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(Latest changes: 06.10: solutions added. 01.10: small changes for
second week. 27.09: added one Problem for ILw1, moved stuff to
w2, added a few dimensions to score test.)



Overview

Learning material
▶ Textbook: Fahrmeir et al (2013): Chapter 5.2, 5.3.
▶ Classnotes 27.09.2018
▶ Classnotes 04.10.2018

https://www.math.ntnu.no/emner/TMA4315/2018h/TMA4315M4H20180927.pdf
https://www.math.ntnu.no/emner/TMA4315/2018h/TMA4315M4H20181004.pdf


Topics
First week

▶ examples of count data
▶ the Poisson distribution
▶ regression with count data
▶ Poisson regression with log-link
▶ parameter estimation (ML): log-likelhood, score vector,

information matrix to give iterative calculations
▶ asymptotic MLE properties
▶ confidence intervals and hypothesis tests (Wald, score and

LRT)



Second week
▶ Count data with Poisson regression (continued)
▶ deviance, model fit and model choice
▶ overdispersion
▶ rate models and offset
▶ Modelling continuous response data: lognormal and gamma
▶ the gamma distribution
▶ the gamma GLM model
▶ gamma likelihood and derivations thereof
▶ dispersion parameter: scaled and unscaled deviance



FIRST WEEK



Examples of count data

▶ the number of automobile thefts pr city worldwide
▶ the number of UFO sightings around the world
▶ the number of visits at web pages
▶ the number of male crabs (satellites) residing nearby a female

crab
▶ the number of goals by the home team and the number of

goals for the away team in soccer
▶ the number of newspapers sold at newsagents
▶ the number of vampires living on Sesame Street



Sales of newspapers
Response data: number of newspapers (delivered) sold at each
outlet. Covariate data: type of outlet, but mainly calendar
information= weekday, month, season, public holidays,
winter/autumn/easter/xmas, …
The aim: predict the number of newspapers sold at each oulet
(11,000!) in Norway on any day
Can use this to optimise the number of newspapers printed and
delivered



Female horseshoe crabs with satellites
The study objects were female horseshoe crabs. Each female
horseshoe crab had a male attached to her in her nest. The
objective of the study was to investigate factors that affect
whether the female had any other males, called satellites, residing
near her. The following covariates were collected for 173 female
horseshoe crabs:

▶ C: the color of the female horseshoe crab (1=light medium,
2=medium, 3=dark medium, 4=dark)

▶ S: spine condition (1=both good, 2=one worn or broken,
3=both worn or broken)

▶ W: width of carapace (cm)
▶ Wt: weight (kg)

The response was the number of satellites, Sa = male horseshoe
crabs residing nearby.
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Q: Discuss what you see. Any potential covariates to influence Sa?
Which distribution can Sa have?



Modelling counts with the Poisson distribution

The Poisson process
We observe events that may occur within a time interval or a
region.

1. The number of events occuring within a time interval or a
region, is independent of the number of events that occurs in
any other disjoint (non-overlapping) time interval or region.

2. The probability that a single event occurs within a small time
interval or region, is proportional to the length of the interval
or the size of the region.

3. The probability that more than one event may occur within a
small time interval or region is negligible.



When all of these three properties are fulfilled we have a Poisson
process. This leads to three distributions

▶ The number of events in a Poisson process follows a Poisson
distribution.

▶ Time between two events in a Poisson process follows an
exponential distribution.

▶ Time between many events in a Poisson process follows a
gamma distribution.

We will first study the Poisson distribution - and link it to a
regression setting.



The Poisson distribution
We study a Poisson process within a time interval or a region of
specified size. Then, the number of events, 𝑌 , will follow a
Poisson distribution with parameter 𝜆

𝑓(𝑦) = 𝜆𝑦

𝑦! 𝑒−𝜆 for 𝑦 = 0, 1, 2, …

Here the parameter 𝜆 is the proportionality factor in the
requirement 2 (above) for the Poisson process. Another popular
parameterization is 𝜇, or given some interval 𝜆𝑡, but we will stick
with 𝜆. In R we calculate the Poisson point probabilities using
dpois.



Expected value and variance
Let 𝑌 follow a Poisson distribution with parameter 𝜆. Then

E(𝑌 ) = 𝜆 and Var(𝑌 ) = 𝜆

(proofs in notes)



Properties of the Poisson distribution
▶ A sum of 𝑛 independent Poisson distributed random variables,

𝑌𝑖 with means 𝜆𝑖 are Poisson distributed with mean ∑𝑛
𝑖=1 𝜆𝑖.

▶ When the mean increases the Poisson distribution becomes
more and more symmetric and for large 𝜆 the Poisson
distribution can be approximated by a normal distribution.



Exponential family
In Module 1 we introduced distributions of the 𝑌𝑖, that could be
written in the form of a univariate exponential family

𝑓(𝑦𝑖 ∣ 𝜃𝑖) = exp (𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖)
𝜙 ⋅ 𝑤𝑖 + 𝑐(𝑦𝑖, 𝜙, 𝑤𝑖))

where we said that
▶ 𝜃𝑖 is called the canonical parameter and is a parameter of

interest
▶ 𝜙 is called a nuisance parameter (and is not of interest to

us=therefore a nuisance (plage))
▶ 𝑤𝑖 is a weight function, in most cases 𝑤𝑖 = 1
▶ 𝑏 and 𝑐 are known functions.



Exponentially Poisson
The log- likelihood for a Poisson is

𝑙(𝜃) = ln 𝐿(𝜃) =
𝑛

∑
𝑖=1

ln 𝐿𝑖(𝛽) =
𝑛

∑
𝑖=1

𝑙𝑖(𝛽) =
𝑛

∑
𝑖=1

[𝑦𝑖 ln(𝜆𝑖)−𝜆𝑖−ln(𝑦!)]

So, comparing with

𝑙(𝜃𝑖; 𝑦𝑖) = 𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖)
𝜙 ⋅ 𝑤𝑖 + 𝑐(𝑦𝑖, 𝜙, 𝑤𝑖)

we get
▶ 𝜃𝑖 = ln(𝜆𝑖) is the canonical parameter
▶ 𝜙 = 1, no nuisance
▶ 𝑤𝑖 = 1
▶ 𝑏(𝜃𝑖) = exp(𝜃)
▶ 𝜇𝑖 = E(𝑌𝑖) = 𝜆𝑖



For a GLM with linear predictor 𝜂𝑖 - to have a canonical link we
need

𝜃𝑖 = 𝜂𝑖

Since 𝜂𝑖 = 𝑔(𝜇𝑖) = 𝑔(𝜆𝑖) this means to us that we need

𝑔(𝜇𝑖) = 𝑔(𝜆𝑖) = 𝜃𝑖

saying that with the Poisson the canonical link is ln(𝜆𝑖).
Q: Why may we want to choose a canonical link?



Regression with count data

Aim
1. Construct a model to help understand the relationship

between a count variable and one or many possible
explanatory variables. The response measurements are counts.

2. Use the model for understanding what can explain count, and
for prediction of counts.

(you can use OLS, but you might have to transform the response
to stabilise the variance. If the counts are all large, OLS will work
fine)



The log-linear Poisson model
Assumptions:

1. 𝑌𝑖 ∼ Poisson(𝜆𝑖), with E(𝑌𝑖) = 𝜆𝑖, and Var(𝑌𝑖) = 𝜆𝑖.
2. Linear predictor: 𝜂𝑖 = x𝑇

𝑖 𝛽.
3. Log link

𝜂𝑖 = ln(𝜆𝑖) = 𝑔(𝜆𝑖)
and (inverse thereof) response function

𝜆𝑖 = exp(𝜂𝑖)

Assumptions 1 and 3 above can be written as

𝑌𝑖 ∼ Poisson(exp(𝜂𝑖)), 𝑖 = 1, … , 𝑛



Interpreting parameters in the log-linear Poisson model
In the log-linear model the mean, E(𝑌𝑖) = 𝜆𝑖 satisfy an
exponential relationship to covariates

𝜆𝑖 = exp(𝜂𝑖) = exp(x𝑇
𝑖 𝛽) = exp(𝛽0) ⋅ exp(𝛽1)𝑥𝑖1 ⋯ exp(𝛽𝑘)𝑥𝑖𝑘 .

Let us look in detail at 𝛽1 with covariate 𝑥𝑖1 for observation 𝑖.
1. If 𝑥𝑖1 increases by one unit to 𝑥𝑖1 + 1 then the mean E(𝑌𝑖)

will in our model change by a factor exp(𝛽1).
2. If 𝛽1=0 then exp(𝛽1) = 1, so that a change in 𝑥𝑖1 does not

change E(𝑌𝑖).
3. If 𝛽1 < 0 then exp(𝛽1) < 1 so if 𝑥𝑖1 increase then E(𝑌𝑖)

decrease.
4. If 𝛽1 > 0 then exp(𝛽1) > 1 so if 𝑥𝑖1 increase then E(𝑌𝑖)

increase.
Thus, the covariates have a multiplicative effect on the rate 𝜆𝑖.



Example: interpreting parameters for the female crabs with
satellites
We fit a log-linear model to Sa, assuming the number of satellites
follows a Poisson distribution with log-link, and use S (spine
condition) as a covariate.
## Intercept +
## (Intercept) S2 S3
## 1.2943569 -0.6012097 -0.2612018
## Intercept+W, exp
## (Intercept) S2 S3
## 3.6486486 0.5481482 0.7701255
(1=both good, 2=one worn or broken, 3=both worn or broken)
So S2 roughly halves the number of satellite males



Parameter estimation with maximum likelihood

We would like to estimate 𝛽 by maximizing the likelihood -

This is essentially the same as for Module 3: Binary regression -
with “Poisson and log” instead of “Bernoulli and logit”.



Likelihood 𝐿(𝛽)
We assume that pairs of covariates and response are measured
independently of each other: (x𝑖, 𝑌𝑖), and 𝑌𝑖 follows the
distribution specified above, and x𝑖 is fixed.

𝐿(𝛽) =
𝑛

∏
𝑖=1

𝐿𝑖(𝛽) =
𝑛

∏
𝑖=1

𝑓(𝑦𝑖; 𝛽) =
𝑛

∏
𝑖=1

𝜆𝑦𝑖
𝑖

𝑦𝑖!
exp(−𝜆𝑖)

Note: still a slight misuse of notation - where is 𝛽?



Loglikelihood 𝑙(𝛽)

𝑙(𝛽) = ln 𝐿(𝛽) =
𝑛

∑
𝑖=1

ln 𝐿𝑖(𝛽) =
𝑛

∑
𝑖=1

𝑙𝑖(𝛽) =
𝑛

∑
𝑖=1

[𝑦𝑖 ln(𝜆𝑖)−𝜆𝑖−ln(𝑦!)]

Observe that the log-likelihood is a sum of individual contributions
for each observation pair 𝑖. We often omit the last term since it is
not a function of model parameters, only data.



If we want a function of 𝜂𝑖 = ln(𝜆𝑖) or 𝛽:

𝑙(𝛽) =
𝑛

∑
𝑖=1

[𝑦𝑖𝜂𝑖 − exp(𝜂𝑖) + 𝐶𝑖] =
𝑛

∑
𝑖=1

𝑦𝑖x𝑇
𝑖 𝛽 −

𝑛
∑
𝑖=1

exp(x𝑇
𝑖 𝛽) + 𝐶



Score function 𝑠(𝛽)
The score function is a 𝑝 × 1 vector, 𝑠(𝛽), with the partial
derivatives of the log-likelihood with respect to the 𝑝 elements of
the 𝛽 vector. Remember, the score function is linear in the
individual contributions:

𝑠(𝛽) = 𝜕𝑙(𝛽)
𝜕𝛽 =

𝑛
∑
𝑖=1

𝜕𝑙𝑖(𝛽)
𝜕𝛽 =

𝑛
∑
𝑖=1

𝑠𝑖(𝛽)

We use the chain rule to find 𝑠𝑖(𝛽).

𝑠𝑖(𝛽) = 𝜕𝑙𝑖(𝛽)
𝜕𝛽 = 𝜕𝑙𝑖(𝛽)

𝜕𝜂𝑖
⋅ 𝜕𝜂𝑖

𝜕𝛽

= 𝜕[𝑦𝑖𝜂𝑖 − exp(𝜂𝑖) + 𝐶𝑖]
𝜕𝜂𝑖

⋅ 𝜕[x𝑇
𝑖 𝛽]

𝜕𝛽
= [𝑦𝑖 − exp(𝜂𝑖)] ⋅ x𝑖
= (𝑦𝑖 − 𝜆𝑖)x𝑖

(see Module 3 for rules for partial derivatives of scalar wrt vector)



The score function is given as:

𝑠(𝛽) =
𝑛

∑
𝑖=1

𝑠𝑖(𝛽) =
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝜆𝑖)x𝑖

So

E(𝑠𝑖(𝛽)) = E((𝑌𝑖 − 𝜆𝑖)x𝑖) = 0

(because E(𝑌𝑖) = 𝜆𝑖, thus E(𝑠(𝛽)) = 0).



Fisher Information
We will also need the Fisher Information, for the estimation (=a
numerical optimisation problem), and to estimate the covariances

▶ the expected Fisher information matrix, 𝐹(𝛽) = Cov(𝛽)
▶ the observed Fisher information matrix,

𝐻(𝛽) = −𝜕𝑠(𝛽)/𝜕𝛽𝑇

▶ for us 𝐹(𝛽) = 𝐻(𝛽)



The expected Fisher information matrix 𝐹(𝛽)

𝐹(𝛽) = Cov(𝑠(𝛽)) =
𝑛

∑
𝑖=1

Cov(𝑠𝑖(𝛽)) = ⋯ =
𝑛

∑
𝑖=1

𝐹𝑖(𝛽)

assuming the responses 𝑌𝑖 and 𝑌𝑗 are independent, and that
𝐸(𝑠𝑖(𝛽)) = 0 ∀𝑖.
Remember that 𝑠𝑖(𝛽) = (𝑌𝑖 − 𝜆𝑖)x𝑖, then:

𝐹𝑖(𝛽) = 𝐸(𝑠𝑖(𝛽)𝑠𝑖(𝛽)𝑇 ) = 𝐸((𝑌𝑖 − 𝜆𝑖)x𝑖(𝑌𝑖 − 𝜆𝑖)x𝑇
𝑖 )

= x𝑖x𝑇
𝑖 𝐸((𝑌𝑖 − 𝜆𝑖)2)

= x𝑖x𝑇
𝑖 𝜆𝑖

where 𝐸((𝑌𝑖 − 𝜆𝑖)2) = Var(𝑌𝑖) = 𝜆 is the variance of 𝑌𝑖. Thus

𝐹(𝛽) =
𝑛

∑
𝑖=1

x𝑖x𝑇
𝑖 𝜆𝑖.



Observed Fisher information matrix 𝐻(𝛽)
Since we use canonical link 𝐻(𝛽) = 𝐹(𝛽). But, for completeness,
we add the direct derivation of 𝐻(𝛽).

𝐻(𝛽) = − 𝜕2𝑙(𝛽)
𝜕𝛽𝜕𝛽𝑇 = −𝜕𝑠(𝛽)

𝜕𝛽𝑇

= 𝜕
𝜕𝛽𝑇 [

𝑛
∑
𝑖=1

(𝜆𝑖 − 𝑦𝑖)x𝑖] (𝑠(𝛽) =
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝜆𝑖)x𝑖)

= 𝜕
𝜕𝛽𝑇 [

𝑛
∑
𝑖=1

(exp(𝜂𝑖) − 𝑦𝑖)x𝑖] (𝜆𝑖 = exp(𝜂𝑖))



𝐻(𝛽) =
𝑛

∑
𝑖=1

𝜕
𝜕𝛽𝑇 [x𝑖𝜆𝑖 − x𝑖𝑦𝑖] =

𝑛
∑
𝑖=1

𝜕
𝜕𝛽𝑇 x𝑖𝜆𝑖 =

𝑛
∑
𝑖=1

x𝑖
𝜕𝜆𝑖
𝜕𝜂𝑖

𝜕𝜂𝑖
𝜕𝛽𝑇

Use that

𝜕𝜂𝑖
𝜕𝛽𝑇 = 𝜕x𝑇

𝑖 𝛽
𝜕𝛽𝑇 = (𝜕x𝑇

𝑖 𝛽
𝜕𝛽 )

𝑇
= x𝑇

𝑖

and

𝜕𝜆𝑖
𝜕𝜂𝑖

= 𝜕 exp(𝜂𝑖)
𝜕𝜂𝑖

= exp(𝜂𝑖) = 𝜆𝑖

And thus

𝐻(𝛽) =
𝑛

∑
𝑖=1

x𝑖x𝑇
𝑖 𝜆𝑖.



How to solve it
To find the maximum likelihood estimate ̂𝛽 we solve the set of 𝑝
non-linear equations:

𝑠( ̂𝛽) = 0
And, as before we do that using the Newton-Raphson or Fisher
Scoring iterative methods, so we need the derivative of the score
vector (our Fisher information).



Parameter estimation - in practice

To find the ML estimate ̂𝛽 we need to solve

𝑠( ̂𝛽) = 0

We have that the score function for the log-linear model is:

𝑠(𝛽) =
𝑛

∑
𝑖=1

x𝑖(𝑦𝑖 − 𝜆𝑖) =
𝑛

∑
𝑖=1

x𝑖(𝑦𝑖 − exp(x𝑇
𝑖 𝛽)).

Observe that this is a non-linear function in 𝛽, and has no closed
form solution (except for a few special cases).



Fisher scoring
To solve this we use the Fisher scoring algorithm, were we at
interation 𝑡 + 1 have

𝛽(𝑡+1) = 𝛽(𝑡) + 𝐹(𝛽(𝑡))−1𝑠(𝛽(𝑡))
Remark: what do we need to do to use the Newton-Raphson
method instead? Well, replace 𝐹 with 𝐻, but for canonical link
(which is the log-link for the Poisson) 𝐹 = 𝐻.



Requirements for convergence
For the Fisher scoring algorithm the expected Fisher information
matrix 𝐹 needs to be invertible. For this we need:

▶ 𝜆𝑖 > 0 for all 𝑖
▶ design matrix (𝑋)has full rank (𝑝).

For the log link 𝜆𝑖 = exp(x𝑇
𝑖 𝛽) which is always positive.

Note, with the linear link 𝜆𝑖 = 𝜂𝑖 this might be a challenge, and
restrictions on 𝛽 must be set.
The algorithm might not converge, if the data are evil enough,
particularly with small samples.



Statistical inference

Asymptotic properties of ML estimates
We repeat what we found for Module 3: Under some (weak)
regularity conditions:
Let ̂𝛽 be the maximum likelihood (ML) estimate in the GLM
model. As the total sample size increases, 𝑛 → ∞:

1. ̂𝛽 exists
2. ̂𝛽 is consistent (convergence in probability, yielding

asymptotically unbiased estimator, variances goes towards 0)
3. ̂𝛽 ≈ 𝑁𝑝(𝛽, 𝐹 −1( ̂𝛽))

Observe that this means that asymptotically Cov( ̂𝛽) = 𝐹 −1( ̂𝛽):
the inverse of the expected Fisher information matrix evaluated at
the ML estimate.



In our case we have

𝐹(𝛽) =
𝑛

∑
𝑖=1

x𝑖x𝑇
𝑖 𝜆𝑖 = X𝑇 WX,

where W = diag(𝜆𝑖). This means Cov( ̂𝛽) = (X𝑇 WX)−1

(remember that ̂𝛽 comes in with 𝜆̂𝑖 in W).

Let A(𝛽) = 𝐹 −1(𝛽), and 𝑎𝑗𝑗(𝛽) is diagonal element number 𝑗.

For one element of the parameter vector:

𝑍𝑗 =
̂𝛽𝑗 − 𝛽𝑗

√𝑎𝑗𝑗( ̂𝛽)

is standard normal, which can be used to make confidence intervals
- and test hypotheses.



Confidence intervals
In addition to providing a parameter estimate for each element of
our parameter vector 𝛽 we should also report a (1 − 𝛼)100%
confidence interval (CI) for each element.
Let 𝑧𝛼/2 be such that 𝑃(𝑍𝑗 > 𝑧𝛼/2) = 𝛼/2. We then use

𝑃(−𝑧𝛼/2 ≤ 𝑍𝑗 ≤ 𝑧𝛼/2) = 1 − 𝛼

insert 𝑍𝑗 and solve for 𝛽𝑗 to get

𝑃( ̂𝛽𝑗 − 𝑧𝛼/2√𝑎𝑗𝑗( ̂𝛽) ≤ 𝛽𝑗 ≤ ̂𝛽𝑗 − 𝑧𝛼/2√𝑎𝑗𝑗( ̂𝛽)) = 1 − 𝛼

A (1 − 𝛼)% CI for 𝛽𝑗 is when we insert numerical values for the
upper and lower limits.



Example: Female crabs with satellites
model2 = glm(Sa ~ W, family = poisson(link = log), data = crab)
# summary(model2)
lower = model2$coefficients - qnorm(0.975) * sqrt(diag(vcov(model2)))
upper = model2$coefficients + qnorm(0.975) * sqrt(diag(vcov(model2)))
cbind(lower, upper)
confint(model2)
## lower upper
## (Intercept) -4.3675312 -2.2419833
## W 0.1249137 0.2031764
## 2.5 % 97.5 %
## (Intercept) -4.3662326 -2.2406858
## W 0.1247244 0.2029871



Hypothesis testing
There are three methods that are mainly used for testing
hypotheses in GLMs

▶ Wald test,
▶ likelihood ratio test and
▶ score test.

The Wald and likelihood ratio test are the same as in Module 3…



Hypotheses

𝐻0 ∶ C� = d vs. 𝐻1 ∶ C� ≠ d

We specify C to be a 𝑟 × 𝑝 matrix and d to be a column vector of
length 𝑟,

and/or where we define
▶ A: the larger model and
▶ B: the smaller model (under 𝐻0), and the smaller model is

nested within the larger model (i.e. 𝐵 ⊂ 𝐴).



The Wald test
The Wald test statistic is:

𝑤 = (C𝛽̂ − d)T[C𝐹 −1( ̂𝛽)CT]−1(C𝛽̂ − d)
it measures the distance between the estimate C ̂𝛽 and d
Under the null follows a 𝜒2 distribution with 𝑟 degrees of freedom
(where 𝑟 is the number of hypotheses tested).
𝑃 -values are calculated in the upper tail of the 𝜒2-distribution.



The likelihood ratio test
A: the larger model and B: the smaller model (under 𝐻0)
The likelihood ratio statistic is defined as

−2 ln 𝜆 = −2(ln 𝐿( ̂𝛽𝐵) − ln 𝐿( ̂𝛽𝐴))

under the null is asymptotically 𝜒2-distributed with degrees of
freedom equal the difference in the number of parameters in A and
B.
𝑝-values are calculated in the upper tail of the 𝜒2-distribution.



The score test
The score statistic is based on the score function, and measures
the distance to the score function at the maximum likelihood for
model A (which is 0) and scales with the covariance to form the
test statistic.

▶ Under the null hypothesis investigated let 𝛽̃ be the ML
estimate (that is, model B, the smaller model) - that means
that this is a restricted ML estimate, and

▶ under 𝐻1 we have the larger model (A) with maximum
likelihood 𝛽̂.



The score statistics is:

𝑈 = (𝑠(𝛽̃) − 0)𝑇 F−1(𝛽̃)(𝑠(𝛽̃) − 0)

▶ 𝑠(𝛽̃) is a subvector of the score function, for the elements in
𝐻1 and not 𝐻0

▶ dimension is the difference in number of parameters between
A and B models

▶ the score function is evaluated based on parameter estimates
under 𝐻0 (i.e. the value of 𝜆̂ in the score and expected Fisher
information is based on 𝛽̃.



To calculate F−1(𝛽̃) this is a submatrix of the full inverted matrix
(not invert just the submatrix). The dimension of this matrix is
“difference in number of parameters between A and B models”
squared.

When the null hypothesis is true 𝑈 ∼ 𝜒2
𝑟 (assymptotically): 𝑟 is the

difference in number of estimated parameters between the models.



Comments

▶ In R the function statmod::glm.scoretest the score test
for a GLM when the difference between 𝐻0 and 𝐻1 is one
parameter. The output is

√
𝑈 (what distribution does this

follow?).
▶ The score test is called Rao’s efficient score test in add1 in R
▶ The score test is very useful for special situations when the

smaller model is to be tested towards many larger models,
because only the smaller model has to be fitted.

▶ The score test is perhaps the the most complex and least
studied of the three tests, and in this course the main focus
will be on the Wald and LRT tests.

▶ It is important for you to have heard of the score test, because
in special situation it may be the preferred test.



Example: Female crabs with satellites - the different tests.
We fit a model with two covariates (Width & Colour): C is
categorical and we use effect coding. We want to test if we need
to add these covariates.
model3 = glm(Sa ~ W + C, family = poisson(link = log), data = crab, contrasts = list(C = "contr.sum"))
summary(model3)

##
## Call:
## glm(formula = Sa ~ W + C, family = poisson(link = log), data = crab,
## contrasts = list(C = "contr.sum"))
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.92089 0.56010 -5.215 1.84e-07 ***
## W 0.14934 0.02084 7.166 7.73e-13 ***
## C1 0.27085 0.11784 2.298 0.0215 *
## C2 0.07117 0.07296 0.975 0.3294
## C3 -0.16551 0.09316 -1.777 0.0756 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 632.79 on 172 degrees of freedom
## Residual deviance: 559.34 on 168 degrees of freedom
## AIC: 924.64
##
## Number of Fisher Scoring iterations: 6



Type III ANOVA, Score test

# possible to use type III anova
drop1(model3, test = "Rao") #Q:same as summary?

## Single term deletions
##
## Model:
## Sa ~ W + C
## Df Deviance AIC Rao score Pr(>Chi)
## <none> 559.34 924.64
## W 1 609.14 972.44 51.514 7.108e-13 ***
## C 3 567.88 927.18 8.579 0.03545 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



Type III ANOVA, LRT

drop1(model3, test = "LRT") #same as comparing deviances

## Single term deletions
##
## Model:
## Sa ~ W + C
## Df Deviance AIC LRT Pr(>Chi)
## <none> 559.34 924.64
## W 1 609.14 972.44 49.794 1.707e-12 ***
## C 3 567.88 927.18 8.534 0.03618 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



Type I ANOVA, LRT
anova(model3, test = "LRT")

## Analysis of Deviance Table
##
## Model: poisson, link: log
##
## Response: Sa
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 172 632.79
## W 1 64.913 171 567.88 7.828e-16 ***
## C 3 8.534 168 559.34 0.03618 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



Type I ANOVA, Score test
anova(model3, test = "Rao")

## Analysis of Deviance Table
##
## Model: poisson, link: log
##
## Response: Sa
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Rao Pr(>Chi)
## NULL 172 632.79
## W 1 64.913 171 567.88 67.474 < 2e-16 ***
## C 3 8.534 168 559.34 8.579 0.03545 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



Yeah, let’s stop here


