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Overview

Learning material
▶ Textbook: Fahrmeir et al (2013): Chapter 5.4, 5.8.2.
▶ Classnotes 27.09.2018

Additional notes (with theoretical focus):
▶ Exponential family from Module 1
▶ Proof of E and Var for exp fam
▶ Proof of two forms for F
▶ Orthogonal parameters
▶ IRWLS

https://www.math.ntnu.no/emner/TMA4315/2018h/M52018.pdf
https://www.math.ntnu.no/emner/TMA4315/2018h/Module1ExponentialFamily.pdf
https://www.math.ntnu.no/emner/TMA4315/2018h/M5ExpFamProofEVar.pdf
https://www.math.ntnu.no/emner/TMA4315/2018h/ExpectedFisherInfo.pdf
https://www.math.ntnu.no/emner/TMA4315/2018h/M5OrthPar.pdf
https://www.math.ntnu.no/emner/TMA4315/2018h/M5irwls.pdf


Topics
▶ random component: exponential family

▶ elements: 𝜃, 𝜙, 𝑤, 𝑏(𝜃)
▶ elements for normal, binomial, Poisson and gamma
▶ properties: E(𝑌 ) = 𝑏′(𝜃) and Var(𝑌 ) = 𝑏″(𝜃) 𝜙

𝑤 (and proof)
▶ systematic component= linear predictor

▶ requirements: full rank of design matrix
▶ link function and response function

▶ link examples for normal, binomial, Poisson and gamma
▶ requirements: one-to-one and twice differentiable
▶ canonical link



▶ likelihood inference set-up: 𝜃𝑖 ↔ 𝜇𝑖 ↔ 𝜂𝑖 ↔ 𝛽
▶ the loglikelihood
▶ the score function
▶ expected Fisher information matrix for the GLM and

covariance for ̂𝛽
▶ what about covariance of ̂𝛽 when 𝜙 needs to be estimated?
▶ estimator for dispersion parameter

▶ Fisher scoring and iterated reweighted least squares (IRWLS)
▶ Pearson and deviance statistic
▶ AIC

– so, for the first time: no practical examples or data sets to be
analysed!

Jump to interactive.



GLM — three ingredients

Random component - exponential family
In Module 1 we introduced distributions of the 𝑌𝑖, that could be
written in the form of a univariate exponential family

𝑓(𝑦𝑖 ∣ 𝜃𝑖) = exp (𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖)
𝜙 ⋅ 𝑤𝑖 + 𝑐(𝑦𝑖, 𝜙, 𝑤𝑖))

where we said that
▶ 𝜃𝑖 is called the canonical parameter and is a parameter of

interest
▶ 𝜙 is called a nuisance parameter (and is not of interest to

us=therefore a nuisance (plage))
▶ 𝑤𝑖 is a weight function, in most cases 𝑤𝑖 = 1 (NB: can not

contain any unknown parameters)
▶ 𝑏 and 𝑐 are known functions.





Elements - Poisson

𝜃 = log(𝜇)
𝑏(𝜃) = 𝑒𝜃

𝜙 = 1
𝑤 = 1

E(𝑌 ) = 𝑒𝜃

Var(𝑌 ) = 𝜙/𝑤
You can get equivalent results for the normal, Bernoulli, and
gamma. Here we will look at the general results



Elements - for normal, Bernoulli, Poisson and gamma
We have seen:

Distribution𝜃 𝑏(𝜃) 𝜙 𝑤
E(𝑌 ) =
𝑏′(𝜃) 𝑏″(𝜃)

Var(𝑌 ) =
𝑏″(𝜃)𝜙/𝑤

normal𝜇 1
2𝜃2 𝜎2 1 𝜇 = 𝜃 1 𝜎2

Bernoulliln ( 𝑝
1−𝑝) ln(1+

exp(𝜃))
1 1 𝑝 =

exp(𝜃)
1+exp(𝜃)

𝑝(1−
𝑝)

𝑝(1 − 𝑝)

Poissonln 𝜇 exp(𝜃) 1 1 𝜆 =
exp(𝜃)

𝜆 𝜆

gamma− 1
𝜇 − ln(−𝜃)1

𝜈 1 𝜇 = −1/𝜃 𝜇2 𝜇2/𝜈



Systematic component - linear predictor
Nothing new - as always in this course: 𝜂𝑖 = x𝑇

𝑖 𝛽, and we require
that the 𝑛 × 𝑝 design matrix X = (x𝑇

1 , x𝑇
2 , … , x𝑇

𝑛 ) has full rank
(which is 𝑝).
Remark: in this course we always assume that 𝑛 >> 𝑝.



Link function - and response function
Link function: 𝜂𝑖 = 𝑔(𝜇𝑖)
Response function: 𝜇𝑖 = ℎ(𝜂𝑖)
Canonical link: 𝜂𝑖 = 𝜃𝑖, so 𝑔(𝜇𝑖) = 𝜃𝑖 When the canonical link is
used some of the results for the GLM (to be studied in the next
sections) are simplified.



Examples for normal, binomial, Poisson and gamma

random
com-
po-
nent response function and link function
normal ℎ(𝜂𝑖) = 𝜂𝑖 and 𝑔(𝜇𝑖) = 𝜇𝑖, “identity link”.
binomial ℎ(𝜂𝑖) = 𝑒𝜂𝑖

1+𝑒𝜂𝑖 and 𝑔(𝜇𝑖) = ln ( 𝜇𝑖
1−𝜇𝑖

) = logit(𝑝𝑖). NB:
𝜇𝑖 = 𝑝𝑖 in our set-up.

Poisson ℎ(𝜂𝑖) = exp(𝜂𝑖) and 𝑔(𝜇𝑖) = ln(𝜇𝑖), log-link.
gamma ℎ(𝜂𝑖) = − 1

𝜂𝑖
and 𝑔(𝜇𝑖) = − 1

𝜇𝑖
, negative inverse, or

ℎ(𝜂𝑖) = exp(𝜂𝑖) and 𝑔(𝜇𝑖) = ln(𝜇𝑖), log-ink.



Requirements
There are a few formal requirements for the mathematics to work,
in particular:

▶ one-to-one (inverse exists)
▶ twice differential (for score function and expected Fisher

information matrix)



Properties of the exponential family
We have two general properties:

E(𝑌𝑖) = 𝑏′(𝜃𝑖)
and

Var(𝑌𝑖) = 𝑏″(𝜃𝑖)
𝜙
𝑤𝑖

In class we study the handwritten proof together: Proof
𝑏″(𝜃𝑖) is often called the variance function 𝑣(𝜇𝑖).

https://www.math.ntnu.no/emner/TMA4315/2018h/M5ExpFamProofEVar.pdf


The Score (as a function of 𝜃)
The score is 𝜕𝑙

𝜕𝜃 , i.e.

𝜕𝑙𝑖
𝜕𝜃 = 𝑠𝑖(𝜃) =

𝜕 (𝑦𝑖𝜃𝑖−𝑏(𝜃𝑖)
𝜙 ⋅ 𝑤𝑖 + 𝑐(𝑦𝑖, 𝜙, 𝑤𝑖))

𝜕𝜃
= (𝑦𝑖 − 𝑏′(𝜃))𝑤𝑖

𝜙



The Expected Score
As a general result we have 𝐸(𝑠𝑖(𝜃𝑖)) = 0
Proof:
𝐸(𝑠𝑖(𝜃𝑖)) = ∫ 𝑑𝑙(𝜃)

𝑑𝜃 𝑓(𝑦|𝜃)𝑑𝜃
and because 𝑑 log(𝑦)/𝑑𝑥 = 1/𝑦𝑑𝑦/𝑑𝑥, we get

𝐸(𝑠𝑖(𝜃𝑖)) = ∫ 1
𝑓(𝑦|𝜃)

𝑑𝑓(𝑦|𝜃)
𝑑𝜃 𝑓(𝑦|𝜃)𝑑𝑦 = ∫ 𝑑𝑓(𝑦|𝜃)

𝑑𝜃 𝑑𝑦



Now, if everything is well behaved, we can reverse the integration
and differentiation:

𝐸(𝑠𝑖(𝜃𝑖)) = ∫ 𝑑(𝑦|𝜃)
𝑑𝜃 𝑑𝑦 = 𝑑 ∫(𝑦|𝜃)𝑑𝑦

𝑑𝜃 = 𝑑1
𝑑𝜃 = 0



A Different Proof that E(𝑌𝑖) = 𝑏′(𝜃𝑖)
This is straightforward, from 𝐸(𝑠𝑖(𝜃𝑖)) = 0

𝐸(𝑠) = 𝐸 ((𝑦𝑖 − 𝑏′(𝜃))𝑤𝑖
𝜙 )

= (𝐸(𝑦𝑖) − 𝑏′(𝜃))𝑤𝑖
𝜙 = 0

= 𝐸(𝑦𝑖) − 𝑏′(𝜃) = 0
So 𝐸(𝑦𝑖) = 𝑏′(𝜃)



Variance, 𝑉 𝑎𝑟(𝑌𝑖) = 𝑏″(𝜃)𝜙/𝑤

Strategy: calculate 𝜕2𝑓/𝜕𝜃2, then integrate over 𝑦
∫ 𝜕2𝑓(𝑦)/𝜕𝜃2𝑑𝑦 = 0 (see notes: we can swap integration &
partial derivative)

Go to the notes



Observed Fisher Information

The observed Fisher information is

𝜕2𝑙𝑖
𝜕𝜃2 = 𝜕𝑠𝑖(𝜃)

𝜕𝜃

=
𝜕(𝑦𝑖 − 𝑏′(𝜃))𝑤𝑖

𝜙
𝜕𝜃

= −𝑏″(𝜃)𝑤𝑖
𝜙



Likelihood inference set-up

𝜃𝑖 ↔ 𝜇𝑖 ↔ 𝜂𝑖 ↔ 𝛽

𝑓(𝑦𝑖|𝜃𝑖) = 𝑒𝑥𝑝 (𝑦𝑖𝜃 − 𝑏(𝜃𝑖)
𝜙/𝑤𝑖

+ 𝑐(𝑦𝑖, 𝜙, 𝑤𝑖))

𝜇𝑖 = 𝑏′(𝜃𝑖)(= 𝐸(𝑌𝑖))
𝜇𝑖 = ℎ(𝜂𝑖), = 𝑔−1(𝜂𝑖)
𝜂𝑖 = 𝑥′

𝑖𝛽

Canonical link: 𝜂𝑖 = 𝜃𝑖, so 𝑔(𝜇𝑖) = 𝜃𝑖, otherwise it gets messy

See class notes or Fahrmeir et al (2015), Section 5.8.2 for the
derivation of the loglikelihood, score and expected Fisher
information matrix.



Loglikelihood

𝑙(𝛽) =
𝑛

∑
𝑖=1

𝑙𝑖(𝛽) =
𝑛

∑
𝑖=1

1
𝜙(𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖))𝑤𝑖 +

𝑛
∑
𝑖=1

𝑐(𝑦𝑖, 𝜙, 𝑤𝑖)

The part of the loglikelihood involving both the data and the
parameter of interest is for a canonical link equal to

𝑛
∑
𝑖=1

𝑦𝑖𝜃𝑖 =
𝑛

∑
𝑖=1

𝑦𝑖x𝑇
𝑖 𝛽 =

𝑛
∑
𝑖=1

𝑦𝑖

𝑝
∑
𝑗=1

𝑥𝑖𝑗𝛽𝑗 =
𝑝

∑
𝑗=1

𝛽𝑗
𝑛

∑
𝑖=1

𝑦𝑖𝑥𝑖𝑗



Score function
What is the score function as a function of 𝛽? We need a long
chain rule…

𝑠(𝛽) = 𝜕𝑙
𝜕𝛽 = 𝜕𝑙(𝜃)

𝜕𝜃
𝜕𝜃
𝜕𝜇

𝜕𝜇
𝜕𝜂

𝜕𝜂
𝜕𝛽

We already have 𝜕𝑙/𝜕𝜃 = (𝑦𝑖 − 𝑏′(𝜃))𝑤𝑖
𝜙 , so we need the rest



Score function

𝑠(𝛽) = 𝜕𝑙
𝜕𝛽 = 𝜕𝑙(𝜃)

𝜕𝜃
𝜕𝜃
𝜕𝜇

𝜕𝜇
𝜕𝜂

𝜕𝜂
𝜕𝛽

𝜕𝑙
𝜕𝜃𝑖

= (𝑦𝑖 − 𝑏′(𝜃𝑖))
𝑤𝑖
𝜙

𝜕𝜃𝑖
𝜕𝜇𝑖

= …

𝜕𝜇𝑖
𝜕𝜂𝑖

= 𝜕ℎ(𝜂𝑖)
𝜕𝜂𝑖

= ℎ′(𝜂𝑖)

𝜕𝜂𝑖
𝜕𝛽 = 𝜕x′

𝑖𝛽
𝜕𝛽 = x𝑖



We get 𝜕𝜃𝑖
𝜕𝜇𝑖

by reversing numerator and denominator:

𝜕𝜇𝑖
𝜕𝜃𝑖

= 𝜕𝑏′(𝜃𝑖)
𝜕𝜃𝑖

= 𝑏″(𝜃𝑖) = 𝑤𝑖Var(𝑦𝑖)
𝜙

So

𝜕𝜃𝑖
𝜕𝜇𝑖

= 𝜙
𝑤𝑖Var(𝑦𝑖)



Putting it together

𝜕𝑙
𝜕𝜃𝑖

= (𝑦𝑖 − 𝑏′(𝜃𝑖))
𝑤𝑖
𝜙

𝜕𝜃𝑖
𝜕𝜇𝑖

= 𝜙
𝑤𝑖Var(𝑦𝑖)

𝜕𝜇𝑖
𝜕𝜂𝑖

= 𝜕ℎ(𝜂𝑖)
𝜕𝜂𝑖

= ℎ′(𝜂𝑖)

𝜕𝜂𝑖
𝜕𝛽 = 𝜕x′

𝑖𝛽
𝜕𝛽 = x𝑖

So

𝑠(𝛽) = (𝑦𝑖 − 𝑏′(𝜃𝑖))
𝑤𝑖
𝜙

𝜙
𝑤𝑖Var(𝑦𝑖)

ℎ′(𝜂𝑖)x𝑖 = (𝑦𝑖 − 𝑏′(𝜃𝑖))
Var(𝑦𝑖)

ℎ′(𝜂𝑖)x𝑖



Total Score

𝑠(𝛽) =
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝜇𝑖)x𝑖ℎ′(𝜂𝑖)
Var(𝑌𝑖)

= X𝑇 DΣ−1(y − 𝜇)

where Σ = diag(Var(𝑌𝑖)) and D = diag(ℎ′(𝜂𝑖)) (derivative wrt
𝜂𝑖).

Remark: observe that 𝑠(𝛽) = 0 only depends on the distribution of
𝑌𝑖 through 𝜇𝑖 and Var(𝑌𝑖).



Canonical link

This is neat, because 𝜕𝜇𝑖
𝜕𝜂𝑖

= 𝑏″(𝜃𝑖):

𝑠(𝛽) =
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝜇𝑖)x𝑖𝑤𝑖
𝜙



Expected Fisher information matrix for the GLM and
covariance for ̂𝛽

𝐹[ℎ,𝑙](𝛽) =
𝑛

∑
𝑖=1

𝑥𝑖ℎ𝑥𝑖𝑙(ℎ′(𝜂𝑖))2

Var(𝑌𝑖)

𝐹(𝛽) = X𝑇 WX

where W = diag(ℎ′(𝜂𝑖)2

Var(𝑌𝑖) ).



Canonical link:

𝜕2𝑙𝑖
𝜕𝛽𝑗𝜕𝛽𝑙

= −𝑥𝑖𝑗𝑤𝑖
𝜙 (𝜕𝜇𝑖

𝜕𝛽𝑙
)

which do not contain any random variables, so the observed must
be equal to the expected Fisher information matrix.



Fisher scoring and iterated reweighted least squares (IRWLS)
Details on the derivation: IRWLS

𝛽(𝑡+1) = 𝛽(𝑡) + 𝐹(𝛽(𝑡))−1𝑠(𝛽(𝑡))
Insert formulas for expected Fisher information and score function.

𝛽(𝑡+1) = (X𝑇 W(𝛽(𝑡))X)−1X𝑇 W(𝛽(𝑡))ỹ(𝑡)
𝑖

where W is as before W = diag(ℎ′(𝜂𝑖)2

Var(𝑌𝑖) ) - but now the current
version of 𝛽(𝑡) is used. The diagonal elements are called the
working weights. The ỹ(𝑡)

𝑖 is called the working response vector
and has element 𝑖 given as

ỹ(𝑡)
𝑖 = x𝑇

𝑖 𝛽(𝑡) + 𝑦𝑖 − ℎ(x𝑇
𝑖 𝛽(𝑡))

ℎ′(x𝑇
𝑖 𝛽(𝑡)) .

Remark: Convergence? With full rank of X and positive diagonal
elements of W we are certain that the inverse will exist, but there
might be that the temporary version of W can cause problems.

https://www.math.ntnu.no/emner/TMA4315/2018h/M5irwls.pdf


See what is output from glm- observe working weights as
weights..
fitgrouped = glm(cbind(y, n - y) ~ ldose, family = "binomial", data = investr::beetle)
# names(fitgrouped)
round(fitgrouped$weights, 2)
round(fitgrouped$residuals, 2)

## 1 2 3 4 5 6 7 8
## 3.25 8.23 14.32 13.38 10.26 5.16 2.65 1.23
## 1 2 3 4 5 6 7 8
## 0.78 0.38 -0.31 -0.44 0.19 -0.06 0.67 1.02



Estimator for dispersion parameter
Let data be grouped as much as possible. With G groups
(covariate pattern) with 𝑛𝑖 observations for each group (then
𝑛 = ∑𝐺 𝑛𝑖 = 𝑛):

̂𝜙 = 1
𝐺 − 𝑝

𝐺
∑
𝑖=1

(𝑦𝑖 − ̂𝜇𝑖)2

𝑏″(𝜃𝑖)/𝑤𝑖

The motivation behind this estimator is as follows:

Var(𝑌𝑖) = 𝜙𝑏″(𝜃𝑖)/𝑤𝑖 ⇔ 𝜙 = Var(𝑌𝑖)/(𝑏″(𝜃𝑖)/𝑤𝑖)



Distribution of the MLE

As before we have that maximum likelihood estimator ̂𝛽
asymptotically follows the multivariate normal distribution with
mean 𝛽 and covariance matrix equal to the inverse of the expected
Fisher information matrix. This is also true when we replace the
unknown 𝛽 with the estimated ̂𝛽 for the expected Fisher
information matrix.

̂𝛽 ≈ 𝑁𝑝(𝛽, 𝐹 −1( ̂𝛽))
and with

𝐹( ̂𝛽) = X𝑇 ŴX

where Ŵ denotes that ̂𝛽 is used then calculating
W = diag(ℎ′(𝜂𝑖)2

Var(𝑌𝑖) ).



What about the distribution of ̂𝛽, ̂𝜙?
The concept of orthogonal parameters

Hypothesis testing
Same as before - for the Wald we insert the formula for the
covariance matrix of ̂𝛽, for the LRT we insert the loglikelihoods
and for the score test we insert formulas for the score function and
expected Fisher information matrix.

https://www.math.ntnu.no/emner/TMA4315/2018h/M5OrthPar.pdf


Model assessment and model choice

Pearson and deviance statistic
Group observations together in groups of maximal size (covariate
patterns? interval versions thereof?). Group 𝑖 has 𝑛𝑖 observations,
and there are 𝐺 groups. Asymptotic distribution correct if all
groups have big 𝑛𝑖. For the non-continuous individual data
asymptotic results can not be trusted.
Deviance

𝐷 = −2[
𝑔

∑
𝑖=1

(𝑙𝑖( ̂𝜇𝑖) − 𝑙𝑖( ̄𝑦𝑖))]

with approximate 𝜒2-distribution with 𝐺 − 𝑝 degrees of freedom.



Pearson:

𝑋2
𝑃 =

𝐺
∑
𝑖=1

(𝑦𝑖 − ̂𝜇𝑖)2

𝑣( ̂𝜇𝑖)/𝑤𝑖

with approximate 𝜙 ⋅ 𝜒2-distribution with 𝐺 − 𝑝 degrees of freedom.

Remember that the variance function 𝑣( ̂𝜇𝑖) = 𝑏″(𝜃𝑖) (this is a
function of 𝜇𝑖 because 𝜇𝑖 = 𝑏′(𝜃𝑖)).
AIC
Let 𝑝 be the number of regression parameters in our model.

AIC = −2 ⋅ 𝑙( ̂𝛽) + 2𝑝

If the dispersion parameter is estimated use (𝑝 + 1) in place of 𝑝.



Further reading

▶ A. Agresti (2015): “Foundations of Linear and Generalized
Linear Models.” Wiley.


