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Overview

Learning material
This topic is new on the reading list this year.

▶ Textbook: Fahrmeir et al (2013): Chapter 6 (not p 344-345
nominal models and latent utility models, not 6.3.2 Sequential
model, and not category specific varables on page 344-3458).

▶ Classnotes 25.10.2018

https://www.math.ntnu.no/emner/TMA4315/2018h/M62018.pdf


Topics
▶ multinomial random component
▶ nominal vs. ordinal response
▶ ungrouped and grouped data
▶ multivariate exponential family
▶ nominal response and logit models
▶ ordinal reponse and logit models - based on a latent model
▶ likelihood inference

Jump to interactive.



Categorical random component

We consider a situation where our random variable (response) is
given as one of 𝑐 + 1 possible categories (where we will look at
category 𝑐 + 1 as the reference category).

The categories will either be
▶ Unordered: nominal response variable. Example: food types in

alligator example.
▶ Ordered: ordered response variable. Example: degrees of

mental impairment.



Assumptions:
▶ Independent observation pairs (Y𝑖, x𝑖).
▶ 𝜋𝑖𝑟: probability that the response is category 𝑟 for subject 𝑖.
▶ ∑𝑐+1

𝑠=1 𝜋𝑖𝑠 = 1 for all 𝑖, so that 𝜋𝑖,𝑐+1 = 1 − ∑𝑐
𝑠=1 𝜋𝑖𝑠. So,

we have 𝑐 probabilities to estimate.
▶ Further, the covariate vector x𝑖 consists of the same

measurements for each response category (that is, not
different covariate types that are measured for each response
category - which in our textbook is written as independent of
the response category).



When coding the response variable we use a dummy variable
coding with 𝑐 elements (the 𝑐 + 1 category is the reference level).
This means that if we have that 𝜋𝑖𝑟 = 1 then
y𝑖 = (0, 0, … , 0, 1, 0, … , 0) with a value of 1 in the 𝑟th element of
y𝑖. If observation 𝑖 comes from category 𝑐 + 1 we have
y𝑖 = (0, 0, … , 0).



Categorical regression
is modelling and estimating the probabilites
𝜋𝑖𝑟 = 𝑃 (𝑌𝑖 = 𝑟) = 𝑃(𝑌𝑖𝑟 = 1) as a function of the covariates x𝑖.
The modelling is done differently for nominal (unordered) and
ordered categories, but both rely upon the multinomial distribution.
For unordered categories, a Poisson distribution can also be used



The multinomial distribution
Probability mass function for one observation:

𝑓(y) = 𝜋𝑦1
1 𝜋𝑦2

2 ⋯ 𝜋𝑦𝑐𝑐 (1 − 𝜋1 − 𝜋2 − ⋯ − 𝜋𝑐)1−𝑦1−𝑦2−⋯−𝑦𝑐

where then y = (𝑦1, 𝑦2, … , 𝑦𝑐) and 𝑦𝑟 = 1 if the observation
comes from the 𝑟th category.



If we then have 𝑚 independent trials then y = (𝑦1, 𝑦2, … , 𝑦𝑐) is
summed over our 𝑚 responses, so that 𝑦𝑟 is the number of
observations where the response is from the 𝑟th category.

𝑓(y) = 𝑚!
𝑦1! ⋯ 𝑦𝑐!(𝑚 − 𝑦1 − ⋯ − 𝑦𝑐)!𝜋

𝑦1
1 𝜋𝑦2

2 ⋯ 𝜋𝑦𝑐𝑐 (1−𝜋1−𝜋2−⋯−𝜋𝑐)𝑚−𝑦1−𝑦2−⋯−𝑦𝑐



The mean and the covariance matrix of the random vector Y are
given by:

E(Y) = 𝑚𝜋 =
⎛⎜⎜⎜
⎝

𝑚𝜋1
𝑚𝜋2

⋮
𝑚𝜋𝑐

⎞⎟⎟⎟
⎠

Cov(Y) = 𝑚
⎛⎜⎜⎜
⎝

𝜋1(1 − 𝜋1) −𝜋1𝜋2 ⋯ −𝜋1𝜋𝑐
−𝜋2𝜋1 𝜋2(1 − 𝜋2) ⋯ −𝜋2𝜋𝑐

⋮ ⋮ ⋱ ⋮
−𝜋𝑐𝜋1 −𝜋𝑐𝜋2 ⋯ 𝜋𝑐(1 − 𝜋𝑐)

⎞⎟⎟⎟
⎠

Q: what about E(𝑌𝑐+1) and Cov(𝑌1, 𝑌𝑐+1)?



Finally, if we look at ̄𝑌𝑟 = 1
𝑚𝑌𝑟 then Ȳ = 1

𝑚Y follows a scaled
multinomial distribution Ȳ ∼ 1

𝑚𝑀(𝑚, 𝜋) with E(Ȳ) = 𝜋 and
Cov(Ȳ) = 1

𝑚2 Cov(Y).



Data

Ungrouped data

Y =
⎛⎜⎜⎜
⎝

𝑌11 𝑌12 ⋯ 𝑌1𝑐
𝑌21 𝑌22 ⋯ 𝑌2𝑐

⋮ ⋮ ⋱ ⋮
𝑌𝑛1 𝑌𝑛2 ⋯ 𝑌𝑛𝑐

⎞⎟⎟⎟
⎠

and X is an 𝑛 × 𝑝 matrix as usual.



Grouped data
As for the binomial case we look at the number of occurences with
a group - that is, one covariate pattern.

Y =
⎛⎜⎜⎜
⎝

𝑌11 𝑌12 ⋯ 𝑌1𝑐
𝑌21 𝑌22 ⋯ 𝑌2𝑐

⋮ ⋮ ⋱ ⋮
𝑌𝐺1 𝑌𝐺2 ⋯ 𝑌𝐺𝑐

⎞⎟⎟⎟
⎠

The notation here is that we have 𝑛𝑖 observation for each covariate
pattern (group) 𝑖 for 𝑖 = 1, … , 𝐺. This will replace the 𝑚 used for
the multinomial distribution above.



Regression with nominal responses

nominal=unordered

Agresti (2015, p203): “The model treats the response variable as
nominal scale in the following sense: if the model holds and the
outcome categories are permuted in any way, the model still holds
with the corresponding permuatation of the effects.”



This is a generalization of the binary logit model with 𝑃(𝑌 = 1) vs
𝑃(𝑌 = 0), to 𝑐 models of 𝜋𝑖𝑟 vs 𝜋𝑖,𝑐+1 for 𝑟 = 1, … , 𝑐.

The models can be written using log ratios:

ln( 𝜋𝑖𝑟
𝜋𝑖,𝑐+1

) = x𝑇
𝑖 𝛽𝑟

Remark: 𝛽𝑟 is the 𝑝 × 1 coefficient vector for the 𝑟th response

Using this we may also look at the log ratio for any two
probabilites 𝜋𝑖𝑎 and 𝜋𝑖𝑏:

ln(𝜋𝑖𝑎
𝜋𝑖𝑏

) = ln( 𝜋𝑖𝑎
𝜋𝑖,𝑐+1

) − ln( 𝜋𝑖𝑏
𝜋𝑖,𝑐+1

) = x𝑇
𝑖 (𝛽𝑎 − 𝛽𝑏)



Alternatively, we may write out the model for the probabilites:

𝑃 (𝑌𝑖 = 𝑟) = 𝜋𝑖𝑟 = exp(x𝑇
𝑖 𝛽𝑟)

1 + ∑𝑐
𝑠=1 exp(x𝑇

𝑖 𝛽𝑠)

𝑃 (𝑌𝑖 = 𝑐+1) = 𝜋𝑖,𝑐+1 = 1−𝜋𝑖1 −⋯ 𝜋𝑖𝑐 = 1
1 + ∑𝑐

𝑠=1 exp(x𝑇
𝑖 𝛽𝑠)



Multivariate GLM
This is a multivariate GLM and the multinomial distribution is a
multivariate exponential family.

𝑓(y𝑖, 𝜃𝑖, 𝜙) = exp(y𝑇
𝑖 𝜃𝑖 − 𝑏(𝜃𝑖)𝑤𝑖

𝜙 + 𝑐(y𝑖, 𝜙, 𝑤𝑖))

where 𝜃 has dimension 𝑐.



Multivariate GLM-set-up
1. Y𝑖 is multinomial with

𝜇𝑖 = E(Y𝑖) = 𝜋𝑖 =
⎛⎜⎜⎜
⎝

𝜋𝑖1
𝜋𝑖2
⋮

𝜋𝑖,𝑐+1

⎞⎟⎟⎟
⎠

Remark: if grouped data we instead look at Ȳ𝑖 ∼ 1
𝑛𝑖

𝑀(𝑛𝑖, 𝜋𝑖) so
that the mean is 𝜋𝑖



2. Linear predictor is now a 𝑐 × 1 vector:

𝜂𝑖 =
⎛⎜⎜⎜
⎝

𝜂𝑖1
𝜂𝑖2
⋮

𝜂𝑖,𝑐

⎞⎟⎟⎟
⎠

=
⎛⎜⎜⎜
⎝

x𝑇
𝑖 𝛽1

x𝑇
𝑖 𝛽2
⋮

x𝑇
𝑖 𝛽𝑐

⎞⎟⎟⎟
⎠



3. Link functions (𝑐 of those): g(𝜇𝑖) = 𝜂𝑖 where for the nominal
logit data model element 𝑟 (for 𝑟 = 1, … , 𝑐) of g is

𝑔𝑟(𝜇𝑖) = ln( 𝜇𝑖𝑟
1 − 𝜇𝑖1 − ⋯ − 𝜇𝑖𝑐

) = ln( 𝜋𝑖𝑟
1 − 𝜋𝑖1 − ⋯ − 𝜋𝑖𝑐

)

We also define response functions (h) with elements ℎ𝑟 given by
𝜋𝑖𝑟 = ℎ𝑟(𝜂𝑖1, 𝜂𝑖2, … , 𝜂𝑖𝑐), and we have for the nominal data model

𝜋𝑖𝑟 = ℎ𝑟((𝜂𝑖1, 𝜂𝑖2, … , 𝜂𝑖𝑐) = exp(𝜂𝑖𝑟)
1 + ∑𝑐

𝑠=1 exp(𝜂𝑖𝑠)



It turns out that the reference category logits are the canonical
links for the multinomial distribution GLM.

In this case, as for the univariate exponential family GLM the
loglikelihood is concave with an unique maximum (if it exists) and
the expected and observed Fisher information matrices are equal.

As before, we find maximum likelihood parameter estimates from
the Fisher scoring or Newton Raphson method.

Remember: now we have 𝑝 × 𝑐 parameters to estimate — 𝑝 for
each category 𝑐. All of these coefficients may either be put into a
long vector (length 𝑝 ⋅ 𝑐) — which might be easiest to understand
for the estimation, or into a matrix of dimension 𝑝 × 𝑐 — might be
easier for viewing.



Likelihood
(grouped data)
With the notation that 𝛽 is a long vector with the coefficients for
the 𝑐 categories stacked upon eachother.

𝐿(𝛽) = Π𝐺
𝑖=1𝑓(y𝑖 ∣ 𝜋)

where 𝑓 is the multinomial distribution function.



Loglikelihood

𝑙(𝛽) ∝
𝐺

∑
𝑖=1

𝑐+1
∑
𝑠=1

𝑦𝑖𝑠 ln(𝜋𝑖𝑠)

where we remember that 𝑦𝑖,𝑐+1 = 𝑛𝑖 − 𝑦𝑖1 − ⋯ − 𝑦𝑖𝑐, and
1 − 𝜋𝑖1 − ⋯ 𝜋𝑖𝑐.
(This formula is also correct for the ordinal model of the next
section.) General formulas for the score function and expected
Fisher information matrix follow later.



Deviance
The derivation used for the binary GLM model generalizes directly
ot the multinomial GLM. The fitted probabilities are ̂𝜋𝑖𝑗 (group 𝑖
and category 𝑗) and the saturated model (grouped data) is
𝑛𝑖 ̃𝜋𝑖𝑗 = 𝑦𝑖𝑗.

𝐷 = 2
𝐺

∑
𝑖=1

𝑐+1
∑
𝑠=1

𝑦𝑖𝑠 ln( 𝑦𝑖𝑠
𝑛𝑖 ̂𝜋𝑖𝑠

)

The asymptotic distribution is as before 𝜒2 with “the number of
groups times number of categories minus 1 (Gc)” minus “the
number of covariates (cp)”, giving 𝐺𝑐 − 𝑐𝑝 = 𝑐(𝐺 − 𝑝) degrees of
freedom.



The deviance can be used for model check with grouped data (𝐺
groups with 𝑛𝑖 observations), but can be used to compare nested
unsaturated models also for individual (ungrouped) data, with
again an asymptotic 𝜒2 distribution with the difference of number
of parameters between the two models.

This formula is also correct for the ordinal model of the next
section, except that the number of parameters estimated differ.



Alligators example
Example and data are taken from Agresti (2015, pages 217-219).
Research question: what is the factors influencing the primary food
choice of alligators?
Data are from 219 captured alligators from four lakes in Florida,
where the stomack contents of the alligators were investigated.
The weight of different types of food was measured, and then the
primary food choice (highest weight) was noted. The primary
choice is given as y1:y5 below. In addition the size of the alligator
(non-adult or adult) was registered.



▶ lake: each of the 4 lakes in Florida (1:4)
▶ size: non-adult=the size of the alligator (0: 2.3 meters or

smaller) and adult=(1: larger than 2.3 meters)
▶ y1: fish
▶ y2: inverterbrate
▶ y3: reptile
▶ y4: bird
▶ y5: other

These data are grouped, and we let y1:fish be the reference
category.



# data from Agresti (2015), section 6, with use of the VGAM packages
data = "http://www.stat.ufl.edu/~aa/glm/data/Alligators.dat"
ali = read.table(data, header = T)
ali
attach(ali)

## lake size y1 y2 y3 y4 y5
## 1 1 1 23 4 2 2 8
## 2 1 0 7 0 1 3 5
## 3 2 1 5 11 1 0 3
## 4 2 0 13 8 6 1 0
## 5 3 1 5 11 2 1 5
## 6 3 0 8 7 6 3 5
## 7 4 1 16 19 1 2 3
## 8 4 0 17 1 0 1 3



y.data = cbind(y2, y3, y4, y5, y1)
y.data
dim(y.data)
x.data = model.matrix(~size + factor(lake), data = ali)
x.data
dim(x.data)

## y2 y3 y4 y5 y1
## [1,] 4 2 2 8 23
## [2,] 0 1 3 5 7
## [3,] 11 1 0 3 5
## [4,] 8 6 1 0 13
## [5,] 11 2 1 5 5
## [6,] 7 6 3 5 8
## [7,] 19 1 2 3 16
## [8,] 1 0 1 3 17
## [1] 8 5
## (Intercept) size factor(lake)2 factor(lake)3 factor(lake)4
## 1 1 1 0 0 0
## 2 1 0 0 0 0
## 3 1 1 1 0 0
## 4 1 0 1 0 0
## 5 1 1 0 1 0
## 6 1 0 0 1 0
## 7 1 1 0 0 1
## 8 1 0 0 0 1
## attr(,"assign")
## [1] 0 1 2 2 2
## attr(,"contrasts")
## attr(,"contrasts")$`factor(lake)`
## [1] "contr.treatment"
##
## [1] 8 5



# We use library VGAM:
library(VGAM)

# We fit a multinomial logit model with fish (y1) as the reference category:
fit.main = vglm(cbind(y2, y3, y4, y5, y1) ~ size + factor(lake), family = multinomial,

data = ali)
# summary(fit.main)
pchisq(deviance(fit.main), df.residual(fit.main), lower.tail = FALSE)

## [1] 0.1466189



Q:
▶ Why is the number of degrees of freedom for the residual

deviance 12? Hint: there are 8 covariate patterns, and we
have 5 reponse categories.

▶ How can you interpret the coefficient for inverterbrate (y2)
and size? Hint: we have y2,y3,y4,y5 as 1:4.

exp(coefficients(fit.main))

## (Intercept):1 (Intercept):2 (Intercept):3 (Intercept):4 size:1
## 0.0404626 0.1259644 0.2471007 0.3402497 4.2982356
## size:2 size:3 size:4 factor(lake)2:1 factor(lake)2:2
## 0.7037987 0.5322405 1.3931262 13.4043318 3.3739877
## factor(lake)2:3 factor(lake)2:4 factor(lake)3:1 factor(lake)3:2 factor(lake)3:3
## 0.2596748 0.4401925 16.1245576 5.4329197 1.4808988
## factor(lake)3:4 factor(lake)4:1 factor(lake)4:2 factor(lake)4:3 factor(lake)4:4
## 1.9940595 5.2506853 0.2885818 0.4990158 0.4377111



Testing out other models, and comparing with LRT-test - by using
deviances for different models.
# Fit model with only lake:
fit.lake = vglm(cbind(y2, y3, y4, y5, y1) ~ factor(lake), family = multinomial, data = ali)
# Test effect of size (no anova command is available)
(G2 = deviance(fit.lake) - deviance(fit.main))
(df.diff = df.residual(fit.lake) - df.residual(fit.main))
1 - pchisq(G2, df.diff)
# Size has a significant effect

## [1] 21.08741
## [1] 4
## [1] 0.0003042796



# Fit model with only size:
fit.size = vglm(cbind(y2, y3, y4, y5, y1) ~ size, family = multinomial, data = ali)

# Test effect of lake
(G2 = deviance(fit.size) - deviance(fit.main))
(df.diff = df.residual(fit.size) - df.residual(fit.main))
1 - pchisq(G2, df.diff)
# Lake has a significant effect

## [1] 49.13308
## [1] 12
## [1] 1.982524e-06



Q: explain what is presented below, in particular “what is the
probability that the main food source is fish given size=0 and
lake=1”?
library(knitr)
# Fitted values for main effect model 'fit.main':
fitted = data.frame(fitted(fit.main), lake = ali$lake, size = ali$size)
kable(fitted)

y2 y3 y4 y5 y1 lake size
0.0930988 0.0474566 0.0704015 0.2537396 0.5353035 1 1
0.0230717 0.0718246 0.1408963 0.1940096 0.5701978 1 0
0.6018967 0.0772276 0.0088175 0.0538721 0.2581861 2 1
0.2486452 0.1948374 0.0294161 0.0686628 0.4584385 2 0
0.5168385 0.0887672 0.0358947 0.1742005 0.1842990 3 1
0.1929612 0.2023995 0.1082251 0.2006616 0.2957525 3 0
0.4128558 0.0115665 0.0296712 0.0938024 0.4521040 4 1
0.1396778 0.0238987 0.0810674 0.0979136 0.6574425 4 0



Regression with ordinal responses
(we will only consider cumulative models - and not sequential
models)

An unobservable latent variable 𝑈𝑖 drives the observed category 𝑌𝑖.

𝑌𝑖 = 𝑟 ⇔ 𝜃𝑟−1 ≤ 𝑈𝑖 ≤ 𝜃𝑟
where these 𝜃s are our unobservable thresholds, and the thresholds
are monotonely increasing, −∞ = 𝜃0 < 𝜃1 < ⋯ < 𝜃𝑐+1 = ∞.

We further assume that the latent variables are dependent on our
covariates through

𝑈𝑖 = −x𝑇
𝑖 𝛽 + 𝜀𝑖

where we have a new random variable that has cumulative
distribution function (cdf) 𝐹 . No intercept is included due to
identifiability issuse (shift in intercept would produce the same
effect as negative shift in threshold).



We get rid of the latent variable 𝑈𝑖 by considereing

𝑃(𝑌𝑖 ≤ 𝑟) = 𝑃 (𝑈𝑖 ≤ 𝜃𝑟) = 𝑃(−x𝑇
𝑖 𝛽 + 𝜀𝑖 ≤ 𝜃𝑟)

= 𝑃(𝜀𝑖 ≤ 𝜃𝑟 + x𝑇
𝑖 𝛽) = 𝐹(𝜃𝑟 + x𝑇

𝑖 𝛽)

Observe that the final expression does not include the latent
variable 𝑈𝑖, but includes the unknown threshold and 𝑘 regression
parameters.



Different choices of 𝐹 will give different models, and we will only
consider 𝐹 to be the cdf for the logistic distribution. (Another
popular choice is the cdf of the standard normal distribution.)

𝑃(𝑌𝑖 ≤ 𝑟) = exp(𝜃𝑟 + x𝑇
𝑖 𝛽)

1 + exp(𝜃𝑟 + x𝑇
𝑖 𝛽)

which also can be written as

ln(𝑃 (𝑌𝑖 ≤ 𝑟)
𝑃 (𝑌𝑖 > 𝑟)) = 𝜃𝑟 + x𝑇

𝑖 𝛽



Our model is a proportional odds model, in the sense that the
cumulative odds are proportional across categories

𝑃(𝑌 ≤𝑟∣x𝑖)
𝑃(𝑌 >𝑟∣x𝑖)
𝑃(𝑌 ≤𝑟∣x∗

𝑖)
𝑃(𝑌 >𝑟∣x∗

𝑖)
= exp((x𝑖 − x∗

𝑖)𝑇 𝛽)

Observe that this is independent of 𝑟.



Response function
What is the response function here?

𝜋𝑖1 = 𝐹(𝜂𝑖1)
𝜋𝑖𝑟 = 𝐹(𝜂𝑖𝑟) − 𝐹(𝜂𝑖,𝑟−1)

where 𝜂𝑖𝑟 = 𝜃𝑟 + x𝑇
𝑖 𝛽, and 𝐹 is the logistic cdf.



Plotting the cumulative probabilites
We have five categories, where the fifth is the reference category.
True parameters

▶ 𝜃1 = 0, 𝜃2 = 1, 𝜃3 = 4 and 𝜃4 = 6 and
▶ one covariate with parameter 𝛽 = 1.

The graph shows the cumulative probability 𝑃(𝑌 ≤ 𝑟) for 𝑟 = 1
(red), 𝑟 = 2 (organge), 𝑟 = 3 (green), 𝑟 = 4 (purple).
Observe the parallell lines.
What would 𝑃(𝑌 ≤ 5) be? Why is this missing from the plot?
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Mental health data example
Example and data are taken from Agresti (2015, pages 219-223).
Research question: understand mental health issues.
The data comes from a random sample of size 40 of adult
residents of Alachua County, Florida, USA.

▶ Mental impairment 𝑌 : 1=well, 2=mild symptom formation,
3=moderate symptom formation, 4=impaired.

▶ Life event index (𝑥1): compsite measure of the number and
severity of important life events within the last three years
(birth, new job, divorce, death in the family, …)

▶ SES (𝑥2): socioeconomic index, 1=high, 0=low.
These data are ungrouped (but could be grouped). In the original
study several other explanatory variables were studied.



# Read mental health data from the web:
library(knitr)
data = "http://www.stat.ufl.edu/~aa/glm/data/Mental.dat"
mental = read.table(data, header = T)
colnames(mental)
apply(mental, 2, table)
# kable(mental)

## [1] "impair" "ses" "life"
## $impair
##
## 1 2 3 4
## 12 12 7 9
##
## $ses
##
## 0 1
## 18 22
##
## $life
##
## 0 1 2 3 4 5 6 7 8 9
## 2 5 4 8 5 4 2 2 4 4



library(VGAM)
# We fit a cumulative logit model with main effects of 'ses' and 'life':
fit.imp = vglm(impair ~ life + ses, family = cumulative(parallel = T), data = mental)
# parallell=T gives proportional odds structure - only intercepts differ
summary(fit.imp)

##
## Call:
## vglm(formula = impair ~ life + ses, family = cumulative(parallel = T),
## data = mental)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept):1 -0.2819 0.6231 -0.452 0.65096
## (Intercept):2 1.2128 0.6511 1.863 0.06251 .
## (Intercept):3 2.2094 0.7171 3.081 0.00206 **
## life -0.3189 0.1194 -2.670 0.00759 **
## ses 1.1112 0.6143 1.809 0.07045 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Names of linear predictors: logitlink(P[Y<=1]), logitlink(P[Y<=2]),
## logitlink(P[Y<=3])
##
## Residual deviance: 99.0979 on 115 degrees of freedom
##
## Log-likelihood: -49.5489 on 115 degrees of freedom
##
## Number of Fisher scoring iterations: 5
##
## No Hauck-Donner effect found in any of the estimates
##
##
## Exponentiated coefficients:
## life ses
## 0.7269742 3.0380707



The ML fit for this model can be written as

logit( ̂𝑃 (𝑦𝑖 ≤ 𝑟)) = ̂𝜃𝑟 + 0.319𝑥𝑖1 + 1.111𝑥𝑖2

Q: give an interpretation of this model!

Remember:
▶ Life event index (𝑥1): compsite measure of the number and

severity of important life events within the last three years
(birth, new job, divorce, death in the family, …)

▶ SES (𝑥2): socioeconomic index, 1=high, 0=low.



Q: How can you interpret the last line below? Why is it
exp(CI(beta)) and not CI(exp(beta))?
exp(confint(fit.imp))

## 2.5 % 97.5 %
## (Intercept):1 0.2224503 2.5581328
## (Intercept):2 0.9385968 12.0489557
## (Intercept):3 2.2342109 37.1467162
## life 0.5752574 0.9187045
## ses 0.9114465 10.1266209



Q: How are these predictions calculated? What is the
interpretation?
fitted = data.frame(fitted(fit.imp), ses = mental$ses, life = mental$life)
fitted[c(6, 18, 10), ] #0,7 not fitted

xs = cbind(c(2, 7, 2, 7), c(0, 0, 1, 1))
coeff = coefficients(fit.imp)
linpreds = cbind(coeff[1] + xs %*% coeff[4:5], coeff[2] + xs %*% coeff[4:5], coeff[3] +

xs %*% coeff[4:5])
(cprobs = exp(linpreds)/(1 + exp(linpreds)))
(pprobs = cbind(cprobs[, 1], cprobs[, 2] - cprobs[, 1], cprobs[, 3] - cprobs[, 2],

1 - cprobs[, 3]))

## X1 X2 X3 X4 ses life
## 6 0.2850362 0.3548973 0.18808559 0.17198084 0 2
## 18 0.5477558 0.2959810 0.09227184 0.06399141 1 2
## 10 0.1973858 0.3255923 0.22513134 0.25189056 1 7
## [,1] [,2] [,3]
## [1,] 0.28503623 0.6399336 0.8280192
## [2,] 0.07488691 0.2651744 0.4943332
## [3,] 0.54775576 0.8437368 0.9360086
## [4,] 0.19738576 0.5229781 0.7481094
## [,1] [,2] [,3] [,4]
## [1,] 0.28503623 0.3548973 0.18808559 0.17198084
## [2,] 0.07488691 0.1902875 0.22915882 0.50566678
## [3,] 0.54775576 0.2959810 0.09227184 0.06399141
## [4,] 0.19738576 0.3255923 0.22513134 0.25189056



Q: What do you see here, and what is the formula for this matrix?
vcov(fit.imp)

## (Intercept):1 (Intercept):2 (Intercept):3 life ses
## (Intercept):1 0.38819709 0.32992954 0.32615019 -0.04231112 -0.15615761
## (Intercept):2 0.32992954 0.42395851 0.40844529 -0.05427393 -0.11440293
## (Intercept):3 0.32615019 0.40844529 0.51423495 -0.06185757 -0.09055667
## life -0.04231112 -0.05427393 -0.06185757 0.01426291 -0.01855824
## ses -0.15615761 -0.11440293 -0.09055667 -0.01855824 0.37732634



# We consider a model with interaction between 'ses' and 'life':
fit.int = vglm(impair ~ life + ses + life:ses, family = cumulative(parallel = T),

data = mental)
summary(fit.int)

##
## Call:
## vglm(formula = impair ~ life + ses + life:ses, family = cumulative(parallel = T),
## data = mental)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept):1 0.09807 0.81102 0.121 0.90375
## (Intercept):2 1.59248 0.83717 1.902 0.05714 .
## (Intercept):3 2.60660 0.90966 2.865 0.00416 **
## life -0.42045 0.19031 -2.209 0.02715 *
## ses 0.37090 1.13022 0.328 0.74279
## life:ses 0.18131 0.23611 0.768 0.44255
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Names of linear predictors: logitlink(P[Y<=1]), logitlink(P[Y<=2]),
## logitlink(P[Y<=3])
##
## Residual deviance: 98.5044 on 114 degrees of freedom
##
## Log-likelihood: -49.2522 on 114 degrees of freedom
##
## Number of Fisher scoring iterations: 5
##
## No Hauck-Donner effect found in any of the estimates
##
##
## Exponentiated coefficients:
## life ses life:ses
## 0.6567529 1.4490350 1.1987822



# And test if there is a significant effect of interaction:
G2 = deviance(fit.imp) - deviance(fit.int)
df.diff = df.residual(fit.imp) - df.residual(fit.int)
1 - pchisq(G2, df.diff)
# The effect of interaction is not significant

## [1] 0.4410848
# We consider a model where the effect of the covariates may differ between the
# cumulative logits - so not parallell lines for the cdfs
fit.nopar = vglm(impair ~ life + ses, family = cumulative, data = mental)
summary(fit.nopar)

# The change in the deviance compared to the model 'fit.imp' is
# 99.0979-96.7486=2.3493 with df.diff=115-111=4, which is not significant

# So model 'fit.imp'seems fine.

##
## Call:
## vglm(formula = impair ~ life + ses, family = cumulative, data = mental)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept):1 -0.1930 0.7387 -0.261 0.7938
## (Intercept):2 0.8278 0.7036 1.176 0.2394
## (Intercept):3 2.8049 0.9615 NA NA
## life:1 -0.3182 0.1597 -1.993 0.0463 *
## life:2 -0.2739 0.1372 -1.997 0.0458 *
## life:3 -0.3964 0.1592 -2.490 0.0128 *
## ses:1 0.9732 0.7720 1.261 0.2074
## ses:2 1.4962 0.7460 2.006 0.0449 *
## ses:3 0.7518 0.8358 0.899 0.3684
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Names of linear predictors: logitlink(P[Y<=1]), logitlink(P[Y<=2]),
## logitlink(P[Y<=3])
##
## Residual deviance: 96.7486 on 111 degrees of freedom
##
## Log-likelihood: -48.3743 on 111 degrees of freedom
##
## Number of Fisher scoring iterations: 14
##
## Warning: Hauck-Donner effect detected in the following estimate(s):
## '(Intercept):3'
##
##
## Exponentiated coefficients:
## life:1 life:2 life:3 ses:1 ses:2 ses:3
## 0.7274592 0.7604194 0.6727572 2.6465169 4.4645713 2.1207587



Why not use MLR instead of ordinal regression?
Based on Agresti (2015, p 214-216)
To use MLR the ordinal categories need to be replaced with
numerical values, and we then need to assume a normal error
structure. The following are questions to be answered and possible
limitation to be assumed for using MLR instead of ordinal
regression:

▶ how to translate ordered categories into numerical scores?
▶ is it better with an ordinal variable with some range than a

single numerical number?
▶ MLR will not give probabilities for each response category
▶ variability in the response may be dependent on the category,

for MLR we assume homoscedasticity



Likelihood inference
We use the notation that 𝛽 is a long vector with all regression
parameters. The content of this vector is slightly different for our
two models, with intercept and 𝑘 covariate effects for each
response category for the nominal model - and with 𝑐 thresholds
but the same 𝑘-dimensional 𝛽 vector for all categories.

Full matrix versions (over all 𝑖) can be found in our textbook, page
345-346.
Loglikelihood
We have seen that the loglikelihood is:

𝑙(𝛽) ∝
𝑛

∑
𝑖=1

𝑐+1
∑
𝑠=1

𝑦𝑖𝑠 ln(𝜋𝑖𝑠)

where we remember that 𝑦𝑖,𝑐+1 = 𝑛𝑖 − 𝑦𝑖1 − ⋯ − 𝑦𝑖𝑐, and
1 − 𝜋𝑖1 − ⋯ 𝜋𝑖𝑐.



Design matrix and coefficient vector
The design matrix X and coefficient vector are different for our
nominal logit model and our ordinal cumulative model.
Nominal logit model

X𝑖 = diag(x𝑇
𝑖 ) =

⎛⎜⎜⎜
⎝

x𝑇
𝑖 0 ⋯ 0
0 x𝑇

𝑖 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ x𝑇

𝑖

⎞⎟⎟⎟
⎠

where the 0s are 1 × 𝑝 vectors. The dimension of the design matrix
for covariate pattern 𝑖 is 𝑐 × 𝑐 ⋅ 𝑝.



The vector of coefficients has dimension 𝑐 ⋅ 𝑝 × 1.

𝛽 =
⎛⎜⎜⎜
⎝

𝛽1
𝛽2
⋮

𝛽𝑐

⎞⎟⎟⎟
⎠



Ordinal cumulative model

X𝑖 =
⎛⎜⎜⎜
⎝

1 0 ⋯ 0 x𝑇
𝑖

0 1 ⋯ 0 x𝑇
𝑖

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1 x𝑇

𝑖

⎞⎟⎟⎟
⎠

he dimension of the design matrix for covariate pattern 𝑖 is
𝑐 × (𝑐 + 𝑘)
The vector of coefficients has dimension (𝑐 + 𝑘) × 1 (where
𝑝 = 𝑘 + 1), and now the thresholds replace the intercept and are
put first in the vector, and the effects of the covariates are the
same for all categories.

𝛽 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝜃1
𝜃2
⋮

𝜃𝑐
𝛽

⎞⎟⎟⎟⎟⎟⎟
⎠



Score function

s(𝛽) =
𝐺

∑
𝑖=1

X𝑇
𝑖 D𝑖Σ−1

𝑖 (y𝑖 − 𝑛𝑖𝜋𝑖)

where
▶ D𝑖 = 𝜕ℎ(𝜂)

𝜕𝜂 |𝜂=𝜂𝑖
has dimension 𝑐 × 𝑐

▶ Σ𝑖 = Cov(Y𝑖)



Fisher information
The dimension of the matrix is 𝑐𝑝 × 𝑐𝑝 for the nominal case and
(𝑐 + 𝑘) × (𝑐 + 𝑘) for the ordinal case studied.

𝐹(𝛽) =
𝐺

∑
𝑖=1

X𝑇
𝑖 W𝑖X𝑖

where W𝑖 is given as D𝑖Σ−1
𝑖 D𝑇

𝑖 .



Finding the ML estimate
As in modules 1-5 we find the ML estimate by the Fisher scoring or
Newton Raphson method.

Asymptotic distribution
As in modules 1-5 the ML estimator 𝛽̂ asymptotically follows a
multivariate normal distribution with unbiased mean and
covariance matrix given by the inverse of the expected Fisher
information matrix.



Summing up



R packages

install.packages(c("VGAM", "ggplot2", "statmod", "knitr"))



Further reading

▶ A. Agresti (2015): “Foundations of Linear and Generalized
Linear Models.” Chapter 6. Wiley.


