TMA4315: Solution for exercise 1

1
a)

Let the random variable Y be Bernoulli distributed with success probability p = ®(n), where ® is the
Gaussian CDF, and n = x” 8 is a linear predictor with explanatory variables x and regression coefficients 3.

The probability mass function of Y is

fly)=p'1-p)'.
Thus, given n independent realisations y = (y1,-..,y,)T of Y and the design matrix X = (x; ---x,))T, the
likelihood equals

lez (1—p 1 vi

where p; = ®(x!'3). This gives the log—hkehhood

1(B) = yilogpi+ (1 —yi)log(1 —p;) = > y;log ®(x; B) + (1 — y;) log(1 — &(x] B)).
=1

i=1

The score function is the gradient of the log-likelihood. We get

ol "L 0l
)= 205"

with 1;(8) = yilogpi + (1 — y;) log(1 — p;). We get

oB) _oLB)dpi _ (yi 1-—uy .

pi 1—p
Thus, the score function is equal to

S(8) = ; (jj - 1_;’) H(xTB)x; = X" (¢><n> (i - 1_;’))) ,

where ¢(n) = (¢(m), ..., ¢(nn))T and p = (p1,...,pa)".

The observed Fisher information matrix is the negative Hessian matrix of the log-likelihood,

H(IB): aBT - Z aIBT)

with s;(8) = 8157?. We get

9si(B) _ 0si(B) Omi
o — om; 0BT

_ Vi 1oy e (Y, 1oy on;

= (¢ (771) <pZ 1 _pi) ¢(772) (pf + (1 _pi)2)> aﬂT
i I—wi i 1=y

~x, (¢>’<m> (jj -1 _jj) ~ o(m)” (]‘Z ! <1_py>)) “

This means that the observed Fisher information matrix is equal to

H(B) = - Zf‘;xix? (o (2122 —omn? (% + g =2)) = -X"Dx,

pi 1—pi p? (1—p)

where D is a diagonal matrix with element nr. 7 equal to ¢'(n;) (% - %) — é(n;)? (1% + (11:;{1')2)

The expected Fisher information matrix is the expected value of the observed Fisher information matrix.
Since Fy; = p; we get that

E {qﬁ’(m) <z - 1 :y> — o(m;)? <y + 1—y2)] — () (1=1) — b(ms)? <1 -) :

i Di p? (1—ps) pi 1—p;

which gives

F(B) =X"VX,
where V is a diagonal matrix with element nr. ¢ equal to pﬁ(lni;)-

b)
We start by implementing all the functions from problem 1la:

loglik_p = function(y, p) sum(dbinom(y, 1, p, TRUE))
loglik = function(y, X, beta) {

p = as.numeric(pnorm(X %x% beta))

loglik_p(y, p)
}

score = function(y, X, beta) {
eta = as.numeric(X %*% beta)
p = pnorm(eta)
Use ifelse to ensure that we don't divide O by O and get Nals
rhs = dnorm(eta) * (ifelse(y == 0, 0, y / p) - ifelse(y ==1, 0, (1 -y) / (1 - p)))
as.numeric(t(X) %*% rhs)

}

observed_fisher_information= function(y, X, beta) {
eta = as.numeric(X %x% beta)
p = pnorm(eta)
phi_der = function(x) -x / sqrt(2 * pi) * exp(-x"2 / 2)
middle = phi_der(eta) * (ifelse(y == 0, 0, y / p) - ifelse(y ==1, 0, (1 -y) / (1 - p))) -
dnorm(eta) "2 * (ifelse(y == 0, 0, y / p~2) + ifelse(y ==1, 0, (1 -y) / (1 - p)~2))

- t(X) %*% diag(middle) %x% X
}

expected_fisher_information = function(X, beta) {
eta = as.numeric(X %*} beta)
p = pnorm(eta)
middle = dnorm(eta)”~2 / ifelse(p ==1 | p==0, 1, (p *x (1 - p)))
t(X) %*% diag(middle) %x% X
}

Then we use numerical derivation to test if these are correct.

library (numDeriv)

n = 20
k=3

set.seed(1)

score_diff = NULL

observed_diff = NULL

expected_diff = NULL

for (i in 1:10) {
X = cbind(1, matrix(rnorm(n * k), n, k))
b = rnorm(k + 1)

Add bad data to make it more tricky

X = rbind(X, c(1, 9999, rep(0, k - 1)), c(1, -9999, rep(0, k - 1)))
p = as.numeric(pnorm(X %x% b))
y = rbinom(length(p), 1, p)

score_diff[i] = mean(
(numDeriv: :grad(function(b) loglik(y, X, b), b) - score(y, X, b)) /
score(y, X, b))
observed_diff[i] = mean(
(numDeriv: :hessian(function(b) loglik(y, X, b), b) + observed_fisher_information(y, X, b)) /
observed_fisher_information(y, X, b))

h=20
for (j in 1:1000) {
y = rbinom(length(p), 1, p)
h = h + observed_fisher_information(y, X, b)

h =h / 1000
expected_diff[i] = mean(
(h - expected_fisher_information(X, b)) / expected_fisher_information(X, b))

}

summary (score_diff)

#i Min. 1st Qu. Median Mean 3rd Qu. Max.
-4.578e-09 -4.580e-11 -1.920e-11 -2.984e-10 1.789%9e-11 1.666e-09

summary (observed_diff)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-6.634e-11 3.796e-12 1.599e-11 7.703e-11 2.012e-11 5.688e-10

summary (expected_diff)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.006329 -0.002875 0.002767 0.010706 0.006732 0.097933

Everything seems to work! Now we write the actual myglm function. This is based on the Fisher scoring
algorithm where we estimate 8 iteratively by B+ =) + F(8(*))~15(8®). Inside the myglm function we

also compute the deviance, which is equal to
D = —2(I(candidate model) — [(saturated model)),

where the candidate model is our implemented model, and the saturated model is a model where we set
Pi = Yi-
myglm = function(formula, data, rep(0, ncol(model.matrix(formula, data)))) {
response_name = as.character(formula) [2]
y = datal[[response_name]]
X = model.matrix(formula, data)
beta = start
s =1
while (s > 1le-10) {
score_val = score(y, X, beta)
fisher_val = expected_fisher_information(X, beta)
beta = beta + solve(fisher_val, score_val)
s = sum(score_val~2)
¥
vcov_mat = solve(fisher_val) # cowvariance matriz
p_hat = as.numeric(pnorm(X %*7, beta))
loglik_saturated = loglik_p(y, y)
loglik = loglik_p(y, p_hat)
D = 2 * sum(loglik_saturated - loglik) # deviance
coefficients = cbind(beta, sqrt(diag(vcov_mat)))

colnames(coefficients) = c("estimate", "se"
rownames (coefficients) = pasteO('"beta_", seq_along(beta))
list(coefficients, D, vcov_mat)

c)
We draw some random data using the rbinom function, and then we compare the results from myglm with

those from glm. We also compare the results with the actual truth. This is performed 10 times, with new
random values each time

n = 5000
k=3

set.seed(1)

coeff_diff = NULL
vcov_diff = NULL
truth_diff = NULL
for (4 in 1:10) {

X = matrix(rnorm(n * k), n, k)
b = rnorm(k + 1)

p = as.numeric(pnorm(X %x% b[-1]1 + b[1]))

y = rbinom(n, 1, p)

df = as.data.frame(X)
df$y = y
formula = y-~.

res = myglm(formula, df)
res2 = glm(formula, binomial ("probit"), df)

coeff_diff[i] = mean((res$coefficients[, 1] - res2$coefficients) ~ 2)
vcov_diff[i] = mean((res$vcov - vcov(res2)) ~ 2)
truth_diff[i] = mean((res$coefficients[, 1] - b) ~ 2)

}

summary (coeff_diff)

Min. 1st Qu. Median Mean 3rd Qu. Max.
5.977e-16 2.223e-15 1.828e-14 1.342e-13 8.440e-14 9.632e-13
summary (vcov_diff)

#i Min. 1st Qu. Median Mean 3rd Qu. Max.
1.985e-18 2.369e-17 4.547e-17 1.375e-15 1.569e-15 8.307e-15
summary (truth_diff)

Min. 1st Qu. Median Mean 3rd Qu. Max.
6.355e-05 2.152e-04 4.718e-04 5.376e-04 6.872e-04 1.249e-03

Once again, everything is working nicely. The difference between estimates from myglm and glm is really
small, and the estimates are close to the true values.

2
a)

We fit the probit model using the built-in glm function:

library(ISwR) # Install the package if needed

data(juul)

juul$menarche <- juul$menarche - 1

juul.girl <- subset(juul,age>8 & age<20 & complete.cases(menarche))

res = glm(
menarche-~age,

binomial("probit"),

juul.girl)
summary (res)
##
Call:
glm(formula = menarche ~ age, family = binomial(link = "probit"),
data = juul.girl)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-2.32986 -0.15223 0.00028 0.07228 2.48281
##
Coefficients:
#it Estimate Std. Error z value Pr(>|z|)

(Intercept) -11.37033 1.06346 -10.69 <2e-16 *xx

age 0.86233 0.08106 10.64 <2e-16 *xx

——

Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

(Dispersion parameter for binomial family taken to be 1)

##

Null deviance: 719.39 on 518 degrees of freedom

Residual deviance: 197.39 on 517 degrees of freedom
AIC: 201.39

##

Number of Fisher Scoring iterations: 8

Now, we use a Wald-test to test if there is an effect of age on the probability that a girl has had her first
period. The Wald-statistic for the hypothesis

Hy:CB=dvs. HH:CB #d

is equal to)))
w=(CB—-a)T[CF(B)CT] 1 (CB - a),

and is x? distributed with 7 degrees of freedom under Hy, where 7 is the rank of C. We perform the Wald-test

and compute a p-value:

C = matrix(c(0, 1), 1)

d=20

beta_hat = res$coefficients

w = t(C %*% beta_hat - d) %*% solve(C %*% vcov(res) %x% t(C), C %x% beta_hat - d)

print(1 - pchisq(as.numeric(w), 1))

[11 O

The p-value is so small that we reject Hy at all meaningful levels, so we can assume that age has an effect in
our model.

b)
Assume that the time of the first period of a girl has a Gaussian distribution T' ~ N (u, 02), with mean p and
variance o2. The probability that girl nr. ¢ has had her first period before the time ¢; is then

ti —
pi = P(T; < t;) = d(——1F).
g

Now, the probit model states that
pi = ®(Bo + Bats),
so if we set u = —fy/F1 and o = 1/, then these two models correspond perfectly.

Using the invariance property of MLEs, we find the MLEs of y and o as i = —fy/81 and 6 = 1/5;. We
use the delta method for estimating the standard deviations of i and 6. A linearisation of the function
f(B) = (u,0)T around the point B gives

F(B) = f(B) + J(B)(B - B),

where J(B) is the Jacobian of f(8). This gives us an estimate for the variance

Cov(f(B)) ~ J(B)Cov(B)J(B)".

Of course, we don’t know the true value of 8, but we can further approximate this as
Cov(f(B)) = J(B)Cov(B)J(B)".

We compute the covariance matrix:

jacobian = function(beta) matrix(c(-1 / betal[2], 0, betal[l] / betal[2]"2, -1 / betal2]), 2, 2)
J = jacobian(beta_hat)

cov_mat = J %*J vcov(res) %*% t(J)

cov_mat

#it [,1] [,2]
[1,] 0.014049085 0.001119651
[2,] 0.001119651 0.008836764

This gives an estimated standard deviation of 0.1185 for ji and 0.0940 for &.

c)

We fit a new binary regression model where we use the logit link function

. Di 1
logit(p;) = log 1—p, =N <~ Pi = 1+ exp(—m:)
res_logit = glm(
menarche-~age,
binomial("logit"),
juul.girl)
summary (res_logit)
##
Call:
glm(formula = menarche ~ age, family = binomial(link = "logit"),
#it data = juul.girl)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-2.32759 -0.18998 0.01253 0.12132 2.45922
##
Coefficients:
Estimate Std. Error z value Pr(>|zl)
(Intercept) -20.0132 2.0284 -9.867 <2e-16 **x
age 1.5173 0.1544 9.829 <2e-16 *x*x*
##H ——-
Signif. codes: O '*x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 719.39 on 518 degrees of freedom

Residual deviance: 200.66 on 517 degrees of freedom
AIC: 204.66

##

Number of Fisher Scoring iterations: 7

This model is corresponds to a different latent model for the age T' of a girls first period. We get

1
~ 14exp(—fo — fiti)’
which we recognise as the CDF of the logistic distribution
B 1
1+ exp(—(t —p)/s)’

P(T; <t)=p;

Fr(t)

with parameters p = —fy/f1 and s = 1/3;. We know that the mean of the logistic distribution is p and the
standard deviation is s7/+/3. Using the invariance property of the MLE we estimate these variables and get

E[T] = 13.1901, SD(T) = 1.1954.

beta_hat_logit = res_logit$coefficients

mu_T = -beta_hat_logit[1] / beta_hat_logit[2]
sigma_T = pi / sqrt(3) / beta_hat_logit[2]
print (unname (c(mu_T, sigma_T)))

[1] 13.190115 1.195421

d)

We know assume that T ~ log N'(i1, 0%), which means that log T has a Gaussian distribution with mean u
and variance o2. This gives the expression for p;:

logt; —
pi = P(T; <t;) = P(logT; < logt;) = ‘I’(w)
Consequently, this corresponds to a binary regression model with a probit link function with the logarithm of
the age as an explanatory variable:

ni = Po + P1logt;.
We then find that u = —fy/81 and o = 1/5;. We fit this model to the data using the glm function:

juul.girl$log_age = log(juul.girl$age)
res_lognormal = glm(
menarche~log_age,
binomial("probit"),
juul.girl)
summary (res_lognormal)

##

Call:

glm(formula = menarche ~ log_age, family = binomial(link = "probit"),
#it data = juul.girl)

##

Deviance Residuals:

Min 1Q Median 3Q Max

-2.28617 -0.11683 0.00315 0.10715 2.54738

##

Coefficients:

Estimate Std. Error z value Pr(>|zl)

(Intercept) -29.060 2.704 -10.75 <2e-16 *x**

log_age 11.287 1.049 10.76 <2e-16 **x

-—-

Signif. codes: O 's*x' 0.001 'x*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

(Dispersion parameter for binomial family taken to be 1)

#i#

H# Null deviance: 719.39 on 518 degrees of freedom

Residual deviance: 198.05 on 517 degrees of freedom
AIC: 202.05

##

Number of Fisher Scoring iterations: 8

It is known that the lognormal distribution has mean exp(u + 02/2) and variance exp(2u + 02)(exp(c?) — 1).
Using the invariance property of the MLE we get

E[T] = 13.1797, SD(T) = 1.1700.

sigma_lognormal = 1 / res_lognormal$coefficients[2]
mu_lognormal = - res_lognormal$coefficients[1] / res_lognormal$coefficients[2]
unname (c (exp(mu_lognormal + sigma_lognormal ~ 2 / 2),
sqrt ((exp(sigma_lognormal~2) - 1) * exp(2 * mu_lognormal + sigma_lognormal~2))))

[1] 13.179704 1.170015

e)
We create a binary regression model with log age as explanatory variable and a cloglog link p; = 1 —
exp(— exp(Bo + P1logt;)) This model gives a CDF for the latent age of:

P(T; <t;) =1—exp(—exp(By + P1logt;))) =1— exp(—tfleﬁo),
which is equal to the Weibull distribution
Fr(t) =1 — exp(—at?),

with o = €0 and 8 = ;. Tt is known that the Weibull distribution has mean a~*/#T'(1 4 1/3) and variance
a~?/B(P(1+2/8) —T(1 +1/6)?), where I'(-) is the gamma function. We fit the model to data and estimate
the mean and standard deviance of T

res_weibull = glm(
menarche~log_age,
binomial("cloglog"),
juul.girl)

Warning: glm.fit: fitted probabilities numerically O or 1 occurred

alpha_weibull = exp(res_weibull$coefficients[1])
beta_weibull = res_weibull$coefficients[2]
unname (c (
alpha_weibull”(-1/beta_weibull) * gamma(l + 1 / beta_weibull),
sqrt (alpha_weibull” (-2/beta_weibull) * (gamma(l + 2 / beta_weibull) - gamma(l + 1/beta_weibull)“"2))))

[1] 13.202556 1.188294

This gives
B[T] = 13.2026, SD(T) = 1.1883.

f)

The probit model results in a Gaussian latent model for 7. The Gaussian distribution has nice theoretical
properties and is quite popular within statistical modelling. This might therefore be preferable for many
practitioners. However, using this model requires us to numerically compute the CDF of the Gaussian
distribution. For really large amounts of data this means that inference can be much slower than for the other
models. The logit link is the canonical link function for the Bernoulli distribution. This is often preferable.
Using the logit link also allows for an easy interpretation of the regression coefficients, using odds. This can
make the model more intuitive than some of the competing models. The log probit model enforces a positive
age T, something the two previous models don’t do. This is a nice property as ages must be positive in the

real world. However, when modelling the age of a girl that has her first period, the mean is estimated to be
somewhere around 13, while the standard deviation is estimated to be a bit larger than 1. This means that
the probit and logit models give astronomically small probabilities for a girl being less than zero years old
when having her first period. Thus, in practice, enforcing 7' > 0 does not make much of a difference. The
log probit model also requires computations of a Gaussian CDF, and it also has nice links to the Gaussian
distribution, which is preferred by many practitioners. The Weibull distribution is popular within lifetime
analysis for modelling the time until a specific event. Thus, practitioners coming from this field might prefer
the theoretical properties of the Weibull when modelling the time to the first period of a girl.

In practice, all our models give very similar results. Thus, for such a small amount of data, and without
more knowledge of the true distribution of 7', there exists good arguments for choosing each of these models
over the other, simply based on the preferences of the practitioner.

10

	1
	a)
	b)
	c)

	2
	a)
	b)
	c)
	d)
	e)
	f)

