
TMA4315 Generalized linear models H2018
Module 4: Count and continuous positive response data

(Poisson and gamma regression)

Mette Langaas, Department of Mathematical Sciences, NTNU
– with contributions from Ingeborg Hem

27.09.2018 and 04.10.2018 [PL], 28.09.2018 and 05.10.2018
[IL]



(Latest changes: 06.10: solutions added. 01.10: small changes for
second week. 27.09: added one Problem for ILw1, moved stuff to
w2, added a few dimensions to score test.)



Overview

Learning material
▶ Textbook: Fahrmeir et al (2013): Chapter 5.2, 5.3.
▶ Classnotes 27.09.2018
▶ Classnotes 04.10.2018

https://www.math.ntnu.no/emner/TMA4315/2018h/TMA4315M4H20180927.pdf
https://www.math.ntnu.no/emner/TMA4315/2018h/TMA4315M4H20181004.pdf


Topics
First week

▶ examples of count data
▶ the Poisson distribution
▶ regression with count data
▶ Poisson regression with log-link
▶ parameter estimation (ML): log-likelhood, score vector,

information matrix to give iterative calculations
▶ asymptotic MLE properties
▶ confidence intervals and hypothesis tests (Wald, score and

LRT)
Jump to interactive (week 1)



Second week
▶ Count data with Poisson regression (continued)
▶ deviance, model fit and model choice
▶ overdispersion
▶ rate models and offset
▶ Modelling continuous response data: lognormal and gamma
▶ the gamma distribution
▶ the gamma GLM model
▶ gamma likelihood and derivations thereof
▶ dispersion parameter: scaled and unscaled deviance



SECOND WEEK



Poisson regression for count data

What did we do last week?

Examples — GLM model — loglikelihood, score function and
Fisher information matrix — asympototic results for 𝛽̂ and Wald,
score and LRT.



Deviance

The deviance is the difference in model fit between 2 models.
Three models are helpful:

▶ Null model: model with only an intercept
▶ Candidate model: The model that we are investigating. We

maximize the likelihood and get ̂𝛽
▶ Saturated model: A model with a parameter for every 𝜆𝑖 by

the observed count for observation 𝑖.
Notation:

𝜆̂𝑖 = ̂𝑦𝑖: prediction for the candidate model for observation 𝑖
𝜆̃𝑖 = 𝑦𝑖: prediction for the saturated model for observation 𝑖



Model assessment and model choice: using the deviance

The fit of the model can be assessed based on goodness of fit
statistics (and related tests) and by residual plots. Model choice
can be made from analysis of deviance, or by comparing the AIC
for different models.



Deviance
The (log-) likelihood ratio between two models is

𝑙( ̄̄𝜃) − 𝑙( ̄𝜃) =
𝑛

∑
𝑖=1

[𝑦𝑖 ln( ̄̄𝑦𝑖) − ̄̄𝑦𝑖 − ln(𝑦!)] −
𝑛

∑
𝑖=1

[𝑦𝑖 ln( ̄𝑦𝑖) − ̄𝑦𝑖 − ln(𝑦!)]

=
𝑛

∑
𝑖=1

[𝑦𝑖 (ln( ̄̄𝑦𝑖) − ln( ̄𝑦𝑖)) − ̄̄𝑦𝑖 − ̄𝑦𝑖]

=
𝑛

∑
𝑖=1

[𝑦𝑖 ln( ̄̄𝑦𝑖/ ̄𝑦𝑖) − ( ̄̄𝑦𝑖 − ̄𝑦𝑖)]

The Saturated Deviance is

𝐷 = −2𝑙(𝜃) = −2
𝑛

∑
𝑖=1

[𝑦𝑖 ln(𝑦𝑖) − 𝑦𝑖 − ln(𝑦!)]

because ̂𝑦𝑖 = 𝑦𝑖 for this model



Deviance test

𝐷 = −2(ln 𝐿(candidate model) − ln 𝐿(saturated model))

= −2(𝑙( ̂𝜋) − 𝑙( ̃𝜋)) = −2
𝐺

∑
𝑗=1

(𝑙𝑗( ̂𝜋𝑗) − 𝑙𝑗( ̃𝜋𝑗))



Likelihood Ratio Tests with Deviance
The likelihood ratio test can be performed using the difference
between two deviances:

𝐿𝑅𝑇 = 𝐷1 − 𝐷2 = −2(𝑙1( ̂𝜋1) − 𝑙( ̃𝜋)) − (−2(𝑙2( ̂𝜋2) − 𝑙( ̃𝜋)))
= −2(𝑙1( ̂𝜋1) − 𝑙2( ̃𝜋2))

This follows a 𝜒2
𝑝 distribution with 𝑘 equal to the difference in

number of parameters



Deviance test
We may use the deviance test presented in Module 3 to test if the
model under study is preferred compared to the saturated model.

𝐷 = 2
𝑛

∑
𝑖=1

[𝑦𝑖 ln(𝑦𝑖
̂𝑦𝑖
) − (𝑦𝑖 − ̂𝑦𝑖)]

Remark: if ∑𝑛
𝑖=1 𝑦𝑖 = ∑𝑛

𝑖=1 ̂𝑦𝑖 then deviance will be equal to

𝐷 = 2
𝑛

∑
𝑖=1

𝑦𝑖 ln(𝑦𝑖
̂𝑦𝑖
)

The deviance statistic approximately follows a 𝜒2
𝑛−𝑝, at least when

the counts are not low.



Pearson test
The Pearson 𝜒2-goodness of fit statistic is given as the sum of the
squared Pearson residuals

𝑋2
𝑃 =

𝑛
∑
𝑖=1

𝑟2
𝑖 =

𝑛
∑
𝑖=1

(𝑦𝑗 − ̂𝑦𝑖)2

̂𝑦𝑖

where ̂𝑦𝑖 = 𝜆̂𝑖 = exp(x𝑇
𝑖 ̂𝛽). The Pearson 𝜒2 statistic is

asymptotically equivalent to the deviance statistic and thus is
asymptotically 𝜒2

𝑛−𝑝 (proof: do a Taylor series expansion of the
deviance).



Remarks
The asymptotic distribution of both statistics (deviance and
Pearson) are questionable when there are many low counts.
Agresti (1996, page 990) suggest analysing grouped data, for
example by grouping by width in the horseshoe crab example.
The Pearson statistic is also used for testing independence in
contingency tables - we will do that in Compulsory Exercise 2.



Example: goodness of fit with female horseshoe crabs
Comment on the analysis. Is this a good fit? What might a bad fit
be due to?
model3 = glm(Sa ~ W + C, family = poisson(link = log), data = crab, contrasts = list(C = "contr.sum"))
# summary(model3)
1 - pchisq(model3$deviance, model3$df.residual)
Xp = sum(residuals(model3, type = "pearson")^2)
Xp
1 - pchisq(Xp, model3$df.residual)

## [1] 0
## [1] 543.249
## [1] 0



AIC
Identical to Module 3 - we may use the Akaike informations
criterion. Let 𝑝 be the number of regression parameters in our
model.

AIC = −2 ⋅ 𝑙( ̂𝛽) + 2𝑝
A scaled version of AIC, standardizing for sample size, is sometimes
preferred. And, we may also use the BIC, where 2𝑝 is replaced by
log(𝑛) ⋅ 𝑝.



Analysis of deviance
Identical to Module 3 we may also sequentially compare models,
and use analysis of deviance for this.



Residuals

Two types of residuals are popular: deviance and Pearson. These
are based on the deviance and 𝜒2 statistics: basically they are the
contribution of each data point to that statistic.

But the sign has to be included in the deviance residual



Deviance residuals
The deviance residuals are given by a signed version of each
element in the sum for the deviance, that is

𝑑𝑖 = sign(𝑦𝑖 − ̂𝑦𝑖) ⋅ {2[𝑦𝑖 ln(𝑦𝑖
̂𝑦𝑖
) − (𝑦𝑖 − ̂𝑦𝑖)]}

1/2

where the term sign(𝑦𝑖 − ̂𝑦𝑖) makes negative residuals possible -
and we get the same sign as the Pearson residuals



Pearson residuals
The Pearson residuals are given as

𝑟𝑖 = 𝑜𝑖 − 𝑒𝑖√𝑒𝑖

where 𝑜𝑖 is the observed count for observation 𝑖 and 𝑒𝑖 is the
estimated expected count for observation 𝑖. We have that 𝑜𝑖 = 𝑦𝑖
and 𝑒𝑖 = ̂𝑦𝑖 = 𝜆̂𝑖 = exp(x𝑇

𝑖 ̂𝛽).
Remark: A standardized version scales the Pearson residuals with
√1 − ℎ𝑖𝑖 similar to the standardized residuals for the normal
model. Here ℎ𝑖𝑖 is the diagonal element number 𝑖 in the hat
matrix H = X(X𝑇 X)−1X𝑇 .



Plotting residuals
Deviance and Pearson residuals can be used for checking the fit of
the model, by plotting the residuals against fitted values and
covariates.
Normality of residuals is not assumed, but for large counts can be
reasonable, and can be checked using qq-plots as for the MLR in
Module 2.
Below - notice the trend in the residuals, this is due to the discrete
nature of the response. The plot with different shades of blue
shows that the structures are for equal values of 𝑦.



R Code

model3 = glm(Sa ~ W + C, family = poisson(link = log), data = crab, contrasts = list(C = "contr.sum",
S = "contr.sum"))

df = data.frame(Sa = crab$Sa, fitted = model3$fitted.values, dres = residuals(model3,
type = "deviance"), pres = residuals(model3, type = "pearson"))

library(ggplot2)
# create the plot
gg1 = ggplot(df) + geom_point(aes(x = fitted, y = dres, color = "deviance")) + geom_point(aes(x = fitted,

y = pres, color = "pearson"))
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Pearson Residuals
gg2 = ggplot(df) + geom_point(aes(x = fitted, y = pres, color = Sa))
gg2
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Normal Prabability Plots
dff = data.frame(devres = residuals(model3, type = "deviance"), pearsonres = residuals(model3,

type = "pearson"))
ggplot(dff, aes(sample = devres)) + stat_qq(pch = 19) + geom_abline(intercept = 0,

slope = 1, linetype = "dotted") + labs(x = "Theoretical quantiles", y = "Deviance residuals",
title = "Normal Q-Q", subtitle = deparse(model3$call))
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ggplot(dff, aes(sample = pearsonres)) + stat_qq(pch = 19) + geom_abline(intercept = 0,
slope = 1, linetype = "dotted") + labs(x = "Theoretical quantiles", y = "Pearson residuals",
title = "Normal Q-Q", subtitle = deparse(model3$call))
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Overdispersion

Count data might show greater variability in the response counts
than we would expect if the response followed a Poisson
distribution. This is called overdispersion.

Example: newspaper sales with tourist bus.

Our model states that the variance Var(𝑌𝑖) = 𝜆𝑖. If we change the
model to Var(𝑌𝑖) = 𝜙𝜆𝑖 we may allow for an increased variance
due to heterogeneity among subjects.

Or, we can miss several covariate, then any daya point is a mixture
of several Poisson populations, each with its own mean for the
response.

This heterogeniety may give an overall response distribution where
the variance is greater than the standard Poisson variance.



The overdispersion parameter can be estimated from the Pearson
statistic or deviance

̂𝜙𝐷 = 1
𝑛 − 𝑝𝐷

where 𝐷 is the deviance. Note that similarity to
̂𝜎2 = 1/(𝑛 − 𝑝) ⋅ SSE in the MLR.

Cov( ̂𝛽) can then be changed to ̂𝜙𝐹 −1( ̂𝛽), so we multiply the
standard error by the square root of ̂𝜙𝐷.



Estimating Overdispersion

(more on quasipoisson later in the course)
model.od = glm(Sa ~ W, family = poisson(link = log), data = crab)
model.disp = glm(Sa ~ W, family = quasipoisson(link = log), data = crab)
# summary.glm(model.od)
summary.glm(model.disp)$dispersion

(OverDisp.Dev <- model.od$deviance/model.od$df.residual)
Chi2 <- sum((crab$Sa - fitted(model.od))^2/fitted(model.od))
(OverDisp.Chi2 <- Chi2/model.od$df.residual)

## [1] 3.182205
## [1] 3.320927
## [1] 3.182205



Rate models

In the Poisson process we might analyse an event that occurs
within a time interval or region in space, and therefore it is often of
interest to model the rate at which events occur.

Examples:
▶ crime rates in cities
▶ death rate for smokers vs. non-smokers
▶ rate of auto thefts in cities

We model the rates by using an offset to convert to counts.



We don’t want a model for 𝑌𝑖 but for 𝑌𝑖/𝑡𝑖:
▶ Let 𝑡𝑖 denote the index (population size in the example)

associated with observation 𝑖.
▶ We still assume that 𝑌𝑖 follows a Poisson distribution, but we

now include the index in the modelling and focus on 𝑌𝑖/𝑡𝑖.
▶ The expected value of 𝑌𝑖/𝑡𝑖 would then be E(𝑌𝑖)/𝑡𝑖 = 𝜆𝑖/𝑡𝑖.

A log-linear model would be

log(𝜆𝑖/𝑡𝑖) = x𝑇
𝑖 𝛽

We may equivalently write the model as

log(𝜆𝑖) − log(𝑡𝑖) = x𝑇
𝑖 𝛽

This adjustment term is called an offset and is a known quantity.
Equivalently we have log(𝜆𝑖) = x𝑇

𝑖 𝛽 + log(𝑡𝑖)
The expected number of outcomes will then satisfy

E(𝑌𝑖) = 𝜆𝑖 = 𝑡𝑖 exp(x𝑇
𝑖 𝛽).



Example: British doctors and rate models
British doctors sent a questionnaire (in 1951) about whether they
smoked tobacco, and later information about their deaths were
collected.
Research questions:

1) Is the death rate higher for smokers than for non-smokers?
2) If so, by how much?
3) How is this related to age?

library(boot)
data(breslow)
# n=person-year, ns=smoker-years, y=number of deaths due to cad,
breslow$age <- factor(breslow$age) #age=midpoint 10 year age group,
breslow$smoke <- factor(breslow$smoke) # smoke=smoking status



Writing an offset

Here our count depends on 𝑛
(we are actually using a Poisson approximation to hte binomial)

There are 2 ways of coding an offset in R:
# first age and smoke (but not interaction thereof)
fit1 <- glm(y ~ age + smoke, offset = log(n), family = poisson, data = breslow)
fit1a <- glm(y ~ age + smoke + offset(log(n)), family = poisson, data = breslow)



Do we need an interaction?

# do we need interaction?
fit2 <- update(fit1, . ~ . + smoke * age)
anova(fit1, fit2, test = "Chisq")

## Analysis of Deviance Table
##
## Model 1: y ~ age + smoke
## Model 2: y ~ age + smoke + age:smoke
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 4 12.132
## 2 0 0.000 4 12.132 0.01639 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



The final model

Number of deaths per 1000 doctors.
# year 40 nonsmokers should only be the intercept
exp(fit2$coefficients[1]) * 1000
# 80 year olds who smoke
1000 * exp(sum(fit2$coefficients[c(1, 5, 6, 10)]))

## (Intercept)
## 0.1064396
## [1] 19.18375

(you can also use predict() to do this)



Modelling continuous positive response data

Examples of continuous positive responses
▶ Insurance: Claim sizes
▶ Medicine: Time to blood coagulation (main example)
▶ Biology: Time in various development stages for fruit fly
▶ Meteorology: Amount of precipitation (interactive session -

exam question 2012)
This is also covered in survival analysis, but that often sidesteps
modelling the actual distributions



Models for continuous positive responses
▶ Lognormal distribution on response
▶ Gamma distribution on response
▶ Inverse Gaussian distribution on response (we will not consider

this here)



Time to blood coagulation
The data is clotting time of blood (in seconds) y for normal
plasma diluted to nine different percentage concentrations u with
prothrombin-free plasma (whatever that is!).
To induce the clotting a chemical called thromboplasting was used,
and in the experiment two different lots of the chemical were used -
denoted lot. Our aim is to investigate the relationship between
the clotting time and the dilution percentage, and look at
differences between the lots.



clot = read.table("https://www.math.ntnu.no/emner/TMA4315/2018h/clot.txt", header = T)
clot$lot = as.factor(clot$lot)
summary(clot)

## u time lot
## Min. : 5 Min. : 12.0 1:9
## 1st Qu.: 15 1st Qu.: 18.0 2:9
## Median : 30 Median : 23.0
## Mean : 40 Mean : 32.5
## 3rd Qu.: 60 3rd Qu.: 35.0
## Max. :100 Max. :118.0



Lognormal distribution

Let 𝑌𝑖 be the response on the original scale, where 𝑌𝑖 > 0.

Transform the response to a logaritmic scale: 𝑌 ∗
𝑖 = ln(𝑌𝑖). Then,

assume that transformed responses follow a normal distribution (or
follows approximately) and use ordinary MLR. This means we have
a GLM with normal response and identity link (on logarithmic scale
of reponse).

1. 𝑌 ∗
𝑖 ∼ 𝑁(𝜇∗

𝑖 , 𝜎∗2)
2. 𝜂𝑖 = x𝑇

𝑖 𝛽
3. 𝜇∗

𝑖 = 𝜂𝑖 (identity link)



There are two ways of looking at this,

1. either this is just a transformation to achieve approximate
normality, or

2. we assume that the original data follows a lognormal
distribution.

In genomics one usually assume the former, and reports back
results on the exponential scale - just say that the mean of original
data is exp(𝜇∗

𝑖).
However, if on instead assume that the original data really comes
from a lognormal distribution, then it can be shown that

E(𝑌𝑖) = exp(𝜇∗
𝑖) ⋅ exp(𝜎∗2/2)

Var(𝑌𝑖) = exp(𝜎∗2 − 1) ⋅ 𝜇2
𝑖

i.e. standard deviation proportional to expectation.



Gamma regression

The gamma distribution
We have seen that a gamma distributed variable may be the result
of the time between events in a Poisson process. The well known
𝜒2

𝛿-distribution is a special case of the gamma distribution ( 𝜈
𝜇𝑖

= 2,
𝜈 = 𝛿

2).
There are many parameterization for the gamma distribution, but
we will stick with the one used in our textbook (page 643):
𝑌𝑖 ∼ 𝐺𝑎(𝜇𝑖, 𝜈) with density

𝑓(𝑦𝑖) = 1
Γ(𝜈)( 𝜈

𝜇𝑖
)𝜈𝑦𝜈−1

𝑖 exp(− 𝜈
𝜇𝑖

𝑦𝑖) for 𝑦𝑖 > 0



Comparing the lognormal and gamma

orgmu = 1
orgsd = 0.3 # normal mean and sd
mu = exp(orgmu + orgsd^2/2) # = shape*scale
scale = (exp(orgsd^2) - 1) * mu
shape = mu/scale
library(ggplot2)
xrange = range(0, 10)



These should have the same mean and variance
ggplot(data.frame(x = xrange), aes(xrange)) + xlab(expression(x)) + stat_function(fun = dlnorm,

args = list(meanlog = orgmu, sdlog = orgsd), geom = "line", colour = "red", n = 1001) +
stat_function(fun = dgamma, args = list(shape = shape, scale = scale), geom = "line",

colour = "blue")
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We found in Module 1 that the gamma distribution is an
exponential family, with

▶ 𝜃𝑖 = − 1
𝜇𝑖

is the canonical parameter
▶ 𝜙 = 1

𝜈 ,
▶ 𝑤𝑖 = 1
▶ 𝑏(𝜃𝑖) = − ln(−𝜃𝑖)
▶ E(𝑌𝑖) = 𝑏′(𝜃𝑖) = − 1

𝜃𝑖
= 𝜇𝑖

▶ Var(𝑌𝑖) = 𝑏″(𝜃𝑖) 𝜓
𝑤𝑖

= 𝜇2
𝑖

𝜈

(if you don’t remember, work it out!)



For a GLM model we have canonical link if

𝜃𝑖 = 𝜂𝑖

Since 𝜂𝑖 = 𝑔(𝜇𝑖) this means to us that we need

𝜃𝑖 = 𝑔(𝜇𝑖) = − 1
𝜇𝑖

saying that with the canonical link is − 1
𝜇𝑖

.

However, the most commonly used link is 𝑔(𝜇𝑖) = ln(𝜇𝑖), and the
identity link is also used.

Q: Discuss the implications on 𝜂𝑖 when using the canonical link.
Why might the log-link be preferred?



Remark: often the inverse and not the negative inverse is used,
and since

𝑔(𝜇𝑖) = − 1
𝜇𝑖

= x𝑇
𝑖 𝛽

then 1
𝜇𝑖

= −x𝑇
𝑖 𝛽 = x𝑇

𝑖 𝛽∗

where 𝛽∗ = −𝛽.



Gamma GLM model
1. 𝑌𝑖 ∼ 𝐺𝑎(𝜇𝑖, 𝜈)
2. 𝜂𝑖 = x𝑇

𝑖 𝛽
3. Popular link functions:

▶ 𝜂𝑖 = 𝜇𝑖 (identity link)
▶ 𝜂𝑖 = 1

𝜇𝑖
(inverse link)

▶ 𝜂𝑖 = ln(𝜇𝑖) (log-link)
Remark: In our model the parameter 𝜇𝑖 varies with 𝑖 but 𝜈 is the
same for all observations.



Example: Time to blood coagulation
A simple model to start with is as follows (dosages often analysed
on log scale):
fit1 = glm(time ~ lot + log(u), data = clot, family = Gamma(link = log))
summary(fit1)

##
## Call:
## glm(formula = time ~ lot + log(u), family = Gamma(link = log),
## data = clot)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.44660 0.13453 40.48 < 2e-16 ***
## lot2 -0.47034 0.07095 -6.63 8.02e-06 ***
## log(u) -0.58476 0.03772 -15.50 1.22e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Gamma family taken to be 0.02265072)
##
## Null deviance: 7.7087 on 17 degrees of freedom
## Residual deviance: 0.3211 on 15 degrees of freedom
## AIC: 104.28
##
## Number of Fisher Scoring iterations: 5

Q: describe what you see in the print-out.



Gamma regression: likelihood and derivations thereof

Likelihood:

𝐿(𝛽) =
𝑛

∏
𝑖=1

exp(−𝜈𝑦𝑖
𝜇𝑖

− 𝜈 ln 𝜇𝑖 + 𝜈 ln 𝜈 + (𝜈 − 1) ln 𝑦𝑖 − ln(Γ(𝜈)))

Log-likelihood:

𝑙(𝛽) =
𝑛

∑
𝑖=1

[−𝜈𝑦𝑖
𝜇𝑖

− 𝜈 ln 𝜇𝑖 + 𝜈 ln 𝜈 + (𝜈 − 1) ln 𝑦𝑖 − ln(Γ(𝜈))]

Observe that we now- for the first time - have a nuisance
parameter 𝜈 here.



Fitting the Model

To produce numerical estimates for the parameter of interest 𝛽 we
may proceed to the score function, and solve using Newton
Raphson or Fisher scoring. If we do not have the canonical link the
observed and expected Fisher information matrix may not be equal.

What about 𝜙 = 1/𝜈? Also estimated using maximum likelihood.

Further analyses: as before we use asymptotic distribution of
parameter estimates, and of Wald, LRT and score test.



Scaled and unscaled deviance

We have defined the deviance as

𝐷 = −2(ln 𝐿(candidate model) − ln 𝐿(saturated model))

This is often called the scaled deviance.

The unscaled deviance is then defined as 𝜙𝐷, but is sadly
sometimes also called the deviance - for example by R.

1. For the normal model the
▶ scaled deviance is 𝐷 = 1

𝜎2 ∑𝑛
𝑖=1(𝑦𝑖 − ̂𝜇𝑖)2, while

▶ unscaled deviance is 𝜙𝐷 = ∑𝑛
𝑖=1(𝑦𝑖 − ̂𝜇𝑖)2

2. For the binomial and Poisson model 𝜙 = 1 so the scaled and
unscaled deviance are equal.

3. What about the Gamma model?



Some calculations - see IL week 2, problem 2: 1b.

𝐷 =
−2 ∑𝑛

𝑖=1[ln( 𝑦𝑖
𝜇̂𝑖

) − 𝑦𝑖−𝜇̂𝑖
𝜇̂𝑖

]
𝜙

and unscaled as 𝜙𝐷 = −2 ∑𝑛
𝑖=1[ln( 𝑦𝑖

𝜇̂𝑖
) − 𝑦𝑖−𝜇̂𝑖

𝜇̂𝑖
].

Compare to print-out from R: the deviance in R is the unscaled
deviance.
deviance(fit1)
(nu1 = 1/summary(fit1)$dispersion)
(D = -2 * nu1 * sum(log(fit1$y/fit1$fitted.values) - ((fit1$y - fit1$fitted.values)/fit1$fitted.values)))
deviance(fit1) * nu1

## [1] 0.3210963
## [1] 44.14871
## [1] 14.17599
## [1] 14.17599



Comparing models

Comparing models based on deviance
fit2 = glm(time ~ lot + log(u) + lot:log(u), data = clot, family = Gamma(link = log))
anova(fit1, fit2)
## Analysis of Deviance Table
##
## Model 1: time ~ lot + log(u)
## Model 2: time ~ lot + log(u) + lot:log(u)
## Resid. Df Resid. Dev Df Deviance
## 1 15 0.32110
## 2 14 0.31576 1 0.0053352
The deviance table does not include 𝜙, so the unscaled deviance is
reported. If significance testing is done, the estimated 𝜙 from the
largest model is used, and 𝑝-values are based on the scaled
deviance.



anova(fit1, fit2, test = "Chisq")
1 - pchisq((deviance(fit1) - deviance(fit2))/summary(fit2)$dispersion, fit1$df.residual -

fit2$df.residual)
anova(fit1, fit2, test = "F")
1 - pf((deviance(fit1) - deviance(fit2))/summary(fit2)$dispersion, fit1$df.residual -

fit2$df.residual, fit2$df.residual)

## Analysis of Deviance Table
##
## Model 1: time ~ lot + log(u)
## Model 2: time ~ lot + log(u) + lot:log(u)
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 15 0.32110
## 2 14 0.31576 1 0.0053352 0.6355
## [1] 0.6355477
## Analysis of Deviance Table
##
## Model 1: time ~ lot + log(u)
## Model 2: time ~ lot + log(u) + lot:log(u)
## Resid. Df Resid. Dev Df Deviance F Pr(>F)
## 1 15 0.32110
## 2 14 0.31576 1 0.0053352 0.2246 0.6429
## [1] 0.642854



Comparing models based on AIC
AIC(fit1, fit2)
## df AIC
## fit1 4 104.2763
## fit2 5 105.9738
Q: would you prefer fit1 or fit2?



AIC can also be used when we compare models with different link
functions (models that are not nested).

The literature suggests to plot 𝑦𝑖 vs. each covariate to get a hint
about which link function or transformation to use.

▶ Identity: Plot of 𝑦𝑖 vs 𝑥𝑖 should be close to linear
▶ ln ∶ Plot of ln(𝑦𝑖) vs 𝑥𝑖 should be close to linear
▶ Inverse (reciprocal): Plot of 1/𝑦𝑖 vs 𝑥𝑖 should be close to

linear



Compare link functions

library(ggplot2)
library(ggpubr)
y = clot$time
x = clot$u

df = data.frame(y = y, x = x)
gg1 = ggplot(df) + geom_point(aes(x = log(x), y = y)) + ggtitle("Identity")
gg2 = ggplot(df) + geom_point(aes(x = log(x), y = log(y))) + ggtitle("Log")
gg3 = ggplot(df) + geom_point(aes(x = log(x), y = 1/y)) + ggtitle("Inverse")
gg4 = ggplot(df) + geom_point(aes(x = sqrt(1/x), y = log(y))) + ggtitle("Log, sqrt x")



ggarrange(gg1, gg2, gg3, gg4)
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fit4 = glm(time ~ lot + sqrt(1/u), data = clot, family = Gamma(link = log))
AIC(fit1, fit4)

## df AIC
## fit1 4 104.27633
## fit4 4 45.01688



Code for Residual Plots

df4 = data.frame(fitted = fit4$fitted.values, dres = residuals(fit4, type = "deviance"))
gg4 = ggplot(df4) + geom_point(aes(x = fitted, y = dres)) + scale_color_discrete("") +

ggtitle("time~lot+sqrt(1/u)")
df1 = data.frame(fitted = fit1$fitted.values, dres = residuals(fit1, type = "deviance"))
gg1 = ggplot(df1) + geom_point(aes(x = fitted, y = dres)) + scale_color_discrete("") +

ggtitle("time~lot+log(u)")



The Plots

Are these good?
ggarrange(gg1, gg4)
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R packages

install.packages(c("tidyverse", "ggplot2", "statmod", "corrplot", "ggplot2", "GGally",
"boot"))



Further reading

▶ A. Agresti (1996): “An Introduction to Categorical Data
Analysis”.

▶ A. Agresti (2015): “Foundations of Linear and Generalized
Linear Models.” Wiley.

▶ A. J. Dobson and A. G. Barnett (2008): “An Introduction to
Generalized Linear Models”, Third edition.

▶ J. Faraway (2015): “Extending the Linear Model with R”,
Second Edition. http://www.maths.bath.ac.uk/~jjf23/ELM/

▶ P. McCullagh and J. A. Nelder (1989): “Generalized Linear
Models”. Second edition.

http://www.maths.bath.ac.uk/~jjf23/ELM/

