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Overview

Learning material
▶ Textbook: Chapter 2.2, 3 and B.4. (Chapter 3 was on the

reading list for TMA4267 Linear statistical 2016-2018, so
much of this module is know from before.)

▶ Classnotes 30.08.2018
▶ Classnotes 06.09.2018

https://www.math.ntnu.no/emner/TMA4315/2018h/TMA4315M2H20180830.pdf
https://www.math.ntnu.no/emner/TMA4315/2018h/TMA4315M2H20180906.pdf


Topics
First week

▶ Aim of multiple linear regression.
▶ Define and understand the multiple linear regression model -

traditional and GLM way
▶ parameter estimation with maximum likelihood (and least

squares)
▶ likelihood, score vector and Hessian (observed Fisher

information matrix)
▶ big data implementation (if time)
▶ properties of parameter estimators
▶ assessing model fit (diagnostic), residuals, QQ-plots
▶ design matrix: how to code categorical covariates (dummy or

effect coding), and how to handle interactions



Second week
▶ What did we do last week?
▶ Statistical inference for parameter estimates

▶ confidence intervals,
▶ prediction intervals,
▶ hypothesis test,
▶ linear hypotheses

▶ analysis of variance decompositions and 𝑅2, sequential
ANOVA table

▶ DEVIANCE???
▶ model selection with AIC and variants



Aim of multiple linear regression

1. Construct a model to help understand the relationship
between a response and one or several explanatory variables.
[Correlation, or cause and effect?]

2. Construct a model to predict the response from a set of (one
or several) explanatory variables. [More or less “black box”]



Munich rent index
Munich, 1999: 3082 observations on 9 variables.

▶ rent: the net rent per month (in Euro).
▶ rentsqm: the net rent per month per square meter (in Euro).
▶ area: Living area in square meters.
▶ yearc: year of construction.
▶ location: quality of location: a factor indicating whether the

location is average location, 1, good location, 2, and top
location, 3.

▶ bath: quality of bathroom: a a factor indicating whether the
bath facilities are standard, 0, or premium, 1.

▶ kitchen: Quality of kitchen: 0 standard 1 premium.
▶ cheating: central heating: a factor 0 without central heating,

1 with central heating.
▶ district: District in Munich.

More information in Fahrmeir et. al., (2013) page 5.
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Interesting questions

1. Is there a relationship between rent and area?
2. How strong is this relationship?
3. Is the relationship linear?
4. Are also other variables associated with rent?
5. How well can we predict the rent of an apartment?
6. Is the effect of area the same on rent for apartments at

average, good and top location? (interaction)



Notation

Y ∶ (𝑛 × 1) vector of responses (random variable) [e.g. one of the
following: rent, rent pr sqm, weight of baby, ph of lake, volume of
tree]

X ∶ (𝑛 × 𝑝) design matrix [e.g. location of flat, gestation age of
baby, chemical measurement of the lake, height of tree]

𝛽 ∶ (𝑝 × 1) vector of regression parameters (intercept included, so
𝑝 = 𝑘 + 1)

𝜀 ∶ (𝑛 × 1) vector of random errors. Used in “traditional way”.

We assume that pairs (x𝑇
𝑖 , 𝑦𝑖) (𝑖 = 1, ..., 𝑛) are measured from

sampling units. That is, the observation pair (x𝑇
1 , 𝑦1) is

independent from (x𝑇
2 , 𝑦2), and so on.



Hands on: Munich rent index — response and covariates
From the list of variable and the statement of the questions,
answer these questions:

▶ What can be response, and what covariates? (using what you
know about rents)

▶ What type of response(s) do we have? (continuous,
categorical, nominal, ordinal, discrete, factors, …).

▶ What types of covariates? (continuous, categorical, nominal,
ordinal, discrete, factors, …)

▶ Explain what the elements of model.matrix will be (Hint:
coding of location)



Model

The traditional way

Y = X� + 𝜀
is called a classical linear model if the following is true:

1. E(𝜀) = 0.
2. Cov(𝜀) = E(𝜀𝜀𝑇 ) = 𝜎2I.
3. The design matrix has full rank, rank(X) = 𝑘 + 1 = 𝑝.

The classical normal linear regression model is obtained if
additionally

4. 𝜀 ∼ 𝑁𝑛(0, 𝜎2I) holds.
For random covariates these assumptions are to be understood
conditionally on X.



The GLM way
Independent pairs (𝑌𝑖, x𝑖) for 𝑖 = 1, … , 𝑛.

1. Random component: 𝑌𝑖 ∼ 𝑁 with E(𝑌𝑖) = 𝜇𝑖 and
Var(𝑌𝑖) = 𝜎2.

2. Systematic component: 𝜂𝑖 = x𝑇
𝑖 𝛽.

3. Link function: linking the random and systematic component
(linear predictor): Identity link and response function.
𝜇𝑖 = 𝜂𝑖.



Questions
▶ Compare the traditional and GLM way. Have we made the

same assumptions for both?
▶ What is the connection between each x𝑖 and the design

matrix?
▶ What is “full rank”? Why is this needed? Example of rank

less than 𝑝?
▶ Why do you think we move from traditional to GLM way?

Could we not just let 𝜀 be from binomial, Poisson, etc.
distribution?



Parameter estimation

In multiple linear regression there are two popular methods for
estimating the regression parameters in 𝛽:

▶ maximum likelihood and
▶ least squares.

These two methods give the same estimator when we assume the
normal linear regression model. We will in this module focus on
maximum likelihood estimation, since that can be used also when
we have non-normal responses (modules 3-6: binomial, Poisson,
gamma, multinomial).



Likelihood theory (from B.4)

Likelihood 𝐿(𝛽)
We assume that pairs of covariates and response are measured
independently of each other: (x𝑖, 𝑌𝑖), and 𝑌𝑖 follows the
distribution specified above, and x𝑖 is fixed.

𝐿(𝛽) =
𝑛

∏
𝑖=1

𝐿𝑖(𝛽) =
𝑛

∏
𝑖=1

𝑓(𝑦𝑖; 𝛽)

Q: fill in with the normal density for 𝑓 and the multiple linear
regression model.



Loglikelihood 𝑙(𝛽)
We work with the log-likelihood because this makes the
mathematics simpler
The main aim with the likelihood is to maximize it to find the
maximum likelihood estimate, and since the log is a monotone
function the maximum of the log-likelihood will be in the same
place as the maximum of the likelihood.

𝑙(𝛽) = ln 𝐿(𝛽) =
𝑛

∑
𝑖=1

ln 𝐿𝑖(𝛽) =
𝑛

∑
𝑖=1

𝑙𝑖(𝛽)

Observe that the log-likelihood is a sum of individual contributions
for each observation pair 𝑖.
Q: fill in with the normal density for 𝑓 and the multiple linear
regression model.



Repetition: rules for derivatives of vector
H¨{a}rdle and Simes (2015), page 65.

▶ Let 𝛽 be a 𝑝-dimensional column vector of interest,
▶ and let 𝜕

𝜕𝛽 denote the 𝑝-dimensional vector with partial
derivatives wrt the 𝑝 elements of 𝛽.

▶ Let d be a 𝑝-dimensional column vector of constants and
▶ D be a 𝑝 × 𝑝 symmetric matrix of constants.

Rule 1:
𝜕

𝜕𝛽 (d𝑇 𝛽) = 𝜕
𝜕𝛽 (

𝑝
∑
𝑗=1

𝑑𝑗𝛽𝑗) = d

Rule 2:

𝜕
𝜕𝛽 (𝛽𝑇 D𝛽) = 𝜕

𝜕𝛽 (
𝑝

∑
𝑗=1

𝑝
∑
𝑘=1

𝛽𝑗𝑑𝑗𝑘𝛽𝑘) = 2D𝛽

Rule 3: The Hessian of the quadratic form 𝛽𝑇 D𝛽 is

𝜕2𝛽𝑇 D𝛽
𝜕𝛽𝜕𝛽𝑇 = 2D



Score function 𝑠(𝛽)
The score function is a 𝑝 × 1 vector, 𝑠(𝛽), with the partial
derivatives of the log-likelihood with respect to the 𝑝 elements of
the 𝛽 vector.

𝑠(𝛽) = 𝜕𝑙(𝛽)
𝜕𝛽 =

𝑛
∑
𝑖=1

𝜕𝑙𝑖(𝛽)
𝜕𝛽 =

𝑛
∑
𝑖=1

𝑠𝑖(𝛽)

Again, observe that the score function is a sum of individual
contributions for each observation pair 𝑖.
Q: fill in for the multiple linear regression model.



To find the maximum likelihood estimate ̂𝛽 we solve the set of 𝑝
equations:

𝑠( ̂𝛽) = 0



Q: fill in for the multiple linear regression model. Specify what the
normal equations are.

For the normal linear regression model, these equations 𝑠( ̂𝛽) = 0
have a solution to be written on closed form.



Least squares and maximum likelihood (ML) estimator for 𝛽:

̂𝛽 = (X𝑇 X)−1X𝑇 Y

Q: How can you see that least squares and ML gives the same
estimator?



Looking ahead: Hessian and Fisher information
But, for other distribution than the normal we get a set of
non-linear equations when we look at 𝑠( ̂𝛽) = 0, and then we will
use the Newton-Raphson or Fisher Scoring iterative methods.



Observed Fisher information matrix 𝐻(𝛽)

𝐻(𝛽) = − 𝜕2𝑙(𝛽)
𝜕𝛽𝜕𝛽𝑇 = −𝜕𝑠(𝛽)

𝜕𝛽𝑇

so this is minus the Hessian of the loglikelihood. 𝐻(𝛽) may be
considered as a local measure of information that the likelihood
contains. The higher the curvature of the log-likelihood near its
maximum the more information is providd by the likelihood about
the unknown parameter. Since we look at minus the Hessian, we
have a positive 𝐻(𝛽) near the maximum.

Q: Calculate this for the multiple linear regression model. What is
the dimension of 𝐻(𝛽)?



In addition we also use the expected Fisher information matrix
𝐹(𝛽) which we may find in two ways, one is by taking the mean of
the observed Fisher information matrix:

𝐹(𝛽) = 𝐸 (− 𝜕2𝑙(𝛽)
𝜕𝛽𝜕𝛽𝑇 ) .

Q: Calculate this for the multiple linear regression model. What is
the dimension of 𝐹(𝛽)?
In Module 3 we need the Fisher information matrix in the
Newton-Raphson method, and also to find the (asympotic)
covariance matrix of our estimated coefficents ̂𝛽 - so much more
about this then.



Hands on: Munich rent index parameter estimates
Explain what the values under Estimate mean in practice.
fit = lm(rentsqm ~ area + yearc + location + bath + kitchen + cheating,

data = ds)
summary(fit)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -45.47548356 3.603775035 -12.618846 1.251586e-35
## area -0.03233033 0.001647971 -19.618257 7.789203e-81
## yearc 0.02695857 0.001845686 14.606265 9.119495e-47
## location2 0.77713297 0.076870269 10.109669 1.168079e-23
## location3 1.72506792 0.236062188 7.307684 3.447543e-13
## bath1 0.76280784 0.157559037 4.841410 1.352865e-06
## kitchen1 1.13690814 0.183087707 6.209637 6.024370e-10
## cheating1 1.76526110 0.129067991 13.676986 2.212288e-41



Restricted maximum likelihood estimator for 𝜎2

�̂�2 = 1
𝑛 − 𝑝(Y − X ̂𝛽)𝑇 (Y − X ̂𝛽) = SSE

𝑛 − 𝑝
The regression parameters 𝛽 are therefore our prime focus.
We will look at the parameter 𝜎2 as a nuisance parameter =
parameter that is not of interest to us.



To perform inference we need an estimator for 𝜎2.

The maximum likelihood estimator for 𝜎2 is SSE
𝑛 , which is found

from maximizing the likelihood inserted our estimate of ̂𝛽

𝐿( ̂𝛽, 𝜎2) = ( 1
2𝜋)𝑛/2( 1

𝜎2 )𝑛/2 exp(− 1
2𝜎2 (y − X ̂𝛽)𝑇 (y − X ̂𝛽))

𝑙( ̂𝛽, 𝜎2) = ln(𝐿( ̂𝛽, 𝜎2))

= −𝑛
2 ln(2𝜋) − 𝑛

2 ln𝜎2 − 1
2𝜎2 (y − X ̂𝛽)𝑇 (y − X ̂𝛽)

The score vector with respect to 𝜎2 is

𝜕𝑙
𝜕𝜎2 = 0 − 𝑛

2𝜎2 + 1
2𝜎4 (y − X ̂𝛽)𝑇 (y − X ̂𝛽)

Solving 𝜕𝑙
𝜕𝜎2 = 0 gives us the estimator

1
𝑛(y − X ̂𝛽)𝑇 (y − X ̂𝛽) = SSE

𝑛
But, this estimator is biased.

To prove this you may use the trace-formula, that is
E(Y𝑇 AY) = tr(ACov(Y)) + E(Y)𝑇 AE(Y), and we use that
SSE = Y𝑇 (I − H)Y. This was done in class notes from TMA4267
- lecture 10

https://www.math.ntnu.no/emner/TMA4267/2017v/L10classnotes20170217.pdf
https://www.math.ntnu.no/emner/TMA4267/2017v/L10classnotes20170217.pdf


When an unbiased version is preferred, it is found using restricted
maximum likelihood (REML). We will look into REML-estimation
in Module 7. In our case the (unbiased) REML estimate is

�̂�2 = 1
𝑛 − 𝑝(y − X ̂𝛽)𝑇 (y − X ̂𝛽) = SSE

𝑛 − 𝑝

The restricted maximum likelihood estimate is used in lm.

Q: What does it mean that the REML estimate is unbiased?
Where is the estimate �̂� in the regression output? (See output
from lm for the rent index example.)



Properties for the normal linear model
To be able to do inference (=make confidence intervals, prediction
intervals, test hypotheses) we need to know about the properties of
our parameter estimators in the (normal) linear model.

▶ Least squares and maximum likelihood estimator for 𝛽:
̂𝛽 = (X𝑇 X)−1X𝑇 Y

with ̂𝛽 ∼ 𝑁𝑝(𝛽, 𝜎2(X𝑇 X)−1).
▶ Restricted maximum likelihood estimator for 𝜎2:

�̂�2 = 1
𝑛 − 𝑝(Y − X ̂𝛽)𝑇 (Y − X ̂𝛽) = SSE

𝑛 − 𝑝
with (𝑛−𝑝)�̂�2

𝜎2 ∼ 𝜒2
𝑛−𝑝.

▶ Statistic for inference about 𝛽𝑗, 𝑐𝑗𝑗 is diagonal element 𝑗 of
(X𝑇 X)−1.

𝑇𝑗 =
̂𝛽𝑗 − 𝛽𝑗√𝑐𝑗𝑗�̂�

∼ 𝑡𝑛−𝑝

This requires that ̂𝛽𝑗 and �̂� are independent (see below).



However, when we work with large samples then 𝑛 − 𝑝 becomes
large and the 𝑡 distribution goes to a normal distribution, so we
may use the standard normal in place of the 𝑡𝑛−𝑝.

Asymptotically we have:

̂𝛽 ∼ 𝑁𝑝(𝛽, �̃�2(X𝑇 X)−1)

. and

𝑇𝑗 =
̂𝛽𝑗 − 𝛽𝑗√𝑐𝑗𝑗�̃�

∼ 𝑁(0, 1)

where �̃�2 = SSE
𝑛 (the ML estimator).

Q: Pointing forwards: do you see any connection between the
covariance matrix of �̂� and the Fisher information?



Are �̂� and SSE are independent? (optional)
Can be proven using knowledge from TMA4267 on properties of
the multivariate normal distribution.
Independence: Let X(𝑝×1) be a random vector from 𝑁𝑝(𝜇, Σ).
Then AX and BX are independent iff AΣB𝑇 = 0.
We have:

▶ Y ∼ 𝑁𝑛(X𝛽, 𝜎2I)
▶ AY = �̂� = (X𝑇 X)−1X𝑇 Y, and
▶ BY = (I − H)Y.
▶ Now A𝜎2IB𝑇 = 𝜎2AB𝑇 = 𝜎2(X𝑇 X)−1X𝑇 (I − H) = 0
▶ since X(I − H) = X − HX = X − X = 0.
▶ We conclude that �̂� is independent of (I − H)Y,
▶ and, since SSE=function of (I − H)Y: SSE=Y𝑇 (I − H)Y,
▶ then �̂� and SSE are independent, and the result with 𝑇𝑗 being

t-distributed with 𝑛 − 𝑝 degrees of freedom is correct.
Remark: a similar result will exist for GLMs, using the concept of
orthogonal parameters.



Checking model assumptions
In the normal linear model we have made the following
assumptions.

1. Linearity of covariates: Y = X𝛽 + 𝜀. Problem: non-linear
relationship?

2. Homoscedastic error variance: Cov(𝜀) = 𝜎2I.

3. Uncorrelated errors: Cov(𝜀𝑖, 𝜀𝑗) = 0.

4. Additivity: Y = X𝛽 + 𝜀
5. Assumption of normality: 𝜀 ∼ 𝑁𝑛(0, 𝜎2I)

The same assumptions are made when we do things the GLM way
for the normal linear model.

In addtion the following might cause problems:
▶ Outliers
▶ High leverage points
▶ Collinearity



Residuals
If we assume the normal linear model then we know that the
residuals (𝑛 × 1 vector)

̂𝜀 = Y − Ŷ = (I − H)Y

has a normal (singular) distribution with mean E( ̂𝜀) = 0 and
covariance matrix Cov( ̂𝜀) = 𝜎2(I − H) where
H = X(X𝑇 X)−1X𝑇 .
This means that the residuals (possibly) have different variance,
and may also be correlated.



Our best guess for the error 𝜀 is the residual vector ̂𝜀, and we may
think of the residuals as predictions of the errors. Be aware: don’t
mix errors (the unobserved) with the residuals (“observed”).

But, we see that the residuals are not independent and may have
different variance, therefore we will soon define variants of the
residuals that we may use to assess model assumptions after a data
set is fitted.

Q: How can we say that the residuals can have different variance
and may be correlated? Why is that a problem?



We would like to check the model assumptions
▶ we see that they are all connected to the error terms.

But, but we have not observed the error terms 𝜀
However, we have made “predictions” of the errors - our residuals.
And, we want to use our residuals to check the model assumptions.



We want to check that our errors are
▶ independent,
▶ homoscedastic (same variance for each observation),
▶ not dependent on our covariates

We want to use the residuals (observed) in place of the errors
(unobserved).

It would have been great if the residuals have these properties
when the underlying errors have.

Enter standardized or studentized residuals.



Standardized residuals:

𝑟𝑖 = ̂𝜀𝑖
�̂�√1 − ℎ𝑖𝑖

where ℎ𝑖𝑖 is the 𝑖th diagonal element of the hat matrix H.
In R you can get the standardized residuals from an lm-object
(named fit) by rstandard(fit).



Studentized residuals:

𝑟∗
𝑖 = ̂𝜀𝑖

�̂�(𝑖)√1 − ℎ𝑖𝑖

where �̂�(𝑖) is the estimated error variance in a model with
observation number 𝑖 omitted. This seems like a lot of work, but it
can be shown that it is possible to calculated the studentized
residuals directly from the standardized residuals:

𝑟∗
𝑖 = 𝑟𝑖(

𝑛 − 𝑝 − 1
𝑛 − 𝑝 − 𝑟2

𝑖
)1/2

In R you can get the studentized residuals from an lm-object
(named fit) by rstudent(fit).



Plotting residuals - and what to do when assumptions are
violated?
Some important plots

1. Plot the residuals, 𝑟∗
𝑖 against the predicted values, ̂𝑦𝑖.

▶ Dependence of the residuals on the predicted value: wrong
regression model?

▶ Nonconstant variance: transformation or weighted least
squares is needed?

2. Plot the residuals, 𝑟∗
𝑖 , against predictor variable or functions

of predictor variables.
▶ Trend suggest that transformation of the predictors or more

terms are needed in the regression.



3. Assessing normality of errors: QQ-plots and histograms of
residuals.

Tests for normality can be used, but they can be useless: for small
sample sizes the test is not powerful and for large sample sizes even
very small deviances from normality will be labelled as significant.

4. Plot the residuals, 𝑟∗
𝑖 , versus time or collection order (if

possible). Look for dependence or autocorrelation.

Residuals can be used to check model assumptions, and also to
discover outliers.



Diagnostic plots in R
For simplicity we use the Munich rent index with rent as response
and only area as the only covariate.
fit <- lm(rent ~ area, data = rent99) # Run a regression analysis
format(head(fortify(fit)), digits = 4L)

## rent area .hat .sigma .cooksd .fitted .resid .stdresid
## 1 109.9 26 0.001312 158.8 5.870e-04 260.0 -150.00 -0.9454
## 2 243.3 28 0.001219 158.8 1.678e-05 269.6 -26.31 -0.1658
## 3 261.6 30 0.001130 158.8 6.956e-06 279.2 -17.60 -0.1109
## 4 106.4 30 0.001130 158.8 6.711e-04 279.2 -172.83 -1.0891
## 5 133.4 30 0.001130 158.8 4.779e-04 279.2 -145.85 -0.9191
## 6 339.0 30 0.001130 158.8 8.032e-05 279.2 59.79 0.3768
(ggplot2::fortify.lm creates a dataframe from an lm-object, which can be
used to plot diagnostic plots. ggplot will do this automatically when asjked to
plot)



Residuals vs fitted values
A plot with the fitted values of the model on the x-axis and the
residuals on the y-axis shows if the residuals have non-linear
patterns. The plot can be used to test the assumption of a linear
relationship between the response and the covariates. If the
residuals are spread around a horizontal line with no distinct
patterns, it is a good indication on no non-linear relationships, and
a good model.
Does this look like a good plot for this data set?



ggplot(fit, aes(.fitted, .stdresid)) + geom_point(pch = 21) + geom_hline(yintercept = 0,
linetype = "dashed") + geom_smooth(se = FALSE, col = "red", size = 0.5,
method = "loess") + labs(x = "Fitted values", y = "Standardized residuals",
title = "Fitted values vs standardized residuals", subtitle = deparse(fit$call))

−5.0

−2.5

0.0

2.5

5.0

200 400 600 800
Fitted values

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

lm(formula = rent ~ area, data = rent99)

Fitted values vs standardized residuals



Normal Q-Q
This plot shows if the residuals are Gaussian (normally) distributed.
If they follow a straigt line it is an indication that they are, and
else they are probably not.
ggplot(fit, aes(sample = .stdresid)) + stat_qq(pch = 19) + geom_abline(intercept = 0,

slope = 1, linetype = "dotted") + labs(x = "Theoretical quantiles",
y = "Standardized residuals", title = "Normal Q-Q", subtitle = deparse(fit$call))
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library(nortest)
ad.test(rstudent(fit))

##
## Anderson-Darling normality test
##
## data: rstudent(fit)
## A = 6.4123, p-value = 9.809e-16



Scale-location
This is also called spread-location plot. It shows if the residuals are
spread equally along the ranges of predictors. Can be used to check
the assumption of equal variance (homoscedasticity). A good plot
is one with a horizontal line with randomly spread points.
Is this plot good for your data?



ggplot(fit, aes(.fitted, sqrt(abs(.stdresid)))) + geom_point() + geom_smooth(se = FALSE,
col = "red", size = 0.5, method = "loess") + labs(x = "Fitted values",
y = expression(sqrt("Standardized residuals")), title = "Scale-location",
subtitle = deparse(fit$call))
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Residual vs Leverage
This plot can reveal influential outliers.
Not all outliers are influential in linear regression; the results might
not change if they are removed from the data set
Influential outliers can be seen as observations that does not get
along with the trend in the majority of the observations.



Cook’s distance is the Euclidean distance between the ŷ (the fitted
values) and ŷ(𝑖) (the fitted values calculated when the 𝑖-th
observation is omitted from the regression).

This is then a measure on how much the model is influences by
observation 𝑖.
The distance is scaled, and a rule of thumb is to examine
observations with Cook’s distance larger than 1, and give some
attention to those with Cook’s distance above 0.5.

Leverage is defined as the diagonal elements of the hat matrix, i.e.,
the leverage of the 𝑖-th data point is ℎ𝑖𝑖 on the diagonal of
H = X(XTX)−1XT. A large leverage indicated that the
observation (𝑖) has a large influence on the estimation results, and
that the covariate values (x𝑖) are unusual.



ggplot(fit, aes(.hat, .stdresid)) + geom_smooth(se = FALSE, col = "red",
size = 0.5, method = "loess") + geom_point(aes(size = .cooksd)) +
scale_size_continuous("Cook's dist.") + labs(x = "Leverage", y = "Standardized residuals",
title = "Residuals vs Leverage", subtitle = deparse(fit$call))
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(Some observations does not fit our model, but if we fit a more
complex model this may change.)



Categorical covariates - dummy and effect coding

(read for yourself - topic of ILw1)



Interactions

(if we have time)

To illustrate how interactions between covariates can be included
we use the ozone data set from the ElemStatLearn library. This
data set is measurements from 1973 in New York and contains 111
observations of the following variables:

▶ ozone : ozone concentration (ppm)
▶ radiation : solar radiation (langleys)
▶ temperature : daily maximum temperature (F)
▶ wind : wind speed (mph)



Ozone

We start by fitting a multiple linear regression model to the data,
with ozone as our response variable and temperature and wind
as covariates.
ozone radiation temperature wind

41 190 67 7.4
36 118 72 8.0
12 149 74 12.6
18 313 62 11.5
23 299 65 8.6
19 99 59 13.8



##
## Call:
## lm(formula = ozone ~ temperature + wind, data = ozone)
##
## Residuals:
## Min 1Q Median 3Q Max
## -42.160 -13.209 -3.089 10.588 98.470
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -67.2008 23.6083 -2.846 0.00529 **
## temperature 1.8265 0.2504 7.293 5.32e-11 ***
## wind -3.2993 0.6706 -4.920 3.12e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 21.72 on 108 degrees of freedom
## Multiple R-squared: 0.5817, Adjusted R-squared: 0.574
## F-statistic: 75.1 on 2 and 108 DF, p-value: < 2.2e-16



The model can be written as:

𝑌 = 𝛽0 + 𝛽1𝑥𝑡 + 𝛽2𝑥𝑤 + 𝜀

In this model we have assumed that increasing the value of one
covariate is independent of the other covariates. For example: by
increasing the temperature by one-unit always increases the
response value by 𝛽2 ≈ 1.651, regardless of the value of wind.



However, one might think that the covariate wind (wind speed)
might act differently upon ozone for different values of
temperature and vice verse.

𝑌 = 𝛽0 + 𝛽1𝑥𝑡 + 𝛽2𝑥𝑤 + 𝛽3 ⋅ (𝑥𝑡 ⋅ 𝑥𝑤) + 𝜀
= 𝛽0 + (𝛽1 + 𝛽3𝑥𝑤) ⋅ 𝑥𝑡 + 𝛽2𝑥𝑤 + 𝜀
= 𝛽0 + 𝛽1𝑥𝑡 + (𝛽2 + 𝛽3𝑥𝑡) ⋅ 𝑥𝑤 + 𝜀

.

We fit this model in R. An interaction term can be included in the
model using the * symbol.

Q: Look at the summary below. Is this a better model than
without the interaction term? It the term significant?



ozone.int = lm(ozone ~ temperature + wind + temperature * wind, data = ozone)
summary(ozone.int)

##
## Call:
## lm(formula = ozone ~ temperature + wind + temperature * wind,
## data = ozone)
##
## Residuals:
## Min 1Q Median 3Q Max
## -40.929 -11.190 -3.037 8.209 97.440
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -239.94146 48.59004 -4.938 2.92e-06 ***
## temperature 4.00151 0.59311 6.747 8.02e-10 ***
## wind 13.60882 4.28070 3.179 0.00193 **
## temperature:wind -0.21747 0.05446 -3.993 0.00012 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20.36 on 107 degrees of freedom
## Multiple R-squared: 0.636, Adjusted R-squared: 0.6258
## F-statistic: 62.31 on 3 and 107 DF, p-value: < 2.2e-16



Below we see that the interaction term is highly significant. The
𝑝-value is very small, so that there is strong evidence that 𝛽3 ≠ 0.
Furthermore, 𝑅2

adj has increased, indicating that more of the
variability in the data has been explained by the model (than
without the interaction).



Interpretation of the interaction term:
▶ If we now increase the temperature by 10∘ F, the increase in

wind speed will be

( ̂𝛽1 + ̂𝛽3 ⋅ 𝑥𝑤) ⋅ 10 = (4.0 − 0.22 ⋅ 𝑥𝑤) ⋅ 10 = 40 − 2.2𝑥𝑤 units.

▶ If we increase the wind speed by 10 mph, the increase in
temperature will be

( ̂𝛽2 + ̂𝛽3 ⋅ 𝑥𝑡) ⋅ 10 = (14 − 0.22 ⋅ 𝑥𝑡) ⋅ 10 = 140 − 2.2𝑥𝑡 units.



The hierarchical principle
It is possible that the interaction term is highly significant, but the
main effects are not.
In our ozone.int model above: the main effects are temperature
and wind. The hierarchical principle states that if we include an
interaction term in our model, the main effects are also to be
included, even if they are not significant. This means that if the
coefficients ̂𝛽1 or ̂𝛽2 would be insignificant, while the coefficient ̂𝛽3
is significant, ̂𝛽1 and ̂𝛽2 should still be included in the model.



The hierarchical principle: why?
A model with interaction terms, but without the main effects is
hard to interpret.
Removing a main effect is the same as setting 𝛽1 = 0

𝑌 = 𝛽0 + 𝛽1𝑥𝑡 + 𝛽2𝑥𝑤 + 𝛽3 ⋅ (𝑥𝑡 ⋅ 𝑥𝑤) + 𝜀
i.e. saying the slope of the 𝑥𝑡 effect is 0 when 𝑥𝑤 = 0.



Interactions between qualitative (discrete) and quantitative
(continuous) covariates
We create a new variable temp.cat which is a temperature as a
qualitative covariate with two levels and fit the model:

𝑦 = 𝛽0 + 𝛽1𝑥𝑤 + {𝛽2 + 𝛽3𝑥𝑤 if temperature=”low”
0 if temperature = ”high”

= {(𝛽0 + 𝛽2) + (𝛽1 + 𝛽3) ⋅ 𝑥𝑤 if temperature=”low”
𝛽0 + 𝛽1𝑥𝑤 if temperature=”high””



Ozone: make temperature categorical

temp.cat = ifelse(ozone$temperature < mean(ozone$temperature), "low",
"high")

ozone2 = cbind(ozone, temp.cat)
kable(head(ozone2))

ozone radiation temperature wind temp.cat
41 190 67 7.4 low
36 118 72 8.0 low
12 149 74 12.6 low
18 313 62 11.5 low
23 299 65 8.6 low
19 99 59 13.8 low



Model with interaction

ozone.int2 = lm(ozone ~ wind + temp.cat + temp.cat * wind, data = ozone2)
summary(ozone.int2)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 119.045026 7.5004384 15.871742 6.943657e-30
## wind -6.723457 0.8195494 -8.203846 5.609913e-13
## temp.catlow -92.631612 12.9465805 -7.154910 1.093470e-10
## wind:temp.catlow 6.054367 1.1999086 5.045690 1.860509e-06



interceptlow = coef(ozone.int2)[1] + coef(ozone.int2)[3]
slopelow = coef(ozone.int2)[2] + coef(ozone.int2)[4]
intercepthigh = coef(ozone.int2)[1]
slopehigh = coef(ozone.int2)[2]
ggplot(ozone) + geom_line(aes(y = interceptlow + slopelow * wind, x = wind),

col = "blue") + geom_line(aes(y = intercepthigh + slopehigh * wind,
x = wind), col = "red") + ylab("ozone")
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