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Overview

Learning material
▶ Textbook: Fahrmeir et al (2013): Chapter 2.3, 5.1, B4.1-3
▶ Classnotes 13.09.2018
▶ Classnotes 20.09.2018

https://www.math.ntnu.no/emner/TMA4315/2018h/TMA4315M3H20180913.pdf
https://www.math.ntnu.no/emner/TMA4315/2018h/TMA4315M3H20180920.pdf


Topics
First week

▶ aim of binary regression
▶ how to model a binary response
▶ three ingredients of a GLM model
▶ the logit model: logistic regression
▶ interpreting the logit model - with odds
▶ grouped vs. individual data
▶ parameter estimation with maximum likelihood

▶ likelihood, log-likelihood,
▶ score function



Second week
▶ Parameter estimation

▶ score function- and mean and covariance thereof,
▶ observed and expected information matrix

▶ comparison with the normal distribution - score function and
Fisher information

▶ exponential family and canonical link
▶ iterative calculation of ML estimator (Newton-Raphson and

Fisher scoring) - and in R with optim
▶ asymptotic properties of ML estimators - how to use in

inference?
▶ statistical inference

▶ confidence intervals
▶ hypothesis testing: Wald, and likelihood ratio

▶ deviance: definition, analysis of deviance, deviance residuals
▶ model fit and model choice
▶ overdispersion and estimating overdispersion parameter
▶ sampling stragegy: cohort, but also case-control data good for

logit model



Aim of binary regression

Two aims
1. Construct a model to help understand the relationship

between a “success probability” and one or several explanatory
variables. The response measurements are binary
(present/absent, true/false, healthy/diseased).

2. Use the model for estimation and prediction of success
probabilites.

Two running examples: mortality of beetles and probability of
respiratory infant disease.



Example: Dose response of beetles
A total of 481 beetles were exposed to 8 different concentration of
CS2 (data on log10-dose).
For each beetle is was recorded if the beetle was alive or killed at
the given concentration.
Data for beetle 𝑖: 𝑌𝑖 = 0 if beetle 𝑖 was alive and 𝑌𝑖 = 1 if it was
killed, and 𝑥𝑖 is then the log10-dose beetle 𝑖 was given.



The table below shows the 8 values of the log10-dose against the
number of beetles alive and killed. The plot shows log10-dose on
the horizontal axis and fraction of beetles killed (killed/total) for
each log10-dose.
library(investr)
# from aggregated to individual data (because these data were aggregated)
ldose=rep(round(beetle$ldose, 2), beetle$n)
y=NULL; for (i in 1:8) y=c(y,rep(0,beetle$n[i]-beetle$y[i]),rep(1,beetle$y[i]))
beetleds=data.frame("killed"=y,"ldose"=ldose)
knitr::kable(table(beetleds), digits = 2)

1.69 1.72 1.76 1.78 1.81 1.84 1.86 1.88
0 53 47 44 28 11 6 1 0
1 6 13 18 28 52 53 61 60
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Q:

a. What might be the effect (mathematical function) of the
log10-dose on the probability of killing a beetle?

b. How can this curve be part of a regression model?



How to model a binary response?
In multiple linear regression we have

1. Random component: Distribution of response:
𝑌𝑖 ∼ 𝑁(𝜇𝑖, 𝜎2), where 𝜇𝑖 is parameter of interest and 𝜎2 is
nuisance.

2. Systematic component: Linear predictor: 𝜂𝑖 = x𝑇
𝑖 𝛽. Here x𝑖

is our fixed (not random) 𝑝-dimensional column vector of
covariates (intercept included).

3. Link: Connection between the linear predictor and the mean
(parameter of interest): 𝜇𝑖 = 𝜂𝑖.

▶ It would not make sense to fit the continuous linear regression
to 𝑌𝑖 when 𝑌𝑖 = {0, 1} - since 𝑌𝑖 is not a continuous random
variable, and 𝑌𝑖 is not normal.

▶ So, we need to change 1. We keep 2. And, we make 3. more
general.



Binary regression
1. 𝑌𝑖 ∼ bin(𝑛𝑖, 𝜋𝑖).

First look at 𝑛𝑖 = 1 (i.e. a Bernoulli distribution).
Our parameter of interest is 𝜋𝑖 which is the mean E(𝑌𝑖) = 𝜇𝑖 = 𝜋𝑖.
For a generalized linear model (GLM) we require that the
distribution of the response is an exponential family. We
have seen in M1 that the binomial distribution is an
exponential family.



Linear Predictor
𝜂𝑖 = x𝑇

𝑖 𝛽.



Link Function
3. Relationships between the mean 𝜇𝑖 = 𝜋𝑖 and the linear

predictor 𝜂𝑖:

𝑔(𝜇𝑖) = 𝜂𝑖

and the inverse of the link function, called the response function,
and denoted by

ℎ(𝜂𝑖) = 𝑔−1(𝜂𝑖) = 𝜇𝑖

We thus also have to require that the link function is monotone,
and we will soon see that we also need to require that it is twice
differential.



Response function for binary regression
Based on selecting a cumulative distribution function (cdf) as the
response function.
The cdf will always be within [0,1], and the cdf is monotone -
which will help us to interpret results.
The most popular response functions are:

▶ logistic cdf (with corresponding logit link function) referred to
as the logit model,

▶ normal cdf - (with corresponding probit link function) referred
to as the probit model ,

▶ the extreme minimum-value cdf (with corresponding
complementary log-log link function) referred to as the
complementary log-log model.

In this module we focus on the logit model.



The logit model aka logistic regression
In the beetle example we have a simple linear predictor:
𝜂𝑖 = 𝛽0 + 𝛽1𝑥𝑖 where 𝑥𝑖 is the log10-dose for beetle 𝑖.
Assume that 𝛽0 = -60.1 and 𝛽1 = 33.9. (These values are
estimates from our data, and we will see later how to find these
estimates using maximum likelihood estimation.)



Below the response function is plotted for 𝜂𝑖 =-60.1+33.9𝑥𝑖.
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Q: Explain to your neighbour what is on the x- and y-axis of this
plot. Where are the observed log10-doses in this graph?



Link and reponse function
The logit model is based on the logistic cdf as the response
function, given as

𝜇𝑖 = 𝜋𝑖 = ℎ(𝜂𝑖) = exp(𝜂𝑖)
1 + exp(𝜂𝑖)

or alternatively as the link function (the inverse of the response
function)

𝑔(𝜇𝑖) = ℎ−1(𝜇𝑖) = ln( 𝜇𝑖
1 − 𝜇𝑖

) = ln( 𝜋𝑖
1 − 𝜋𝑖

)

Hands-on: show this for yourself.



Interpreting the logit model
If the value of the linear predictor 𝜂𝑖 changes to 𝜂𝑖 + 1 the
probability 𝜋 increases non-linearly from exp(𝜂𝑖)

1+exp(𝜂𝑖) to exp(𝜂𝑖+1)
1+exp(𝜂𝑖+1) ,

as shown in the graph above.



Before we go further: do you know about the odds? The ratio
𝑃(𝑌𝑖=1)
𝑃(𝑌𝑖=0) = 𝜋𝑖

1−𝜋1
is called the odds. If 𝜋𝑖 = 1

2 then the odds is 1,
and if 𝜋𝑖 = 1

4 then the odds is 1
3 . We may make a table for

probability vs. odds in R:
pivec 0.10 0.20 0.30 0.40 0.5 0.6 0.70 0.8 0.9
odds 0.11 0.25 0.43 0.67 1.0 1.5 2.33 4.0 9.0
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Odds may be seen to be a better scale than probability to
represent chance, and is used in betting. In addition, odds are
unbounded above.



We look at the link function (inverse of the response function). Let
us assume that our linear predictor has 𝑘 covariates present

𝜂𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑘𝑥𝑖𝑘

𝜋𝑖 = exp(𝜂𝑖)
1 + exp(𝜂𝑖)

𝜂𝑖 = ln( 𝜋𝑖
1 − 𝜋𝑖

)

ln( 𝜋𝑖
1 − 𝜋𝑖

) = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑘𝑥𝑖𝑘

𝜋𝑖
1 − 𝜋𝑖

=𝑃(𝑌𝑖 = 1)
𝑃(𝑌𝑖 = 0) = exp(𝛽0) ⋅ exp(𝛽1𝑥𝑖1) ⋯ exp(𝛽𝑘𝑥𝑖𝑘)

We have a multiplicative model for the odds.



So, what if we increase 𝑥1𝑖 to 𝑥1𝑖 + 1?

If the covariate 𝑥1𝑖 increases by one unit (while all other covariates
are kept fixed) then the odds is multiplied by exp(𝛽1):

𝑃(𝑌𝑖 = 1 ∣ 𝑥𝑖1 + 1)
𝑃(𝑌𝑖 = 0) ∣ 𝑥𝑖1 + 1) = exp(𝛽0) ⋅ exp(𝛽1(𝑥𝑖1 + 1)) ⋯ exp(𝛽𝑘𝑥𝑖𝑘)

= exp(𝛽0) ⋅ exp(𝛽1𝑥𝑖1) exp(𝛽1) ⋯ exp(𝛽𝑘𝑥𝑖𝑘)

= 𝑃(𝑌𝑖 = 1 ∣ 𝑥𝑖1)
𝑃 (𝑌𝑖 = 0 ∣ 𝑥𝑖1) ⋅ exp(𝛽1)

This means that if 𝑥𝑖1 increases by 1 then: if 𝛽1 < 0 we get a
decrease in the odds, if 𝛽1 = 0 no change, and if 𝛽1 > 0 we have
an increase. In the logit model exp(𝛽1) can be easier to interpret
than 𝛽1.



To Sum Up
For the linear predictor we interpret effects in the same way as for
the linear model (in Module 2), then we transform this linear effect
in 𝜂 into a nonlinear effect for 𝜋 = exp(𝜂)

1+exp(𝜂) , and use the odds to
interpret changes.
Q: If 𝑥𝑖1 increases by 1 AND𝛽1 is small, what is the relationship
between the change in the odds, the change in the log odds and
the change in the probability?



Infant respiratory disease: interpretating parameter estimates
This example is taken from Faraway (2006): “Extending the linear
model with R”
We select a sample of newborn babies (girls and boys) where the
parents had decided on the method of feeding (bottle, breast,
breast with some supplement), and then monitored the babies
during their first year to see if they developed infant respiratory
disease (the event we want to model).
We fit a logistic regression to the data, and focus on the parameter
estimates.



## food
## sex Bottle Breast Suppl
## Boy 0.16812227 0.09514170 0.12925170
## Girl 0.12500000 0.06681034 0.12598425



Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.61 0.11 -14.35 0.00
sexGirl -0.31 0.14 -2.22 0.03
foodBreast -0.67 0.15 -4.37 0.00
foodSuppl -0.17 0.21 -0.84 0.40



Questions
Observe that the two factors by default is coded with dummy
variable coding, and that sexBoy is the reference category for sex
and foodBottle the reference category for feeding method.
1: Explain how to interpret the Estimate for sexGirl,
foodBreast and foodSuppl.
2: What are the 6 values given by the call to predict? What is
the least favourable combination of sex and method of feeding?
And the most favourable?
print(predict(fit,type="response"), digits=2) #gives predicted probabilites

## 1 2 3 4 5 6
## 0.166 0.144 0.093 0.127 0.109 0.069



More response function plots for the logit model
The response function as a function of the covariate 𝑥 and not of
𝜂. Solid lines: 𝛽0 = 0 and 𝛽1 is 0.8 (blue), 1 (red) and 2 (orange),
and dashed lines with 𝛽0 = 1.
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Grouped vs. individual data

So far we have only mentioned individual data.

However, in both the examples we have looked at some covariate
vectors are identical (rows in the design matrix are identical). We
call these unique combinations of covariates covariate patterns,
and say we have grouped data.

disease nondisease sex food
77 381 Boy Bottle
19 128 Boy Suppl
47 447 Boy Breast
48 336 Girl Bottle
16 111 Girl Suppl
31 433 Girl Breast



Here we have 6 groups of covariate patterns. The first group has
covariates Boy and Bottle, there are 77+381= 458 babies with
this combination and 77 of these got the disease.

We prefer to group data if possible. Grouping is good because then
data can be kept in a condensed form, it will speed up
computations and makes model diagnosis easier (than for
individual data).



For the grouped data we still have a binomial distribution, and
possible generalization is to let

▶ 𝑛𝑗 ̄𝑌𝑗 be the number of successes in group 𝑗,
▶ which means that ̄𝑌𝑗 = 1

𝑛𝑗
∑ 𝑌𝑖 where the sum is over all 𝑖 in

group 𝑗.

Further
𝑛𝑗 ̄𝑌𝑗 ∼ bin(𝑛𝑗, 𝜋𝑗)

such that E(𝑛𝑗 ̄𝑌𝑗) = 𝑛𝑗𝜋𝑗 and Var(𝑛𝑗 ̄𝑌𝑗) = 𝑛𝑗𝜋𝑗(1 − 𝜋𝑗), and
E( ̄𝑌𝑗) = 𝜋𝑗 and Var( ̄𝑌𝑗) = 1

𝑛𝑗
𝜋𝑗(1 − 𝜋𝑗)

We then keep the linear predictor, and the link function is still
𝜂𝑗 = ln( 𝜋𝑗

1−𝜋𝑗
). That is, we do not model the mean 𝑛𝑗𝜋𝑗 but 𝜋𝑗

directly.



Likelihood and derivations thereof

Our parameter of interest is the vector 𝛽 of regression coefficients,
and we have no nuicance parameters (because the variance is
related directly to the 𝜋𝑗 and 𝑛𝑗 is known).

We would like to estimate 𝛽 from maximizing the likelihood, but
we will soon see that we have no closed form solution. First we
look at the likelihood, the log-likelihood and first and second
derivatives thereof.

For simplicity we do the derivations for the case where 𝑛𝑖 = 1, but
then include the results for the case where we have 𝐺 covariate
patterns with 𝑛𝑗 observations of each pattern.



Assumptions
1. 𝑌𝑖 ∼ bin(𝑛𝑖 = 1, 𝜋𝑖), and E(𝑌𝑖) = 𝜇𝑖 = 𝜋𝑖, and

Var(𝑌𝑖) = 𝜋𝑖(1 − 𝜋𝑖).
2. Linear predictor: 𝜂𝑖 = x𝑇

𝑖 𝛽.
3. Logit link

𝜂𝑖 = ln( 𝜋𝑖
1 − 𝜋𝑖

) = 𝑔(𝜇𝑖)

and (inverse thereof) logistic response function

𝜇𝑖 = 𝜋𝑖 = exp(𝜂𝑖)
1 + exp(𝜂𝑖)

= ℎ(𝜂𝑖)

We will also need:

(1−𝜋𝑖) = 1− exp(𝜂𝑖)
1 + exp(𝜂𝑖)

= 1 + exp(𝜂𝑖) − exp(𝜂𝑖)
1 + exp(𝜂𝑖)

= 1
1 + exp(𝜂𝑖)

.



Likelihood 𝐿(𝛽)
We assume that pairs of covariates and response are measured
independently of each other: (x𝑖, 𝑌𝑖), and 𝑌𝑖 follows the
distribution specified above, and x𝑖 is fixed.

𝐿(𝛽) =
𝑛

∏
𝑖=1

𝐿𝑖(𝛽) =
𝑛

∏
𝑖=1

𝑓(𝑦𝑖; 𝛽) =
𝑛

∏
𝑖=1

𝜋𝑦𝑖
𝑖 (1 − 𝜋𝑖)1−𝑦𝑖



Loglikelihood 𝑙(𝛽)

𝑙(𝛽) = ln 𝐿(𝛽) =
𝑛

∑
𝑖=1

ln 𝐿𝑖(𝛽) =
𝑛

∑
𝑖=1

𝑙𝑖(𝛽) (1)

=
𝑛

∑
𝑖=1

[𝑦𝑖 ln 𝜋𝑖 + (1 − 𝑦𝑖) ln(1 − 𝜋𝑖)] (2)

=
𝑛

∑
𝑖=1

[𝑦𝑖 ln( 𝜋𝑖
1 − 𝜋𝑖

) + ln(1 − 𝜋𝑖)] (3)

Observe that the log-likelihood is a sum of invidual contributions
for each observation pair 𝑖.



The log-likelihood is now expressed as a function of 𝜋𝑖, but we
want to make this a function of 𝛽 and the connection between 𝜋𝑖
and 𝛽 goes through 𝜂𝑖. We have that 𝜋 = exp(𝜂𝑖)

1+exp(𝜂𝑖) and in our
log-likelihood we need

(1 − 𝜋𝑖) = 1
1 + exp(𝜂𝑖)

= 1 + exp(𝜂𝑖) − exp(𝜂𝑖)
1 + exp(𝜂𝑖)

= 1
1 + exp(𝜂𝑖)

and

ln( 𝜋𝑖
1 − 𝜋1

) = 𝜂𝑖

(the last is our logit link function).



Then we get:

𝑙(𝛽) =
𝑛

∑
𝑖=1

[𝑦𝑖𝜂𝑖 + ln( 1
1 + exp(𝜂𝑖)

)] =
𝑛

∑
𝑖=1

[𝑦𝑖𝜂𝑖 − ln(1 + exp(𝜂𝑖))]

which is now our function of 𝜂𝑖.

Finally, since 𝜂𝑖 = x𝑇
𝑖 𝛽,

𝑙(𝛽) =
𝑛

∑
𝑖=1

[𝑦𝑖x𝑇
𝑖 𝛽 − ln(1 + exp(x𝑇

𝑖 𝛽))].



Q: What does the graph of 𝑙 look like as a function of 𝛽?

If we look at the beetle example we only have one covariate (in
addition to the intercept) - so this means that we have
𝛽 = (𝛽0, 𝛽1). Plotting the log-likelihood (for the beetle data set)
will be one of the tasks for the interactive lecture.

But, next we take partial derivatives, and then we will
(instead of using this formula) look at 𝑙𝑖(𝛽) = 𝑙𝑖(𝜂𝑖(𝛽)) and
use the chain rule.



Score function 𝑠(𝛽)
The score function is a 𝑝 × 1 vector, 𝑠(𝛽), with the partial
derivatives of the log-likelihood with respect to the 𝑝 elements of
the 𝛽 vector.
Solving 𝑠(𝛽) = 0 wil give us our MLEs



We will need the following:

Chain rule: 𝑑𝑓(𝑢(𝑥))
𝑑𝑢 = 𝑑𝑓

𝑑𝑢 ⋅ 𝑑𝑢
𝑑𝑥 ,

Product rule: (𝑢 ⋅ 𝑣)′ = 𝑢′ ⋅ 𝑣 + 𝑢 ⋅ 𝑣′,

Fraction rule: (𝑢
𝑣 )′ = 𝑢′⋅𝑣−𝑢⋅𝑣′

𝑣2 ,
𝑑 ln(𝑥)

𝑑𝑥 = 1
𝑥 , 𝑑 exp(𝑥)

𝑑𝑥 = exp(𝑥) and 𝑑( 1
𝑥 )

𝑑𝑥 = − 1
𝑥2 .

Partial derivatives of scalar wrt a vector 𝜕a𝑇 b
𝜕b = a

and later we will also need 𝜕a𝑇 b
𝜕b𝑇 = (𝜕a𝑇 b

𝜕b )𝑇 = a𝑇 .



Here we go:

𝑠(𝛽) = 𝜕𝑙(𝛽)
𝜕𝛽 =

𝑛
∑
𝑖=1

𝜕𝑙𝑖(𝛽)
𝜕𝛽 =

𝑛
∑
𝑖=1

𝑠𝑖(𝛽)

Again, observe that the score function is a sum of individual
contributions for each observation pair 𝑖.



We will use the chain rule to calculate 𝑠𝑖(𝛽).

𝑠𝑖(𝛽) = 𝜕𝑙𝑖(𝛽)
𝜕𝛽 = 𝜕𝑙𝑖(𝛽)

𝜕𝜂𝑖
⋅𝜕𝜂𝑖
𝜕𝛽 = 𝜕[𝑦𝑖𝜂𝑖 − ln(1 + exp(𝜂𝑖))]

𝜕𝜂𝑖
⋅𝜕[x𝑇

𝑖 𝛽]
𝜕𝛽

𝑠𝑖(𝛽) = (𝑦𝑖 − exp(𝜂𝑖)
1 + exp(𝜂𝑖)

) ⋅ x𝑖 = (𝑦𝑖 − 𝜋𝑖)x𝑖



The score function is given as:

𝑠(𝛽) =
𝑛

∑
𝑖=1

𝑠𝑖(𝛽) =
𝑛

∑
𝑖=1

x𝑖(𝑦𝑖 − 𝜋𝑖) =
𝑛

∑
𝑖=1

x𝑖(𝑦𝑖 − exp(x𝑇
𝑖 𝛽)

1 + exp(x𝑇
𝑖 𝛽))

To find the maximum likelihood estimate 𝛽̂ we solve the set of 𝑝
non-linear equations:

𝑠(𝛽̂) = 0

Next week we will see how we can do that using the
Newton-Raphson or Fisher Scoring iterative methods, but first we
will work on finding the mean and covariance matrix of the score
vector - and the derivatives of the score vector (the Hessian, which
is minus the observed Fisher matrix).



Remark: in Module 5 we will see that the general formula for
GLMs is:

𝑠(𝛽) =
𝑛

∑
𝑖=1

[ 𝑦𝑖 − 𝜇𝑖
Var(𝑌𝑖)

x𝑖
𝜕𝜇𝑖
𝜕𝜂𝑖

] =
𝑛

∑
𝑖=1

[ 𝑦𝑖 − 𝜇𝑖
Var(𝑌𝑖)

x𝑖ℎ′(𝜂𝑖)] = X𝑇 DΣ−1(y−𝜇)

where X is the 𝑛 × 𝑝 design matrix,
D = diag(ℎ′(𝜂1), ℎ′(𝜂2), … , ℎ′(𝜂𝑛)) is a diagonal matrix with the
derivatives of the response function evaluated at each observation.
Further, Σ = diag(Var(𝑌1), Var(𝑌2), … , Var(𝑌𝑛)) is a diagonal
matrix with the variance for each response, and y is the observed
𝑛 × 1 vector of responses and 𝜇 is the 𝑛 × 1 vector of individual
expectations 𝜇𝑖 = E(𝑌𝑖) = ℎ(𝜂𝑖).




