Properties of the Mantel-Haenszel Test for Relative Risk [pp. 233-236]
	Mathematical Models for Estimating Mutation Rates in Cell Populations [pp. 237-252]
	The Thinned Plantation [pp. 253-261]
	On Species Frequency Models [pp. 263-270]
	A Note on Supercritical Carrier-Borne Epidemics [pp. 271-275]
	A Wiener-Hopf Integral Equation Arising in Some Inference and Queueing Problems [pp. 277-283]
	Acceptability and Statistical Inference [pp. 285-290]
	On Asymptotic Tests of Composite Hypotheses in Nonstandard Conditions [pp. 291-298]
	A Lagrangian Approach to Optimal Design [pp. 299-302]
	On the Choice of an Experiment for Prediction in Linear Regression [pp. 303-311]
	Cases of Doubt in Allocation Problems [pp. 313-324]
	On Difference of Means with Incomplete Data [pp. 325-334]
	Discriminant Analysis of Directional Data [pp. 335-341]
	Jackknife Estimation of Functions of Stratum Means [pp. 343-348]
	A Note on Rao's Reduction of Potthoff &Roy's Generalized Linear Model [pp. 349-351]
	Large-Sample Theory for the Linear Structural Relation [pp. 353-359]
	A Class of Optimal Stopping Problems for Sampling without Replacement [pp. 361-368]
	New Approximations to the Distribution of Certain Angular Statistics [pp. 369-373]
	Studies in the History of Probability and Statistics. XXXIII Cauchy and the Witch of Agnesi: An Historical Note on the Cauchy Distribution [pp. 375-380]
	Miscellanea
	F Approximations to the Distribution of Hotelling's T<sup>2</sup><sub>0</sub> [pp. 381-383]
	Bayesian Inference for Variance Components Using Only Error Contrasts [pp. 383-385]
	The Variance of the Inverse Binomial Estimator [pp. 385-386]
	Bounds for Deviations Between Sample and Population Statistics [pp. 387-389]

	New Publications in Statistics and Probability [pp. 391]
	Back Matter [pp. ]



