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What to remember?
Model:

Y = 𝑋𝛽 + 𝜀
with full rank design matrix. And classical normal linear regression
model when

𝜀 ∼ 𝑁𝑛(0, �2I).
Parameter of interest is 𝛽 and 𝜎2 is a nuisance. Maximum
likelihood estimator

̂𝛽 = (X𝑇 X)−1X𝑇 Y

has distribution: ̂𝛽 ∼ 𝑁𝑝(𝛽, 𝜎2(X𝑇 X)−1).
Restricted maximum likelihood estimator for 𝜎2:

�̂�2 = 1
𝑛 − 𝑝(Y − X ̂𝛽)𝑇 (Y − X ̂𝛽) = SSE

𝑛 − 𝑝
with (𝑛−𝑝)�̂�2

𝜎2 ∼ 𝜒2
𝑛−𝑝.



Statistic for inference about 𝛽𝑗, 𝑐𝑗𝑗 is diagonal element 𝑗 of
(X𝑇 X)−1.

𝑇𝑗 =
̂𝛽𝑗 − 𝛽𝑗√𝑐𝑗𝑗�̂�

∼ 𝑡𝑛−𝑝

This requires that ̂𝛽𝑗 and �̂� are independent.



Inference

We will consider confidence intervals and prediction intervals, and
then test single and linear hypotheses.



Confidence intervals (CI)
In addition to providing a parameter estimate for each element of
our parameter vector 𝛽 we should also report a (1 − 𝛼)100%
confidence interval (CI) for each element. (We will not consider
simultanious confidence regions in this course.)
We focus on element 𝑗 of 𝛽, called 𝛽𝑗. It is known that
𝑇𝑗 = ̂𝛽𝑗−𝛽𝑗√𝑐𝑗𝑗�̂� follows a 𝑡-distribution with 𝑛 − 𝑝 degrees of freedom.
Let 𝑡𝛼/2,𝑛−𝑝 be such that 𝑃(𝑇𝑗 > 𝑡𝛼/2,𝑛−𝑝) = 𝛼/2.
Since the 𝑡-distribution is symmetric around 0, then
𝑃(𝑇𝑗 < −𝑡𝛼/2,𝑛−𝑝) = 𝛼/2. We may then write

𝑃(−𝑡𝛼/2,𝑛−𝑝 ≤ 𝑇𝑗 ≤ 𝑡𝛼/2,𝑛−𝑝) = 1 − 𝛼



α 2α 2 1 − α

(Blue lines at ±𝑡𝛼/2,𝑛−𝑝.)



Inserting 𝑇𝑗 = ̂𝛽𝑗−𝛽𝑗√𝑐𝑗𝑗�̂� and solving so 𝛽𝑗 is in the middle gives:

𝑃( ̂𝛽𝑗 − 𝑡𝛼/2,𝑛−𝑝√𝑐𝑗𝑗�̂� ≤ 𝛽𝑗 ≤ ̂𝛽𝑗 + 𝑡𝛼/2,𝑛−𝑝√𝑐𝑗𝑗�̂�) = 1 − 𝛼

A (1 − 𝛼)% CI for 𝛽𝑗 is when we insert numerical values for the
upper and lower limits: [ ̂𝛽𝑗 − 𝑡𝛼/2,𝑛−𝑝

√𝑐𝑗𝑗�̂�, ̂𝛽𝑗 + 𝑡𝛼/2,𝑛−𝑝
√𝑐𝑗𝑗�̂�].



CIs can be found in R using confint on an lm object. (Here
dummy variable coding is used for location, with average as
reference location.)
library(gamlss.data)
fit = lm(rent ~ area + location + bath + kitchen + cheating, data = rent99)
confint(fit)

## 2.5 % 97.5 %
## (Intercept) -44.825534 0.8788739
## area 4.354674 4.8029443
## location2 28.579849 49.9405909
## location3 92.970636 159.1443278
## bath1 52.076412 96.0311030
## kitchen1 94.907671 145.9621578
## cheating1 144.427555 178.4000215



Prediction intervals
Remember, one aim for regression was to “construct a model to
predict the reponse from a set of (one or several) explanatory
variables- more or less black box”.
Assume we want to make a prediction (of the response - often
called 𝑌0) given specific values for the covariates - often called x0.
An intuitive point estimate is ̂𝑌0 = x𝑇

0 ̂𝛽 - but to give a hint of the
uncertainty in this prediction we also want to present a prediction
interval for the 𝑌0.



First, we assume that the unobserved response at covariate x0 is
independent of our previous observations and follows the same
distribution, that is 𝑌0 ∼ 𝑁(x𝑇

0 𝛽, 𝜎2). Further,

̂𝑌0 = x𝑇
0 ̂𝛽 ∼ 𝑁(x𝑇

0 𝛽, 𝜎2x𝑇
0 (X𝑇 X)−1x0).

Then, for 𝑌0 − x𝑇
0 ̂𝛽 we have

E(𝑌0−x𝑇
0 ̂𝛽) = 0 and Var(𝑌0−x𝑇

0 ̂𝛽) = Var(𝑌0)+Var(x𝑇
0 ̂𝛽) = 𝜎2+𝜎2x𝑇

0 (X𝑇 X)−1x0

so that

𝑌0 − x𝑇
0 ̂𝛽 ∼ 𝑁(0, 𝜎2(1 + x𝑇

0 (X𝑇 X)−1x0))

Inserting our REML-estimate for 𝜎2 gives

𝑇 = 𝑌0 − x𝑇
0 ̂𝛽

�̂�√1 + x𝑇
0 (X𝑇 X)−1x0

∼ 𝑡𝑛−𝑝.



Then, we start with

𝑃(−𝑡𝛼/2,𝑛−𝑝 ≤ 𝑌0 − x𝑇
0 ̂𝛽

�̂�√1 + x𝑇
0 (X𝑇 X)−1x0

≤ 𝑡𝛼/2,𝑛−𝑝) = 1 − 𝛼

and solve so that 𝑌0 is in the middle, which gives

𝑃(x𝑇
0 ̂𝛽−𝑡𝛼/2,𝑛−𝑝�̂�√1 + x𝑇

0 (X𝑇 X)−1x0 ≤ 𝑌0 ≤ x𝑇
0 ̂𝛽+𝑡𝛼/2,𝑛−𝑝�̂�√1 + x𝑇

0 (X𝑇 X)−1x0) = 1−𝛼

A (1 − 𝛼)% PI for 𝑌0 is when we insert numerical values for the
upper and lower limits:
[x𝑇

0 ̂𝛽 − 𝑡𝛼/2,𝑛−𝑝�̂�√1 + x𝑇
0 (X𝑇 X)−1x0, x𝑇

0 ̂𝛽 +
𝑡𝛼/2,𝑛−𝑝�̂�√1 + x𝑇

0 (X𝑇 X)−1x0].



PIs can be found in R using predict on an lm object, but make
sure that newdata is a data.frame with the same names as the
original data.

We want to predict the rent - with PI - for an apartment with area
50 𝑚2, location 2 (“good”), nice bath and kitchen and with
central heating:
library(gamlss.data)
fit = lm(rent ~ area + location + bath + kitchen + cheating, data = rent99)
newobs = rent99[1, ]
newobs[1, ] = c(NA, NA, 50, NA, 2, 1, 1, 1, NA)
predict(fit, newdata = newobs, interval = "prediction", type = "response")

## fit lwr upr
## 1 602.1298 315.5353 888.7243



Questions:
1. When is a prediction interval of interest?
2. Explain the result from predict above. What are fit, lwr,

upr?
3. What is the interpretation of a 95% prediction interval?



Single hypothesis testing set-up
In single hypothesis testing we are interesting in testing one null
hypothesis against an alternative hypothesis. In linear regression
the hypothesis is often about a regression parameter 𝛽𝑗:

𝐻0 ∶ 𝛽𝑗 = 0 vs. 𝐻1 ∶ 𝛽𝑗 ≠ 0

Remark: we implicitly say that our test is done given that the
other variables are present in the model, that is, the other 𝛽𝑖s
(𝑗 ≠ 𝑖) are not zero.



Two types of errors:
▶ “Reject 𝐻0 when 𝐻0 is true”=“false positives” = “type I

error” =“miscarriage of justice”. These are our fake news,
which are very important for us to avoid.

▶ “Fail to reject 𝐻0 when 𝐻1 is true (and 𝐻0 is false)”=“false
negatives” = “type II error”= “guilty criminal go free”.



We choose to reject 𝐻0 at some significance level 𝛼 if the 𝑝-value
of the test (see below) is smaller than the chosen significance level.
We say that : Type I error is “controlled” at significance level 𝛼,
which means that the probability of miscarriage of justice (Type I
error) does not exceed 𝛼.
Q: Draw a 2 by 2 table showing the connection between

▶ “truth” (𝐻0 true or 𝐻0 false) - rows in the table, and
▶ “action” (reject 𝐻0 and accept 𝐻0) - columns in the table,

and place the two types of errors in the correct position within the
table.

What else should be written in the last two cells?



Hypothesis test on 𝛽𝑗 (t-test)
In linear regression models our test statistic for testing 𝐻0 ∶ 𝛽𝑗 = 0
is

𝑇0 =
̂𝛽𝑗 − 0

√𝑐𝑗𝑗�̂�𝜀
∼ 𝑡𝑛−2

where 𝑐𝑗𝑗�̂�2
𝜀 = V̂ar( ̂𝛽𝑗).

Inserted observed values (and estimates) we have 𝑡0.
We would in a two-sided setting reject 𝐻0 for large values of
abs(𝑡0). We may rely on calculating a 𝑝-value.



The p-value
A p-value is a test statistic satisfying 0 ≤ 𝑝(Y) ≤ 1 for every
vector of observations Y.

▶ Small values are interpreted as evidence that 𝐻1 is true(-ish).
▶ In single hypothesis testing, if the p-value is less than the

chosen significance level (chosen upper limit for the
probability of committing a type I error), then we reject the
null hypothesis, 𝐻0. The chosen significance level is often
referred to as 𝛼.

▶ A p-value is valid if

𝑃 (𝑝(Y) ≤ 𝛼) ≤ 𝛼

for all 𝛼, 0 ≤ 𝛼 ≤ 1, whenever 𝐻0 is true, that is, if the
𝑝-value is valid, rejection on the basis of the 𝑝-value ensures
that the probability of type I error does not exceed 𝛼.

▶ If 𝑃(𝑝(Y) ≤ 𝛼) = 𝛼 for all 𝛼, 0 ≤ 𝛼 ≤ 1, the 𝑝-value is
called an exact p-value.



In our linear regression we use the 𝑡-distibution to calculate
p-values for our two-sided test situation 𝐻0 ∶ 𝛽𝑗 = 0
vs. 𝐻1 ∶ 𝛽𝑗 ≠ 0. Assume we have observed that our test statistic
𝑇0 takes the numerical value 𝑡0. Since the 𝑡-distribution is
symmetric around 0 we have

𝑝-value = 𝑃(𝑇0 > abs(𝑡0))+𝑃 (𝑇0 < −abs(𝑡0)) = 2⋅𝑃 (𝑇0 > abs(𝑡0)).

We reject 𝐻0 if our calculated 𝑝-value is below our chosen
signficance level. We often choose as significance level 𝛼 = 0.05.



Munich rent index hypothesis test
We look at print-out using summary from fitting lm.
library(gamlss.data)
fit = lm(rent ~ area + location + bath + kitchen + cheating, data = rent99)
knitr::kable(summary(fit)$coefficients, digits = 3)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -21.973 11.655 -1.885 0.059
area 4.579 0.114 40.055 0.000
location2 39.260 5.447 7.208 0.000
location3 126.057 16.875 7.470 0.000
bath1 74.054 11.209 6.607 0.000
kitchen1 120.435 13.019 9.251 0.000
cheating1 161.414 8.663 18.632 0.000



Q (and A):

1. Where is hypothesis testing performed here, and which are the
hypotheses rejected at level 0.01?

2. Will the test statistics and 𝑝-values change if we change the
regression model?

3. What is the relationship between performing an hypothesis
test and constructing a CI interval? Remember:

library(gamlss.data)
fit = lm(rent ~ area + location + bath + kitchen + cheating, data = rent99)
confint(fit)

## 2.5 % 97.5 %
## (Intercept) -44.825534 0.8788739
## area 4.354674 4.8029443
## location2 28.579849 49.9405909
## location3 92.970636 159.1443278
## bath1 52.076412 96.0311030
## kitchen1 94.907671 145.9621578
## cheating1 144.427555 178.4000215



Testing linear hypotheses in regression
We study a normal linear regression model with 𝑝 = 𝑘 + 1
covariates, and refer to this as model A (the larger model). We
then want to investigate the null and alternative hypotheses of the
following type(s):

𝐻0 ∶ 𝛽𝑗 = 0 vs. 𝐻1 ∶ 𝛽𝑗 ≠ 0
𝐻0 ∶ 𝛽1 = 𝛽2 = 𝛽3 = 0 vs. 𝐻1 ∶ at least one of these ≠ 0
𝐻0 ∶ 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑘 = 0 vs. 𝐻1 ∶ at least one of these ≠ 0

We call the restricted model (when the null hypotesis is true)
model B, or the smaller model.



These null hypotheses and alternative hypotheses can all be
rewritten as a linear hypothesis

𝐻0 ∶ C𝛽 = d vs. C𝛽 ≠ d

by specifying C to be a 𝑟 × 𝑝 matrix and d to be a column vector
of length 𝑝.
The test statistic for performing the test is called 𝐹𝑜𝑏𝑠 and can be
formulated in two ways:

𝐹𝑜𝑏𝑠 =
1
𝑟 (𝑆𝑆𝐸𝐻0

− 𝑆𝑆𝐸)
𝑆𝑆𝐸
𝑛−𝑝

(1)

𝐹𝑜𝑏𝑠 = 1
𝑟(C�̂� − d)T[�̂�2C(XTX)−1CT]−1(C�̂� − d) (2)

where 𝑆𝑆𝐸 is from the larger model A, 𝑆𝑆𝐸𝐻0
from the smaller

model B, and �̂� and �̂�2 are estimators from the larger model A.



Testing a set of parameters - what is C and d?
We consider a regression model with intercept and five covariates,
𝑥1, … , 𝑥5. Assume that we want to know if the covariates 𝑥3, 𝑥4,
and 𝑥5 can be dropped (due to the fact that none of the
corresponding 𝛽𝑗s are different from zero). This means that we
want to test:

𝐻0 ∶ 𝛽3 = 𝛽4 = 𝛽5 = 0 vs. 𝐻1 ∶ at least one of these ≠ 0

This means that our C is a 6 × 3 matrix and d a 3 × 1 column
vector

C = ⎛⎜
⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟
⎠

and d ⎛⎜
⎝

0
0
0
⎞⎟
⎠



Testing one regression parameter
If we set C = (0, 1, 0, ⋯ , 0)𝑇 , a row vector with 1 in position 2
and 0 elsewhere, and d = (0, 0, … , 0), a column vector with 0s,
then we test

𝐻0 ∶ 𝛽1 = 0 vs. 𝐻1 ∶ 𝛽1 ≠ 0.
Now C ̂𝛽 = 𝛽1 and C(XTX)−1CT = 𝑐11, so that 𝐹𝑜𝑏𝑠 then is
equal to the square of the 𝑡-statistics for testing a single regression
parameter.

𝐹𝑜𝑏𝑠 = ( ̂𝛽1 − 0)𝑇 [�̂�2𝑐𝑗𝑗]−1( ̂𝛽1 − 0) = 𝑇 2
1

Repeat the argument with 𝛽𝑗 instead of 𝛽1.
Remark: Remember that 𝑇 2

𝜈 = 𝐹1,𝜈.



Testing “significance of the regression”
If we set C = (0, 1, 1, ⋯ , 1)𝑇 , a row vector with 0 in position 1
and 0 elsewhere, and d = (0, 0, … , 0), a column vector with 0s,
then we test

𝐻0 ∶ 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑘 = 0 vs. 𝐻1 ∶ at least one different from zero.

This means we test if at least one of the regression parameters (in
addition to the intercept) is different from 0. The small model is
then the model with only the intercept, and for this model the
SSE𝐻0

is equal to SST (sums of squares total, see below). Let
SSE be the sums-of-squares of errors for the full model. If we have
𝑘 regression parameters (in addition to the intercept) then the
F-statistic becomes

𝐹𝑜𝑏𝑠 =
1
𝑘(SST − SSE)

SSE
𝑛−𝑝

with 𝑘 and 𝑛 − 𝑝 degrees of freedom under 𝐻0.



Is the regression significant?
summary(fit)$fstatistic

## value numdf dendf
## 420.0427 6.0000 3075.0000



Relation to Wald test
Since Cov( ̂𝛽) = 𝜎2(X𝑇 X)−1, then Cov(C ̂𝛽) = C𝜎2(X𝑇 X)−1C𝑇 ,
so that C�̂�2(X𝑇 X)−1C𝑇 can be seen as an estimate of Cov(C ̂𝛽).
Therefore, 𝐹𝑜𝑏𝑠 can be written

𝐹𝑜𝑏𝑠 = 1
𝑟(C ̂� − d)T[Ĉov(C ̂𝛽)]−1(C ̂� − d) = 1

𝑟𝑊

where 𝑊 is a so-called Wald test. It is known that 𝑊 ∼ 𝜒2
𝑟

asymptotically as 𝑛 becomes large. We will study the Wald test in
more detail later in this course.



Asympotic result
It can in general be shown that

𝑟𝐹𝑟,𝑛−𝑝
𝑛→∞⟶ 𝜒2

𝑟.

That is, if we have a random variable 𝐹 that is distributed as
Fisher with 𝑟 (numerator) and 𝑛 − 𝑝 (denominator) degrees of
freedom, then when 𝑛 goes to infinity (𝑝 kept fixed), then 𝑟𝐹 is
approximately 𝜒2-distributed with 𝑟 degrees of freedom.
Also, if our error terms are not normally distributed then we can
assume that when the number of observation becomes very large
then 𝑟𝐹𝑟,𝑛−𝑝 is approximately 𝜒2

𝑟.



Focus on likelihood: Likelihood ratio test and deviance

The likelihood ratio test
An alternative to the Wald test is the likelihood ratio test (LRT),
which compares the likelihood of two models.
We use the following notation. A: the larger model and B: the
smaller model (under 𝐻0), and the smaller model is nested within
the larger model (that is, B is a submodel of A).



▶ First we maximize the likelihood for model A (the larger
model) and find the parameter estimate ̂𝛽𝐴. The maximum
likelihood is achieved at this parameter estimate and is
denoted 𝐿( ̂𝛽𝐴).

▶ Then we maximize the likelihood for model B (the smaller
model) and find the parameter estimate ̂𝛽𝐵. The maximum
likelihood is achieved at this parameter estimate and is
denoted 𝐿( ̂𝛽𝐵).

The likelihood of the larger model (A) will always be larger or
equal to the likelihood of the smaller model (B). Why?



The likelihood ratio statistic is defined as

−2 ln 𝜆 = −2(ln 𝐿( ̂𝛽𝐵) − ln 𝐿( ̂𝛽𝐴))

(so, −2 times small minus large).

Under weak regularity conditions the test statistic is approximately
𝜒2-distributed with degrees of freedom equal the difference in the
number of parameters in the large and the small model. This is
general - and not related to the GLM! More in TMA4295
Statistical Inference!

𝑃 -values are calculated in the upper tail of the 𝜒2-distribution.

Observe: to perform the test you need to fit both the small and
the large model.



Notice: asymptotically the Wald and likelihood ratio test statistics
have the same distribution, but the value of the test statistics
might be different.
# TRY OUT BOTH Wald and LRT

The LRT can be performed using anova().



Deviance (something new!)
The deviance is used to assess model fit and also for model choice,
and is based on the likelihood ratio test statistic. It is used for all
GLMs in general - and replaces using SSE in multiple linear
regression.
Saturated model: If we were to provide a perfect fit to our data t
This “imaginary model” is called the saturated model. This would
be a model where each observation was given its own parameter.
Candidate model: The model that we are investigated can be
thought of as a candidate model. Then we maximize the likelihood
and get ̂𝛽.



The deviance is then defined as the likelihood ratio statistic, where
we put the saturated model in place of the larger model A and our
candidate model in place of the smaller model B:

𝐷 = −2(ln 𝐿(candidate model) − ln 𝐿(saturated model))

For the maximal model, we have parameters 𝜃1, … , 𝜃𝑛, where
𝜃𝑖 = 𝐸[𝑌𝑖] The log-likelihood for this model is

𝑙( ̂𝛽, 𝜎2) = −𝑛
2 ln(2𝜋)−𝑛

2 ln𝜎2− 1
2𝜎2 (y−𝜃)𝑇 (y−𝜃) = −𝑛

2 ln(2𝜋)−𝑛
2 ln𝜎2

(because ̂𝜃𝑖 = 𝑦𝑖, something you may work out for yourselves)



The deviance is then

𝐷 = −2 (−𝑛
2 ln(2𝜋𝜎2) − 1

2𝜎2 (y − X ̂𝛽)𝑇 (y − X ̂𝛽) − (−𝑛
2 ln(2𝜋𝜎2))

= 1
𝜎2 (y − X ̂𝛽)𝑇 (y − X ̂𝛽)

Note the connection with the RSS! Under the null hypothesis that
the model fits the data well, 𝐷 ∼ 𝜒2

𝑛−𝑝 exactly (in this case).



Analysis of variance decomposition and coefficient of
determination, 𝑅2

It is possible to decompose the total variability in the data, called
SST (sums-of-squares total), into a part that is explained by the
regression SSR (sums-of-squares regression), and a part that is not
explained by the regression SSE (sums-of-squares error, or really
residual).

Let ̄𝑌 = 1
𝑛 ∑𝑛

𝑖=1 𝑌𝑖, and ̂𝑌𝑖 = x𝑇
𝑖 ̂𝛽. Then,

SST = SSR + SSE

SST =
𝑛

∑
𝑖=1

(𝑌𝑖 − ̄𝑌 )2 = Y𝑇 (I − 1
𝑛11𝑇 )Y

SSR =
𝑛

∑
𝑖=1

( ̂𝑌𝑖 − ̄𝑌 )2 = Y𝑇 (H − 1
𝑛11𝑇 )Y

SSE =
𝑛

∑
𝑖=1

(𝑌𝑖 − ̂𝑌𝑖)2 =
𝑛

∑
𝑖=1

̂𝜀2
𝑖 = Y𝑇 (I − H)Y.



Based on this decomposition we may define the coefficient of
determination (𝑅2) as the ratio between SSR and SST, that is

𝑅2 = SSR/SST = 1 − SSE/SST

1. The interpretation of this coefficient is that the closer it is to 1
the better the fit to the data. If 𝑅2 = 1 then all residuals are zero
- that is, perfect fit to the data.

2. In a simple linear regression the 𝑅2 equals the squared
correlation coefficient between the reponse and the predictor.
In multiple linear regression 𝑅2 is the squared correlation
coefficient between the observed and predicted response.

3. If we have two models M1 and M2, where model M2 is a
submodel of model M1, then

𝑅2
𝑀1

≥ 𝑅2
𝑀2

.

This can be explained from the fact that SSE𝑀1
≤ SSE𝑀2

.
(More in the Theoretical questions.)



Analysis of variance tables - with emphasis on sequential Type
I ANOVA
It is possible to call the function anova on an lm-object. What
does that function do?
library(gamlss.data)
fit1 = lm(rent ~ area + location + bath, data = rent99)
anova(fit1)
## Analysis of Variance Table
##
## Response: rent
## Df Sum Sq Mean Sq F value Pr(>F)
## area 1 40299098 40299098 1668.142 < 2.2e-16 ***
## location 2 1635047 817524 33.841 2.901e-15 ***
## bath 1 1676825 1676825 69.410 < 2.2e-16 ***
## Residuals 3077 74334393 24158
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



What is produced is a sequential table of the reductions in residual
sum of squares (SSE) as each term in the regression formula is
added in turn. This type of ANOVA is often referred to as “Type
1” (not to be confused with type I errors).

We can produce the same table by fitting larger and larger
regression models.
library(gamlss.data)
fit = lm(rent ~ area + location + bath + kitchen + cheating, data = rent99)
fit0 <- lm(rent ~ 1, data = rent99)
fit1 <- update(fit0, . ~ . + area)
fit2 <- update(fit1, . ~ . + location)
fit3 <- update(fit2, . ~ . + bath)



anova(fit0, fit1, fit2, fit3, test = "F")
# anova(fit0,fit1) # compare model 0 and 1 - NOT sequential
# anova(fit0,fit5) # compare model 0 and 5 - NOT sequential

## Analysis of Variance Table
##
## Model 1: rent ~ 1
## Model 2: rent ~ area
## Model 3: rent ~ area + location
## Model 4: rent ~ area + location + bath
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 3081 117945363
## 2 3080 77646265 1 40299098 1668.142 < 2.2e-16 ***
## 3 3078 76011217 2 1635047 33.841 2.901e-15 ***
## 4 3077 74334393 1 1676825 69.410 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



If we had changed the order of adding the covariates to the model,
then our anova table might also change. You might check that if
you want.



See the last page of the classnotes 04.09.2017 for mathematical
notation on the sequential test in anova, and details on the
print-out comes next - NEW: now with formulas!

https://www.math.ntnu.no/emner/TMA4315/2017h/M2_Classnotes20170904.pdf


Details on the test anova(fit)
When running anova on one fitted regression the 𝐹 -test in anova
is calculated as for “testing linear hypotheses” - but with a slight
twist. Our large model is still the full regression model (from the
fitted object), but the smaller model is replaced by the the change
from one model to the next.
Let SSE be the sums-of-squares-error (residual sums of squares)
from the full (large, called A) model - this will be our denominator
(as always). For our rent example the denominator will be
SSE/(n-p)=64819547/3075 (see above).
The logic is that the full model provides an estimate of 𝜎2: the
others may not.



For the numerator we are not comparing one small model with the
full (large) one, we are instead looking at the change in SSE
between two (smaller) models (called model B1 and B2). So, now
we have in the numerator the difference in SSE between models B1
and B2, scaled with the difference in number of parameters
estimated in model B1 and B2 =“number in B2 minus in B1”
(which is the same as the difference in degrees of freedom for the
two models).



This means that the test statistics we use are:

𝐹0 =
SSE𝐵1−SSE𝐵2

df𝐵1−df𝐵2
SSE𝐴
df𝐴

Remark: notice that the denominator is just the ̂𝜎2 from the larger
model A.

This makes our 𝐹 -test statistic: 𝑓0 = 40299098/1
64819547/3075 = 1911.765

(remember that we swap from capital to small letters when we
insert numerical values).

To produce a 𝑝-value to the test that

𝐻0 ∶ ”Model B1 and B2 are equally good” vs 𝐻1 ∶ ”Model B2 is better than B1

and then the 𝐹 ∼ df𝐵1 − df𝐵2, df𝐴.



In our example we compare to an F-distribution with 1 and 3075
degrees of freedom. The 𝑝-value is the “probability of observing a
test statistic at least as extreme as we have” so we calculate the
𝑝-value as 𝑃(𝐹 > 𝑓0). This gives a 𝑝-value that is practically 0.

If you then want to use the asymptotic version (relating to a
chi-square instead of the F), then multiply your F-statistic with
df𝐵1 − df𝐵2 and relate to a 𝜒2 distribution with df𝐵1 − df𝐵2
degrees of freedom, where df𝐵1 − df𝐵2 is the difference in number
of parameters in models B1 and B2. In our example
df𝐵1 − df𝐵2 = 1.



For the anova table we do this sequentially for all models from
starting with only intercept to the full model A. This means you
need to calculate SSE and df for models of all sizes to calculate
lots of these 𝐹0s. Assume that we have 4 covariates that are added
to the model, and call the 5 possible models (given the order of
adding the covariates)

▶ model 1: model with only intercept
▶ model 2: model with intercept and covariate 1
▶ model 3: model with intercept and covariate 1 and covariate 2
▶ model 4: model with intercept and covariate 1 and covariate 2

and covariate 3
▶ model 5: model with intercept and covariate 1 and covariate 2

and covariate 3 and covariate 4



Fit a linear model (lm) for each model 1-5, and store SSE and
degrees of freedom=df (number of observations minus number of
covariates estimated) for each of the models. Call these SSE1 to
SSE5 and df1 to 𝑑𝑓_5$.
The anova output has columns: Df Sum Sq Mean Sq F value
Pr(>F) and one row for each covariate added to the model.

For example

model 2 vs model 1: Df=df1-df2, Sum Sq=SSE1-SSE2, Mean
Sq=Sum Sq/Df, F value=(Mean Sq)/(SSE5/df5)=𝑓0,
Pr(>F)=pvalue=𝑃(𝐹 > 𝑓0).
model 3 vs model 2: Df=df2-df3, Sum Sq=SSE2-SSE3, Mean
Sq=Sum Sq/Df, F value=(Mean Sq)/(SSE5/df5)=𝑓0,
Pr(>F)=pvalue=𝑃(𝐹 > 𝑓0).
In R the p-value is calculated as 1-pf(f0,Df) or as
1-pchisq(Df*f0,Df) if the asymptotic chisquare distribution is
used.

This is what is presented - a sequential record of the effect of
adding a new covariate.



**Q*: What if you change the order of the covariates into the
model?



A competing way of thinking is called type 3 ANOVA and instead
of looking sequentially at adding terms, we (like in summary)
calculated the contribution to a covariate (or factor) given that all
other covariates are present in the regression model. Type 3
ANOVA is available from library car as function Anova (possible
to give type of anova as input).

Check : Take a look at the print-out from summary and anova
and observe that for our rent data the 𝑝-values for each covariate
are different due to the different nature of the 𝐻0s tested
(sequential vs. “all other present”).

If we had orthogonal columns for our different covariates the type
1 and type 3 ANOVA tables would have been equal.



Quality measures
To assess the quality of the regression we can report the 𝑅2

coefficient of determination. However, since adding covariates to
the linear regression can not make the SSE larger, this means that
adding covariates can not make the 𝑅2 smaller. This means that
SSE and 𝑅2 are only useful measures for comparing models with
the same number of regression parameters estimated.
If we consider two models with the same model complexity then
SSE can be used to choose between (or compare) these models.
But, if we want to compare models with different model complexity
we need to look at other measures of quality for the regression.



𝑅2 adjusted (corrected)

𝑅2
adj = 1 −

𝑆𝑆𝐸
𝑛−𝑝
𝑆𝑆𝑇
𝑛−1

= 1 − 𝑛 − 1
𝑛 − 𝑝(1 − 𝑅2)

Choose the model with the largest 𝑅2
adj.



AIC Akaike information criterion
AIC is one of the most widely used criteria, and is designed for
likelihood-based inference. Let 𝑙( ̂𝛽𝑀 , �̃�2) be the maximum of the
log-likelihood of the data inserted the maximum likelihood
estimates for the regression and nuisance parameter. Further, let
|𝑀| be the number of estimated regression parameters in our
model.

AIC = −2 ⋅ 𝑙( ̂𝛽𝑀 , �̃�2) + 2(|𝑀| + 1)
For a normal regression model:

AIC = 𝑛 ln(�̃�2) + 2(|𝑀| + 1) + 𝐶

where C is a function of 𝑛 (will be the same for two models for the
same data set). Remark that �̃�2 = 𝑆𝑆𝐸/𝑛 - our ML estimator
(not our unbiased REML), so that the first term in the AIC is just
a function of the SSE. For MLR the AIC and the Mallows Cp gives
the same result when comparing models.
Choose the model with the minimum AIC.



BIC Bayesian information criterion.
The BIC is also based on the likelihood (see notation above).

BIC = −2 ⋅ 𝑙( ̂𝛽𝑀 , �̃�2) + ln(𝑛) ⋅ (|𝑀| + 1)

For a normal regression model:

BIC = 𝑛 ln(�̃�2) + ln(𝑛)(|𝑀| + 1)

Choose the model with the minimum BIC.
AIC and BIC are motivated in very different ways, but the final
result for the normal regression model is very similar. BIC has a
larger penalty than AIC (log(𝑛) vs. 2), and will often give a smaller
model (=more parsimonious models) than AIC. In general we
would not like a model that is too complex.



Model selection strategies
▶ All subset selection: use smart “leaps and bounds” algorithm,

works fine for number of covariates in the order of 40.
▶ Forward selection: choose starting model (only intercept),

then add one new variable at each step - selected to make the
best improvement in the model selection criteria. End when
no improvement is made.

▶ Backward elimination: choose starting model (full model),
then remove one new variable at each step - selected to make
the best improvement in the model selection criteria. End
when no improvement is made.

▶ Stepwise selection: combine forward and backward.



R packages

install.packages(c("gamlss.data", "tidyverse", "GGally", "Matrix", "nortest"))



References and further reading

▶ Slightly different presentation (more focus on multivariate
normal theory): Slides and written material from TMA4267
Linear Statistical Models in 2017, Part 2: Regression (by
Mette Langaas).

▶ And, same source, but now [Slides and written material from
TMA4267 Linear Statistical Models in 2017, Part 3:
Hypothesis testing and ANOVA] (http://www.math.ntnu.no
/emner/TMA4267/2017v/TMA4267V2017Part3.pdf)

https://www.math.ntnu.no/emner/TMA4267/2017v/TMA4267V2017Part2.pdf
https://www.math.ntnu.no/emner/TMA4267/2017v/TMA4267V2017Part2.pdf
https://www.math.ntnu.no/emner/TMA4267/2017v/TMA4267V2017Part2.pdf
http://www.math.ntnu.no/emner/TMA4267/2017v/TMA4267V2017Part3.pdf
http://www.math.ntnu.no/emner/TMA4267/2017v/TMA4267V2017Part3.pdf

