
TMA4315 Generalized linear models H2018
Module 3: BINARY REGRESSION

Mette Langaas, Department of Mathematical Sciences, NTNU -
with contributions from Øyvind Bakke, Thea Bjørnland and

Ingeborg Hem

13.09 and 20.09 [PL], 14.09 and 21.09 [IL]



(Latest changes: 09.11: clarified one sentence on the devianc.
23.09: score test moved to M4. 20.09: typos, and added solutions
to Qs in class. 18.09: typos and added sententence
ILw2Problem3c. 16.09: edited and added material for week 2,
13.09 moved material not lectured to after the ILw1, and added
one sentence to Problem 5 ILw1.)



Overview

Learning material
▶ Textbook: Fahrmeir et al (2013): Chapter 2.3, 5.1, B4.1-3
▶ Classnotes 13.09.2018
▶ Classnotes 20.09.2018

https://www.math.ntnu.no/emner/TMA4315/2018h/TMA4315M3H20180913.pdf
https://www.math.ntnu.no/emner/TMA4315/2018h/TMA4315M3H20180920.pdf


Topics
First week

▶ aim of binary regression
▶ how to model a binary response
▶ three ingredients of a GLM model
▶ the logit model: logistic regression
▶ interpreting the logit model - with odds
▶ grouped vs. individual data
▶ parameter estimation with maximum likelihood

▶ likelihood, log-likelihood,
▶ score function



Second week
▶ Parameter estimation

▶ score function- and mean and covariance thereof,
▶ observed and expected information matrix

▶ comparison with the normal distribution - score function and
Fisher information

▶ exponential family and canonical link
▶ iterative calculation of ML estimator (Newton-Raphson and

Fisher scoring) - and in R with optim
▶ asymptotic properties of ML estimators - how to use in

inference?
▶ statistical inference

▶ confidence intervals
▶ hypothesis testing: Wald, and likelihood ratio

▶ deviance: definition, analysis of deviance, deviance residuals
▶ model fit and model choice
▶ overdispersion and estimating overdispersion parameter
▶ sampling strategy: cohort, but also case-control data good for

logit model



SECOND WEEK
Remember the beetle and infant respitory disease examples?
First, we look back at the model requirements for the binary
regression - and the loglikelihood and score function.



Likelihood and derivations thereof - continued

Individual data (not grouped):

Loglikelihood:

𝑙(𝛽) =
𝑛

∑
𝑖=1

[𝑦𝑖 ln 𝜋𝑖 − 𝑦𝑖 ln(1 − 𝜋𝑖) + ln(1 − 𝜋𝑖)]

Score function:
𝑠(𝛽) =

𝑛
∑
𝑖=1

x𝑖(𝑦𝑖 − 𝜋𝑖)



Properties of the score function
Since the score function depends on 𝑌𝑖 = 𝑦𝑖 we may regard the
score function as a random vector. We will now calculate the mean
and covariance matrix for the score function.



𝐸(𝑠(𝛽))
The expected value of the score function is

𝐸(𝑠(𝛽)) = 𝐸(
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝜋𝑖)x𝑖)

=
𝑛

∑
𝑖=1

𝐸((𝑌𝑖 − 𝜋𝑖)x𝑖)

=
𝑛

∑
𝑖=1

(𝐸(𝑌𝑖) − 𝜋𝑖)x𝑖 = 0

as 𝐸(𝑌𝑖) = 𝜋𝑖.
We also see that 𝐸(𝑠𝑖(𝛽)) = 𝐸((𝑌𝑖 − 𝜋𝑖)x𝑖) = 0, ∀𝑖.



Fisher Information and Variances of Estimates
The “amount of information” that the data carry about the
parameters, 𝛽, can be summarised by the curvature in the
likelihood surface
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The expected Fisher information matrix 𝐹(𝛽)
The covariance of 𝑠(𝛽) is called the expected Fisher information
matrix, 𝐹(𝛽) and is given by

𝐹(𝛽) = Cov(𝑠(𝛽)) =
𝑛

∑
𝑖=1

Cov(𝑠𝑖(𝛽))

=
𝑛

∑
𝑖=1

𝐸 [(𝑠𝑖(𝛽) − 𝐸(𝑠𝑖(𝛽)))(𝑠𝑖(𝛽) − 𝐸(𝑠𝑖(𝛽)))
𝑇

]

=
𝑛

∑
𝑖=1

𝐸(𝑠𝑖(𝛽)𝑠𝑖(𝛽)𝑇 ) =
𝑛

∑
𝑖=1

𝐹𝑖(𝛽)

assuming that the responses 𝑌𝑖 and 𝑌𝑗 are independent



𝐹𝑖(𝛽)
Remember that 𝑠𝑖(𝛽) = (𝑌𝑖 − 𝜋𝑖)x𝑖, then:

𝐹𝑖(𝛽) = 𝐸(𝑠𝑖(𝛽)𝑠𝑖(𝛽)𝑇 ) = 𝐸((𝑌𝑖 − 𝜋𝑖)x𝑖(𝑌𝑖 − 𝜋𝑖)x𝑇
𝑖 )

= x𝑖x𝑇
𝑖 𝐸((𝑌𝑖 − 𝜋𝑖)2)

= x𝑖x𝑇
𝑖 𝜋𝑖(1 − 𝜋𝑖)

where 𝐸((𝑌𝑖 − 𝜋𝑖)2) = Var(𝑌𝑖) = 𝜋𝑖(1 − 𝜋𝑖) is the variance of 𝑌𝑖.
Thus

𝐹(𝛽) =
𝑛

∑
𝑖=1

x𝑖x𝑇
𝑖 𝜋𝑖(1 − 𝜋𝑖).



A useful relationship: Under mild regularity conditions (so we
can change the order of ∫ and 𝜕

𝜕𝛽 ):

Cov(𝑠(𝛽)) = 𝐹(𝛽) = 𝐸 (− 𝜕2𝑙(𝛽)
𝜕𝛽𝜕𝛽𝑇 ) = 𝐸(−Hessian matrix of 𝑙)

which relates the expected to the observed Fisher information
matrix.



Observed Fisher information matrix 𝐻(𝛽)
What is the observed Fisher information matrix? i.e. don’t take
expectations…

𝐻(𝛽) = − 𝜕2𝑙(𝛽)
𝜕𝛽𝜕𝛽𝑇 = −𝜕𝑠(𝛽)

𝜕𝛽𝑇 = 𝜕
𝜕𝛽𝑇 [

𝑛
∑
𝑖=1

(𝜋𝑖 − 𝑦𝑖)x𝑖]

because 𝑠(𝛽) = ∑𝑛
𝑖=1(𝑦𝑖 − 𝜋𝑖)x𝑖, so −𝑠(𝛽) = ∑𝑛

𝑖=1(𝜋𝑖 − 𝑦𝑖)x𝑖.
Note that 𝜋𝑖 = 𝜋𝑖(𝛽).



Calculating 𝐻(𝛽)

𝐻(𝛽) =
𝑛

∑
𝑖=1

𝜕
𝜕𝛽𝑇 [x𝑖𝜋𝑖 − x𝑖𝑦𝑖] =

𝑛
∑
𝑖=1

𝜕
𝜕𝛽𝑇 x𝑖𝜋𝑖 =

𝑛
∑
𝑖=1

x𝑖
𝜕𝜋𝑖
𝜕𝜂𝑖

𝜕𝜂𝑖
𝜕𝛽𝑇



Use that

𝜕𝜂𝑖
𝜕𝛽𝑇 = 𝜕x𝑇

𝑖 𝛽
𝜕𝛽𝑇 = (𝜕x𝑇

𝑖 𝛽
𝜕𝛽 )

𝑇
= x𝑇

𝑖

and

𝜕𝜋𝑖
𝜕𝜂𝑖

=
𝜕 ( exp(𝜂𝑖)

1+exp(𝜂𝑖))
𝜕𝜂𝑖

= (1 + exp(𝜂𝑖)) exp(𝜂𝑖) − exp(𝜂𝑖) exp(𝜂𝑖)
(1 + exp(𝜂𝑖))2

= exp(𝜂𝑖)
1 + exp(𝜂𝑖)

1 + exp(𝜂𝑖) − exp(𝜂𝑖)
1 + exp(𝜂𝑖)

= 𝜋𝑖(1 − 𝜋𝑖).



And thus

𝐻(𝛽) =
𝑛

∑
𝑖=1

x𝑖
𝜕𝜋𝑖
𝜕𝜂𝑖

𝜕𝜂𝑖
𝜕𝛽𝑇

=
𝑛

∑
𝑖=1

x𝑖𝜋𝑖(1 − 𝜋𝑖)x𝑇
𝑖

=
𝑛

∑
𝑖=1

x𝑖x𝑇
𝑖 𝜋𝑖(1 − 𝜋𝑖).

So the observed and the expected Fisher information matrix are
equal.

This is not the case for the probit or complementary log-log
models.



Overview of the results for individual and grouped data
▶ Individual data: 𝑖 = 1, … , 𝑛, and pairs (x𝑖, 𝑦𝑖).
▶ Grouped data: 𝑗 = 1, … , 𝐺 with 𝑛𝑗 observations for group 𝑗,

and 𝑌𝑗 = ∑ 𝑌𝑖 for all 𝑖 member of group 𝑗. In total ∑𝐺
𝑗=1 𝑛𝑗

observations. For each pair (x𝑗, 𝑦𝑗), where x𝑗 the covariate
pattern for group 𝑗.

NB: we keep that 𝜂𝑖 = ln( 𝜋𝑖
1−𝜋𝑖

) - not changed for grouped data
(but now 𝜇𝑗 = 𝑛𝑗𝜋𝑗).



Log-likelihood:

Individual:

𝑙(𝛽) =
𝑛

∑
𝑖=1

[𝑦𝑖 ln 𝜋𝑖 − 𝑦𝑖 ln(1 − 𝜋𝑖) + ln(1 − 𝜋𝑖)]

Grouped:

𝑙(𝛽) =
𝐺

∑
𝑗=1

[𝑦𝑗 ln 𝜋𝑗 − 𝑦𝑗 ln(1 − 𝜋𝑗) + 𝑛𝑗 ln(1 − 𝜋𝑗) + ln (𝑛𝑗
𝑦𝑗

)]

The last part is usually not include in calculations.



Score function:

Individual:
𝑠(𝛽) =

𝑛
∑
𝑖=1

x𝑖(𝑦𝑖 − 𝜋𝑖)

Grouped:

𝑠(𝛽) =
𝐺

∑
𝑗=1

x𝑗(𝑦𝑗 − 𝑛𝑗𝜋𝑗)



Expected Fisher information matrix:

Individual:

𝐹(𝛽) =
𝑛

∑
𝑖=1

x𝑖x𝑇
𝑖 𝜋𝑖(1 − 𝜋𝑖)

Grouped:

𝐹(𝛽) =
𝐺

∑
𝑗=1

x𝑗x𝑇
𝑗 𝑛𝑗𝜋𝑗(1 − 𝜋𝑗)

The observed Fisher information matrix equals the expected Fisher
information matrix - because the logit model is the canonical link
for the binomial distribution.



Fitting the Models
There is no analytic solution, so we have to resort to numerics.
Luckily, these models behave well enough



Iterative gradient-based methods
Use a first order multivariate Taylor approximation for 𝑠(�̂�),
around some chosen reference value 𝛽(0):

𝑠(�̂�) ≈ 𝑠(𝛽(0)) + 𝜕𝑠(𝛽)
𝜕𝛽 ∣𝛽=𝛽(0)(�̂� − 𝛽(0))

Let 𝐻(𝛽(0)) = −𝜕𝑠(𝛽)
𝜕𝛽 ∣𝛽=𝛽(0) . Setting 𝑠(�̂�) = 0 solving for �̂� gives

�̂� = 𝛽(0) + 𝐻(𝛽(0))−1𝑠(𝛽(0))
where 𝐻(𝛽(0))−1 is the matrix inverse of 𝐻(𝛽(0)).



Enter nNewton and Raphson
If we start with some value 𝛽(0) and then find a new value 𝛽(1) by
applying this equation, and then continue applying the equation
until convergence we have the Newton-Raphson method:

𝛽(𝑡+1) = 𝛽(𝑡) + 𝐻(𝛽(𝑡))−1𝑠(𝛽(𝑡))



Replacing the observed Fisher information matrix H with the
expected Fisher information matrix F yields the Fisher-scoring
method.

For the logit model these two methods are the same since the
observed and expected Fisher information matrix is the same for
canonical link functions (like the logit is for binary regression).

This algorithm is run until the relative difference in Euclidean
distance between two iterations “(new-old)/old” is smaller than
some chosen constant.



Requirements for convergence
For the Newton-Raphson algorithm we see that the observed Fisher
information matrix 𝐻 needs to be invertible for all 𝛽, alternatively
for the Fisher scoring algorithm the expected Fisher information
matrix 𝐹 needs to be invertible.



Proof of convergence
In our logit model

𝐹(𝛽) =
𝐺

∑
𝑗=1

x𝑗x𝑇
𝑗 𝑛𝑗𝜋𝑗(1 − 𝜋𝑗)

Let X be the design matrix, where the rows are x𝑇
𝑗 . Then

X𝑇 X = ∑𝐺
𝑗=1 x𝑗x𝑇

𝑗 .
If we require that the design matrix has full rank (𝐺) then also
X𝑇 X will have full rank (it will also be positive definite) and and
in addition 𝜋𝑗(1 − 𝜋𝑗) > 0 for all 𝜋𝑗 ∈ (0, 1), so then 𝐹(𝛽) will be
positive definite and all is good.



Why is 𝐹(𝛽) positive definite if we require that the design
matrix has full rank?
Formally, let X be a 𝑛 × 𝑝 matrix and Λ a 𝑛 × 𝑛 diagonal matrix
where all the diagonal elements are positive (like our 𝜋𝑗(1 − 𝜋𝑗),
yes, put them on the diagonal). Let X have independent columnes
(full rank) ⇔ X𝑇 ΛX is positive definite.
Proof: ⇒: Let v be a 𝑝 dimensional column vector. Assume
0 = v𝑇 X𝑇 ΛXv = (Λ1/2Xv)𝑇 (Λ1/2Xv) = ∑𝑛

𝑖=1 𝑤2
𝑖 where

W = Λ1/2Xv. Then, 𝑤 must be 0, that is Λ1/2Xv = 0 since
multiplication with Λ1/2 is to multiply each element in Xv with a
number different from 0. That is, we must have v = 0 since X has
independent columns.
⇐: Assume that Xv = 0. Then v𝑇 X𝑇 ΛXv = 0 so v = 0 since
X𝑇 ΛX is positive definite. This is, X has independent columns.
End of proof



We need a full rank
Therefore, for GLMs we will also - as for the multiple linear
regression model in Module 2 - assume that the design matrix has
full rank!
We will see in Module 5 that this is the requirement needed for
GLMs in general.



Convergence
Convergence is still not guarnateed, especially for small samples.
According to our text book, Fahrmeir et al (2013), page 284, the
conditions for uniqueness and existence of ML estimators are very
complex, and the authors suggest that the GLM user instead
checks for convergence in practice by performing the iterations.
In practice, the logit model most often causes problems, when (for
grouped data) 𝑦𝑖 = 0 or 𝑦𝑖 = 𝑛𝑖, because ̂𝜋𝑖 = 0/1, so ̂𝜂𝑖 = ±∞.
Computers do not like infinity



stopped here



Asymptotic properties of ML estimates

Results
We need some weak regularity conditions, including

▶ 𝛽 falls in the interior of the parameter space and
▶ 𝑝 is fixed that 𝑛 increases

(Agresti (2015) page 125):



The Results
Let �̂� be the maximum likelihood (ML) estimate in the GLM
model. As the total sample size increases, 𝑛 → ∞:

1. �̂� exists
2. �̂� is consistent (convergence in probability, yielding

asymptotically unbiased estimator, variances goes towards 0)
3. �̂� ≈ 𝑁𝑝(𝛽, 𝐹 −1(�̂�))

So asymptotically Cov(�̂�) = 𝐹 −1(�̂�): the inverse of the expected
Fisher information matrix evaluated at the ML estimate.



The proof (for the univariate case) is given in the course TMA4295
Statistical Inference course, Casella and Berger (2002):“Statistical
inference”, page 472.

Here we will sketch the proof. The strategy:
▶ make a first order Taylor expansion of the score function

around the true parameter,
▶ use the fact that the maximum likelihood estimate is defined

as the zero of the score function.



The sketch
Use 𝜃 as the parameter of interest
(there is the connection to 𝜇, then to 𝜂 and finally to 𝛽)
We start with the multivariate version of the first order Taylor
expansion of the score around the true parameter value 𝜃:

𝑠(𝜃) ≈ 𝑠( ̂𝜃) + 𝑠′(𝜃)( ̂𝜃 − 𝜃)
As 𝑠′(𝜃) = H(𝜃), and 𝑠( ̂𝜃) = 0,

𝑠( ̂𝜃) ≈ 𝑠(𝜃) − H(𝜃)( ̂𝜃 − 𝜃) = 0

𝑠(𝜃) ≈ H(𝜃)( ̂𝜃 − 𝜃)
And premultiplying with H−1(𝜃) gives

( ̂𝜃 − 𝜃) ≈ H−1(𝜃)𝑠(𝜃)



Then, to use the central limit theorem we need some smart
manipulations with 𝑛, so we start by multiplying with

√𝑛 and split
that into 𝑛 and 1√𝑛 .

√𝑛( ̂𝜃 − 𝜃) ≈ √𝑛H−1(𝜃)𝑠(𝜃) = ( 1
𝑛H(𝜃))−1 1√𝑛𝑠(𝜃)

From the central limit theorem:

1) 1
𝑛H(𝜃) goes to the expected value which is F(𝜃) (in
probability),

2) the part 1√𝑛𝑠(𝜃) asymptotically goes to a random variable 𝑊
that follows a multivariate normal with W ∼ 𝑁(0, 1

𝑛F(𝜃)):
▶ mean E( 1√𝑛𝑠(𝜃)) = 0 and the
▶ covariance matrix is Cov( 1√𝑛𝑠(𝜃)) = 1

𝑛F(𝜃)



√𝑛( ̂𝜃 − 𝜃) ≈ F−1(𝜃)W

On the right side here we have a multivariate normal distributed
random variable F−1(𝜃)W with mean 0 and covariance matrix

Cov(F−1(𝜃)W) = F−1(𝜃) 1
𝑛F(𝜃)F−1(𝜃) = 1

𝑛F−1(𝜃)

This leads to the wanted result:

̂𝜃 ≈ 𝑁(𝜃, F−1(𝜃))

Due to the Slutsky theorem (from TMA4295 Statistical inference)
this also holds when F−1(𝜃)) is replaced by F−1( ̂𝜃)).



Parameter estimation
Parameter estimation can be based on grouped data - so now we
use 𝑌𝑗 ∼ bin(𝑛𝑗, 𝜋𝑗) from 1 above, but keep 2 and 3 unchanged.
The number of groups is 𝐺 and the total number of observations is
∑𝐺

𝑗=1 𝑛𝑗.

▶ Likelihood=joint distribution, exponential family.

𝑓(𝑦 ∣ 𝜃) = exp (𝑦𝜃 − 𝑏(𝜃)
𝜙 ⋅ 𝑤 + 𝑐(𝑦, 𝜙, 𝑤))

where we have that 𝜃 = ln( 𝜋
1−𝜋) for the binomial distribution,

which means that our logit model is gives the canonical link
(remember, good properties!).

▶ Log-likelihood

𝑙(𝛽) =
𝐺

∑
𝑗=1

[𝑦𝑗 ln 𝜋𝑗 − 𝑦𝑗 ln(1 − 𝜋𝑗) + 𝑛𝑗 ln(1 − 𝜋𝑗) + ln (𝑛𝑗
𝑦𝑗

)]



▶ Score function=vector of partial derivatives of log-likelihood.
Find ML by solving 𝑠( ̂𝛽)) = 0 - but no closed form solutions.

𝑠(𝛽) =
𝐺

∑
𝑗=1

x𝑗(𝑦𝑗 − 𝑛𝑗𝜋𝑗)

▶ Expected Fisher information matrix

𝐹(𝛽) =
𝐺

∑
𝑗=1

x𝑗x𝑇
𝑗 𝑛𝑗𝜋𝑗(1 − 𝜋𝑗)

▶ �̂� found iteratively using Newton-Raphson or Fisher scoring

𝛽(𝑡+1) = 𝛽(𝑡) + 𝐹(𝛽(𝑡))−1𝑠(𝛽(𝑡))

▶ �̂� ≈ 𝑁𝑝(𝛽, 𝐹 −1(�̂�))



Further statistical inference
Our further statistical inference (confidence intervals and
hypotheses tests) are based on the asymptotic distribution of the
parameter estimates

�̂� ≈ 𝑁𝑝(𝛽, 𝐹 −1(�̂�))

where 𝐹 −1(�̂�)) is the inverse of the expected Fisher information
matrix inserted �̂�.

For the logit model we found that

𝐹(𝛽) =
𝐺

∑
𝑗=1

x𝑗x𝑇
𝑗 𝑛𝑗𝜋𝑗(1 − 𝜋𝑗)

So we would need to do 𝜋𝑗 = exp(𝜂−𝑗)
1+exp(𝜂𝑗) and 𝜂𝑗 = x𝑇

𝑗 𝛽 as “usual”,
and then replace 𝛽 with �̂�.

The asymptotic distribution still holds when we replace 𝛽 with �̂� in
F.



If we make a diagonal matrix W with 𝑛𝑗𝜋𝑗(1 − 𝜋𝑗) on the
diagonal, then we may write the matrix 𝐹(𝛽) in matrix notation.
As before X is the 𝐺 × 𝑝 design matrix.

𝐹(𝛽) =
𝐺

∑
𝑗=1

x𝑗x𝑇
𝑗 𝑛𝑗𝜋𝑗(1 − 𝜋𝑗) = X𝑇 WX.

which means that Cov(�̂�) = (X𝑇 WX)−1 for the binomial model
(remember that �̂� comes in with ̂𝜋𝑗 in W).

Q: How is this compared to the normal case?

A: 𝐹(𝛽) = 1
𝜎2 X𝑇 X, and the inverse Cov(�̂�) = (X𝑇 X)−1𝜎2.



Let A(𝛽) = 𝐹 −1(�̂�), and 𝑎𝑘𝑘(�̂�) is diagonal element number 𝑘.

For one element of the parameter vector:

𝑍𝑘 = �̂�𝑘 − 𝛽𝑘
√ ̂𝑎𝑘𝑘(𝛽)

is asymptotically standard normal. We will use this now!



Confidence intervals
In addition to providing a parameter estimate for each element of
our parameter vector 𝛽 we should also report a (1 − 𝛼)100%
confidence interval (CI) for each element.
We focus on element 𝑘 of 𝛽, called 𝛽𝑘. It is known that
asympotically

𝑍𝑘 = �̂�𝑘 − 𝛽𝑘

√𝑎𝑘𝑘( ̂𝛽)
∼ 𝑁(0, 1)

We use that to form confidence intervals.
Let 𝑧𝛼/2 be such that 𝑃 (𝑍𝑘 > 𝑧𝛼/2) = 𝛼/2.



We then use

𝑃(−𝑧𝛼/2 ≤ 𝑍𝑘 ≤ 𝑧𝛼/2) = 1 − 𝛼

insert 𝑍𝑘 and solve for 𝛽𝑘 to get

𝑃( ̂𝛽𝑘 − 𝑧𝛼/2√𝑎𝑘𝑘( ̂𝛽) ≤ 𝛽𝑘 ≤ ̂𝛽𝑘 − 𝑧𝛼/2√𝑎𝑘𝑘(�̂�)) = 1 − 𝛼

A (1 − 𝛼)% CI for 𝛽𝑘 is when we insert numerical values for the
upper and lower limits.

Q: We write 𝑎𝑘𝑘(�̂�). Why not 𝑎𝑘𝑘( ̂𝛽𝑘𝑘)?



Example with the beetle data
Again, we study our beetle data - in the grouped version.
Here we calculate the upper and lower limits of the confidence
interval using the formula.
fitgrouped=glm(cbind(y, n-y) ~ ldose, family = "binomial", data = investr::beetle)
coeff=fitgrouped$coefficients
sds=sqrt(diag(summary(fitgrouped)$cov.scaled))
alpha=0.05
lower=coeff-qnorm(1-alpha/2)*sds
upper=coeff+qnorm(1-alpha/2)*sds
cbind(lower,upper)

## lower upper
## (Intercept) -70.87144 -50.56347
## ldose 28.56265 39.97800
Q: Explain what is done in the R-print-out.



Hypothesis testing
There are three methods that are mainly used for testing
hypotheses in GLMs: - Wald test, - likelihood ratio test and - score
test.
We will look at the first two.



First, look at linear hypotheses: We study a binary regression
model with 𝑝 = 𝑘 + 1 covariates, and refer to this as model A (the
larger model). As for the multiple linear model we then want to
investigate the null and alternative hypotheses of the following
type(s):

𝐻0 ∶ 𝛽𝑗 = 0 vs. 𝐻1 ∶ 𝛽𝑗 ≠ 0
𝐻0 ∶ 𝛽1 = 𝛽2 = 𝛽3 = 0 vs. 𝐻1 ∶ at least one of these ≠ 0
𝐻0 ∶ 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑘 = 0 vs. 𝐻1 ∶ at least one of these ≠ 0



We call the restricted model (when the null hypotesis is true)
model B, or the smaller model.

These null hypotheses and alternative hypotheses can all be
rewritten as a linear hypothesis

𝐻0 ∶ C𝛽 = d vs. C𝛽 ≠ d

by specifying C to be a 𝑟 × 𝑝 matrix and d to be a column vector
of length 𝑑.



The Wald test
The Wald test statistic is given as:

𝑤 = (C�̂� − d)T[C𝐹 −1(�̂�)CT]−1(C�̂� − d)
and measures the distance between the estimate C�̂� and the value
under then null hypothesis d, weighted by the asymptotic
covariance matrix of C�̂�.
Remember: Cov(C�̂�) = C𝐹 −1(�̂�)CT.
Asymptotically, under the null hypothesis 𝑤 ∼ 𝜒2

𝑟 distribution with
(where 𝑟 is the number of hypotheses tested).
𝑃 -values are calculated in the upper tail of the 𝜒2-distribution.
Observe: to perform the test you only need to fit the larger model
(and not the smaller).



For the special case that we only test one regression parameter, for
example 𝛽𝑘:

𝐻0 ∶ 𝛽𝑘 = 0 vs. 𝐻1 ∶ 𝛽𝑘 ≠ 0.
Now C�̂� = 𝛽𝑘 and C[𝐹 (�̂�)]−1CT = CA(𝛽)CT = 𝑎𝑘𝑘(𝛽), and
the Wald test becomes

( ̂𝛽𝑘 − 𝛽𝑘)[𝑎𝑘𝑘(�̂�)]−1( ̂𝛽𝑘 − 𝛽𝑘) = ⎛⎜⎜
⎝

̂𝛽𝑘 − 𝛽𝑘

√𝑎𝑘𝑘(�̂�)
⎞⎟⎟
⎠

2

= 𝑍2
𝑘

so, asymptotically the square of the standard normal, which we
know follows a 𝜒2-distribution with 1 degree of freedom.



Q: Explain what you find in the columns named z value and
Pr(>|z|) below, and which hypothesis tests these are related to.
Are the hypothesis tests performed using the Wald test?
library(investr)
fitgrouped=glm(cbind(y,n-y) ~ ldose, family="binomial",

data = investr::beetle)
knitr::kable(summary(fitgrouped)$coefficients, digits=2)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -60.72 5.18 -11.72 0
ldose 34.27 2.91 11.77 0



The likelihood ratio test
The likelihood ratio test (LRT), which compares the likelihood of
two models.

▶ First we maximize the likelihood for model A (the larger
model) to get 𝐿(�̂�𝐴) and �̂�𝐴.

▶ Then we maximize the likelihood for model B (the smaller
model) to get 𝐿(�̂�𝐵) and �̂�𝐵.



The likelihood of the larger model (A) will always be larger or
equal to the likelihood of the smaller mode (B). (Why?)

The likelihood ratio statistic is defined as

−2 ln 𝜆 = −2(ln 𝐿(�̂�𝐵) − ln 𝐿(�̂�𝐴))

(so, −2 times small minus large).



Under weak regularity conditions the test statistic is approximately
𝜒2-distributed with degrees of freedom equal the difference in the
number of parameters in the large and the small model. This is
general - and not related to the GLM! More in TMA4295
Statistical Inference!

𝑃 -values are calculated in the upper tail of the 𝜒2-distribution.

Observe: to perform the test you need to fit both the small and
the large model.

Notice: asymptotically the Wald and likelihood ratio test statistics
have the same distribution, but the value of the test statistics
might be different. How different?



For the beetle data we compare model A=model with ldose as
covariate with model B=model with only intercept. We use the
loglikelihood-function that we made for the lecture session for week
2.
library(investr)
fitgrouped=glm(cbind(y, n-y) ~ ldose, family = "binomial", data = investr::beetle)
fitnull=glm(cbind(y, n-y) ~ 1, family = "binomial", data = investr::beetle)

loglik <- function(par, args){
y <- args$y; x <- args$x; n <- args$n
res <- sum(y*x%*%par - n*log(1 + exp(x%*%par)))
return(res)

}



# call this with parameters estimated under model A=larger model
beetleargs = list(y = investr::beetle$y,

x = cbind(rep(1, nrow(investr::beetle)), investr::beetle$ldose),
n = investr:: beetle$n)

llA=loglik(matrix(fitgrouped$coefficients,ncol=1),args=beetleargs)

# then the smaller model, then we set the coeff for ldose to 0. B=smaller model
llB=loglik(matrix(c(fitnull$coefficients,0),ncol=1),args=beetleargs)
lrt=-2*(llB-llA)
lrt

## [1] 272.9702
pchisq(lrt,df=1, lower.tail = FALSE)

## [1] 2.556089e-61



anova(fitnull, fitgrouped, test="LRT")

## Analysis of Deviance Table
##
## Model 1: cbind(y, n - y) ~ 1
## Model 2: cbind(y, n - y) ~ ldose
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 7 284.202
## 2 6 11.232 1 272.97 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Q and A: Here the small model is the model with only intercept
and the large is the one with dose as covariate. This means that
the null hypothesis is that “the small model is preferred” and our
𝑝-value is very small, so we reject the null hyptheses and stick with
the model with dose as covariate. Observe that the LRT can be
performed using anova.



Deviance

The deviance is used to assess model fit and also for model choice,
and is based on the likelihood ratio test statistic.

Saturated model: One parmeter per group: estimate 𝜋𝑗 by the
observed frequency for the group: ̃𝜋𝑗 = 𝑦𝑗

𝑛𝑗
. Then ̃𝜋 is a

𝐺-dimensional column vector with the elements ̃𝜋𝑗.

This “imaginary model” is called the saturated model.

Candidate model: The model that we are investigated can be
thought of as a candidate model. Then we maximize the likelihood
to get �̂� & thus ̂𝜋𝑗. Then ̂𝜋 is a 𝐺-dimensional column vector with
the elements ̂𝜋𝑗.



The deviance is defined as the likelihood ratio statistic, where we
put the saturated model in place of the larger model A and our
candidate model in place of the smaller model B:

𝐷 = −2(ln 𝐿(candidate model) − ln 𝐿(saturated model))

= −2(𝑙( ̂𝜋) − 𝑙( ̃𝜋)) = −2
𝐺

∑
𝑗=1

(𝑙𝑗( ̂𝜋𝑗) − 𝑙𝑗( ̃𝜋𝑗))

For our logit model this can be written as (after some maths):

𝐷 = 2
𝐺

∑
𝑗=1

[𝑦𝑗 ln( 𝑦𝑗
𝑛𝑗 ̂𝜋𝑗

) + (𝑛𝑗 − 𝑦𝑗) ln( 𝑛𝑗 − 𝑦𝑗
𝑛𝑗 − 𝑛𝑗 ̂𝜋𝑗

)]

Verify this by yourself.



If our model is good, it should not be too far from the saturated
model, and we measure this distance by the deviance.

If we want to investigate the null hypothesis that “our model fits
the data well” to the negation, it is useful to know that
asymptotically 𝐷 is distributed as 𝜒2 with 𝐺 − 𝑝 degrees of
freedom (same reason as for the likelihood ratio test statistic).

This result depends on 𝑛𝑗 being large, hard to say how large (at
least 5 is a rule of thumb).



The deviance is in summary.glm outputted as “Residual deviance”,
which we read off as 11.2322311. Let’s check for our beetle
example by computing the formula for 𝐷 directly:
D=deviance(fitgrouped)
D

## [1] 11.23223
G=dim(investr::beetle)[1]
G

## [1] 8
p=2
1-pchisq(D,G-p)

## [1] 0.08145881

So, do we have a good fit?



The null hypothesis is that the candiate model is equally good as
the saturated model. We do not reject this hypothesis at level 0.05.
This means that we are satisfied with the candidate model.

In the summary from glm also the socalled NULL deviance is given.
This is the deviance when the candicate model is the model with
only intercept term present. This deviance asymptotically
distributed as 𝜒2 with 𝐺 − 1 degrees of freedom.



summary(fitgrouped)

##
## Call:
## glm(formula = cbind(y, n - y) ~ ldose, family = "binomial", data = investr::beetle)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -60.717 5.181 -11.72 <2e-16 ***
## ldose 34.270 2.912 11.77 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 284.202 on 7 degrees of freedom
## Residual deviance: 11.232 on 6 degrees of freedom
## AIC: 41.43
##
## Number of Fisher Scoring iterations: 4

Q: where is the deviance(s) here and how do we use these?



Analysis of deviance
In MLR we have seen that we may produce a sequential analysis of
variance (Type I) by adding more and more terms to the model
and comparing the scaled decrease in SSE by the scaled SSE of a
full model.
For the binary regression we may adapt a similar strategy, but with
using the scaled change in deviance instead of the SSE.
We use the infant respiratory disease data as an example



library(faraway)
fit=glm(cbind(disease, nondisease)~sex*food,family=binomial(link=logit),data=babyfood)
summary(fit)

##
## Call:
## glm(formula = cbind(disease, nondisease) ~ sex * food, family = binomial(link = logit),
## data = babyfood)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.59899 0.12495 -12.797 < 2e-16 ***
## sexGirl -0.34692 0.19855 -1.747 0.080591 .
## foodBreast -0.65342 0.19780 -3.303 0.000955 ***
## foodSuppl -0.30860 0.27578 -1.119 0.263145
## sexGirl:foodBreast -0.03742 0.31225 -0.120 0.904603
## sexGirl:foodSuppl 0.31757 0.41397 0.767 0.443012
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2.6375e+01 on 5 degrees of freedom
## Residual deviance: 4.2144e-13 on 0 degrees of freedom
## AIC: 43.518
##
## Number of Fisher Scoring iterations: 3
anova(fit,test="Chisq")

## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: cbind(disease, nondisease)
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 5 26.3753
## sex 1 5.4761 4 20.8992 0.01928 *
## food 2 20.1772 2 0.7219 4.155e-05 ***
## sex:food 2 0.7219 0 0.0000 0.69701
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Q: is it recommended (from the test) to add an interaction term to
the model? What does it mean that the Residual deviance is 0 for
the sex*food model?



Deviance residuals
The deviance residuals are given by a signed version of each
element in the sum for the deviance, that is

𝑑𝑘 = sign(𝑦𝑘−𝑛𝑘 ̂𝜋𝑘)⋅{2[𝑦𝑘 ln( 𝑦𝑘
𝑛𝑘 ̂𝜋𝑘

) + (𝑛𝑘 − 𝑦𝑘) ln( 𝑛𝑘 − 𝑦𝑘
𝑛𝑘 − 𝑛𝑘 ̂𝜋𝑘

)]}
1/2

where the term sign(𝑦𝑘 − 𝑛𝑘 ̂𝜋𝑘) makes negative residuals possible.



Model assessment and choice

The fit of the model can be assessed based on goodness of fit
statistics (and related tests) and by residual plots. Model choice
can be made from analysis of deviance, or by comparing the AIC
for different models.
Deviance test for grouped data
We may use the deviance test presented before to test if the model
under study is preferred compared to the saturated model.



Pearson test and residuals
An alternative to the deviance test is the Pearson test. We will
look in more detail at this test in a Module 4. The Pearson test
statistic can be written as a function of the Pearson residuals,
which for the binomial regression is given as:

𝑟𝑗 = 𝑦𝑗 − 𝑛𝑗 ̂𝜋𝑗

√𝑛𝑗 ̂𝜋𝑗(1 − ̂𝜋𝑗)

Remark: A standardized version scales the Pearson residuals with
√1 − ℎ𝑘𝑘 similar to the standardized residuals for the normal
model. Here ℎ𝑘𝑘 is the diagonal element number 𝑘 in the hat
matrix H = X(X𝑇 X)−1X𝑇 .



The Pearson 𝜒2-goodness of fit statistic is given as

𝑋2
𝑃 =

𝐺
∑
𝑗=1

𝑟2
𝑗 =

𝐺
∑
𝑗=1

(𝑦𝑗 − 𝑛𝑗 ̂𝜋𝑗)2

𝑛𝑗 ̂𝜋𝑗(1 − ̂𝜋𝑗)

The Pearson 𝜒2 statistic is asymptotically equivalent to the
deviance statistic and thus is asymptotically 𝜒2

𝐺−𝑝.

The Pearson 𝜒2 statistic is not a good choice if any of the groups
have a low expected number of observations, i.e. 𝑛𝑗 ̂𝜋𝑗 is small
(below 1).



Model assessment with continuous covariates
If data have continuous covariates it is possible to form groups
based making intervals for continuous covariates. Alternatively
grouping on predicted probabilites can be done.
For continuous data the Hosmer Lemeshow test can be used - not
on our reading list.



Plotting residuals
Deviance and Pearson residuals can be used for checking the fit of
the model, by plotting the residuals against fitted values and
covariates.
If 𝑛𝑗 is small for the covariate patterns the residual plots may be
relatively uninformative.
Residual plots for the logistics regression - and for the GLM in
general - is highly debated, and we will not put much emphasis on
residual plots for this module.
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Other plots
A useful plot is to show observed and fitted proportions (grouped
data) plotted against the linear predictor or covariates.
library(ggplot2)
df=data.frame("fitted"=fitgrouped$fitted.values,"dres"=residuals(fitgrouped,type="deviance"),"ldose"=investr::beetle$ldose,"frac"=investr::beetle$y/investr::beetle$n)
ggplot(df,aes(x=ldose))+geom_point(aes(y=frac,colour="observed"))+geom_point(aes(y=fitted,colour="fitted"))
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AIC
It is known to us from multiple linear regression that if a model is
chosen based on a goodness of fit statistic (like the SSE or 𝑅2 in
multiple linear regression) will in general result in us choosing a to
big model (to many parameters fit). The Akaike informations
criterion - that we studied for multiple linear regression - can also
be used for binary regression: Let 𝑝 be the number of regression
parameters in our model.

AIC = −2 ⋅ 𝑙(�̂�) + 2𝑝

A scaled version of AIC, standardizing for sample size, is sometimes
preferred.
To use AIC for model selection you use the model with the smallest
AIC.
We may also use the BIC, where 2𝑝 is replaced by log(𝐺) ⋅ 𝑝 or
log(𝑛) ⋅ 𝑝.



library(faraway)
fit1=glm(cbind(disease, nondisease)~1,family=binomial(link=logit),data=babyfood)
fit2=glm(cbind(disease, nondisease)~sex,family=binomial(link=logit),data=babyfood)
fit3=glm(cbind(disease, nondisease)~food,family=binomial(link=logit),data=babyfood)
fit4=glm(cbind(disease, nondisease)~food+sex,family=binomial(link=logit),data=babyfood)
fit5=glm(cbind(disease, nondisease)~food*sex,family=binomial(link=logit),data=babyfood)
AIC(fit1,fit2,fit3,fit4,fit5)

## df AIC
## fit1 1 59.89324
## fit2 2 56.41710
## fit3 3 43.21693
## fit4 4 40.23987
## fit5 6 43.51795

Q: Which of these 5 models would you prefer?



Overdispersion and estimating overdispersion parameter

When we have grouped data: 𝑌𝑗 ∼ Bin(𝑛𝑗, 𝜋𝑗) and
Var(𝑌𝑗) = 𝑛𝑗𝜋𝑗(1 − 𝜋𝑗).
It is possible to estimate the variance (within a group) by
𝑛𝑗 ̄𝑦𝑗(1 − ̄𝑦𝑗) where ̄𝑦𝑗 = 𝑦𝑗/𝑛𝑗 (this is an estimate of 𝜋𝑗 for group
𝑗). We call this the empirical variance.

In a logistic regresson we estimate ̂𝜋𝑗 = ℎ(x𝑇
𝑗 �̂�) (ℎ(⋅) is the

inverse link function) which is

̂𝜋𝑗 = exp(𝑥𝑇
𝑗 �̂�)

1 + exp(𝑥𝑇
𝑗 �̂�)

for a logistic regression. This would give the estimated binomial
variance for 𝑌𝑗 as 𝑛𝑗 ̂𝜋𝑗(1 − ̂𝜋𝑗).



Some times the empirical variance is much larger than the
estimated binomial variance of the model. This is called
overdispersion and may occur when the individual responses within
the groups are correlated, or when the model could be improved
upon (missing/unobserved covariates?).

Positively correlated binary variables will give a variance of the sum
that is larger than for uncorrelated variables, e.g.

Var(
𝐾

∑
𝑘=1

𝑌𝑘) =
𝐾

∑
𝑘=1

Var(𝑌𝑘) + 2 ∑
𝑘<𝑙

Cov(𝑌𝑘, 𝑌𝑙).



This can be handeled by including an overdispersion parameter,
named 𝜙, in the variance formula:

Var(𝑌𝑗) = 𝜙𝑛𝑗𝜋𝑗(1 − 𝜋𝑗)



The overdispersion parameter can be estimated as the average
Pearson statistic or average deviance

̂𝜙𝐷 = 1
𝐺 − 𝑝𝐷

where 𝐷 is the deviance. Note that similarity to
̂𝜎2 = 1/(𝑛 − 𝑝) ⋅ SSE in the MLR. The Cov(�̂�) can then be

changed to ̂𝜙𝐹 −1(�̂�).
Remark: We are now moving from likelihood to quasi-likelihood
theory, where only E(𝑌𝑗) and Var(𝑌𝑗) - and not the distribution of
𝑌𝑗 - are used in the estimation.

In Modules 7 and 8 we will look at using multilevel models to
handle correlated observations.



library(investr)
estpi=investr::beetle$y/investr::beetle$n
empvars=investr::beetle$n*estpi*(1-estpi)
fit=glm(cbind(y, n-y) ~ ldose, family = "binomial", data = investr::beetle)
modelestvar=investr::beetle$n*fit$fitted.values*(1-fit$fitted.values)
cbind(empvars,modelestvar)

## empvars modelestvar
## 1 5.389831 3.254850
## 2 10.183333 8.227364
## 3 12.774194 14.321308
## 4 14.000000 13.378891
## 5 9.079365 10.261038
## 6 5.389831 5.156652
## 7 0.983871 2.653383
## 8 0.000000 1.230704
est.dispersion=fit$deviance/fit$df.residual
est.dispersion

## [1] 1.872039
summary(fit,dispersion=est.dispersion,correlation=TRUE)

##
## Call:
## glm(formula = cbind(y, n - y) ~ ldose, family = "binomial", data = investr::beetle)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -60.717 7.088 -8.566 <2e-16 ***
## ldose 34.270 3.984 8.601 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1.872039)
##
## Null deviance: 284.202 on 7 degrees of freedom
## Residual deviance: 11.232 on 6 degrees of freedom
## AIC: 41.43
##
## Number of Fisher Scoring iterations: 4
##
## Correlation of Coefficients:
## (Intercept)
## ldose -1.00
fitquasi=glm(cbind(y, n-y) ~ ldose, family = "quasibinomial", data = investr::beetle)
# preferred method of estimation is to use quasilikelihood
summary(fitquasi)$dispersion

## [1] 1.671141



References for further reading

▶ A. Agresti (2015): “Foundations of Linear and Generalized
Linear Models.” Wiley.

▶ A. J. Dobson and A. G. Barnett (2008): “An Introduction to
Generalized Linear Models”, Third edition.

▶ J. Faraway (2015): “Extending the Linear Model with R”,
Second Edition. http://www.maths.bath.ac.uk/~jjf23/ELM/

▶ P. McCullagh and J. A. Nelder (1989): “Generalized Linear
Models”. Second edition.

http://www.maths.bath.ac.uk/~jjf23/ELM/


If we have time



Look back at MLR - what is 𝑠(𝛽) and 𝐹(𝛽) then?
1. 𝑌𝑖 ∼ N(𝜇𝑖, 𝜎2)
2. 𝜂𝑗 = 𝑥𝑇

𝑖 𝛽
3. 𝜇𝑖 = 𝜂𝑖 (identity response function and link function)

Likelihood:

𝐿(𝛽) = ( 1
2𝜋)

𝑛/2
( 1

𝜎2 )
𝑛/2

exp (− 1
2𝜎2 (𝑦 − X𝛽)𝑇 (𝑦 − X𝛽))

Loglikelihood:

𝑙(𝛽) = ln 𝐿(𝛽) = −𝑛
2 ln(2𝜋)− 𝑛

2 ln(𝜎2)− 1
2𝜎2 (𝑦−X𝛽)𝑇 (𝑦−X𝛽)



Since (𝑦 − X𝛽)𝑇 (𝑦 − X𝛽) = 𝑌 𝑇 𝑌 − 2𝑌 𝑇 X𝛽 + 𝛽𝑇 X𝑇 X𝛽, then

𝑠(𝛽) = 𝜕𝑙(𝛽)
𝜕𝛽 = − 1

2𝜎2 (2X𝑇 X𝛽 − 2X𝑇 𝑌 ) = 1
𝜎2 (X𝑇 𝑌 − X𝑇 X𝛽)

and 𝑠(�̂�) = 0 gives X𝑇 𝑌 − X𝑇 X𝛽 = 0 which can be solved on
closed form giving �̂� = (X𝑇 X)−1X𝑇 𝑌 . So, no need for iterative
methods.



Finally, observed Fisher information matrix.

𝐻(𝛽) = 𝜕𝑠(𝛽)
𝜕𝛽𝑇 = − 𝜕

𝜕𝛽𝑇
( 1
𝜎2 X𝑇 𝑌 − 1

𝜎2 X𝑇 X𝛽) = 1
𝜎2 X𝑇 X

which is independent on 𝛽, and also we see that
𝐹(𝛽) = E(𝐻(𝛽)) = 𝐻(𝛽) since no random variables are present.
The identity link is also the canonical link. Finally, the
(asymptotic) covariance of the ML estimate is
𝐹 −1(�̂�) = (X𝑇 X)−1𝜎2 which we know as Cov(�̂�).



Exponential family - and canonical link
In Module 1 we introduced distributions of the 𝑌𝑖, that could be
written in the form of a univariate exponential family

𝑓(𝑦𝑖 ∣ 𝜃𝑖) = exp (𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖)
𝜙 ⋅ 𝑤𝑖 + 𝑐(𝑦𝑖, 𝜙, 𝑤𝑖))

where
▶ 𝜃𝑖 is called the canonical parameter and is a parameter of

interest
▶ 𝜙 is called a nuisance parameter (and is not of interest to

us=therefore a nuisance (plage))
▶ 𝑤𝑖 is a weight function, in most cases 𝑤𝑖 = 1
▶ 𝑏 and 𝑐 are known functions.

It can be shown that E(𝑌𝑖) = 𝑏′(𝜃𝑖) and Var(𝑌𝑖) = 𝑏″(𝜃𝑖) ⋅ 𝜙
𝑤𝑖

.



In Module 1 we found that the binomial distribution
𝑌𝑖 ∼ bin(1, 𝜋𝑖) is an exponential family (derivation from Module 1:
https://www.math.ntnu.no/emner/TMA4315/2017h/Module1Ex
ponentialFamily.pdf)

and that
▶ 𝜃𝑖 = ln( 𝜋𝑖

1−𝜋𝑖
) is the canonical parameter

▶ 𝜙 = 1, no nuisance
▶ 𝑤𝑖 = 1
▶ 𝑏(𝜃𝑖) = ln(1 + exp(𝜃𝑖))

https://www.math.ntnu.no/emner/TMA4315/2017h/Module1ExponentialFamily.pdf
https://www.math.ntnu.no/emner/TMA4315/2017h/Module1ExponentialFamily.pdf


Recall that in a GLM we choose a link function 𝑔, linking the linear
predictor and the mean: 𝜂𝑖 = 𝑔(𝜇𝑖). For the logit model we had
that 𝜂𝑖 = ln( 𝜋𝑖

1−𝜋𝑖
).

Now (new to us) - every exponential family has a unique canonical
link function such that

𝜃𝑖 = 𝜂𝑖

Since 𝜂𝑖 = 𝑔(𝜇𝑖) this means to us that we need

𝑔(𝜇𝑖) = 𝜃𝑖

to have a canonical link.

Q: Is the logit link the canonical link for the binary model?

A:

Yes, since 𝜃𝑖 = ln( 𝜋𝑖
1−𝜋𝑖

) = 𝑔(𝜋𝑖) then the logit link is the
canonical link for the binary regression.



##Properties of a GLM with canonical link

1. The log-likelihod is always concave so that the ML estimated
is always unique (given that it exists).

2. The observed Fisher information matrix 𝐻(𝛽) equals the
expected Fisher information matrix 𝐹(𝛽). That is,

− 𝜕2𝑙
𝜕𝛽𝛽𝑇 = E(− 𝜕2𝑙

𝜕𝛽𝛽𝑇 )

Proving this is beyond the scope of this course.



Parameter estimation - in practise

To find the ML estimate �̂� we need to solve

𝑠(�̂�) = 0

We have that the score function for the logit model is:

𝑠(𝛽) =
𝐺

∑
𝑗=1

x𝑗(𝑦𝑗 − 𝑛𝑗𝜋𝑗)




