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(Latest changes: 08.11.2018 - typos).

(Warning: some changes may occur before the second week.)



Overview

Aim: Present methods for analysing correlated responses in a
(normal/Gaussian) regression setting.

We will only consider two-level models and in particular focus on
random intercept and random slope models.



Learning material
▶ Textbook: Fahrmeir et al (2013): Chapter 2.4, 7.1-7.3, 7.7. In

greater detail: pages 349-354 (not “Alternative view on the
random intercept model”), 356-365 (not 7.1.5 “Stochastic
Covariates”“), 368-377 (not”Bayesian Covariance Matrix”“),
379-380 (not”Testing Random Effects or Variance
Parameters” “, only last part on page 383), 383 (middle),
401-409 (orange juice). Note: Bayesian solutions not on the
reading list.

▶ Alternative readings: Zuur et al. (2009): “Mixed Effects
Models and Extensions in Ecology with R”, chapter 5 (pages
101-142). Available as free ebook from Springer for NTNU
students. More explanations and less mathematics than
Fahrmeir et al (2013), more focus on understanding. Link to
ebook Chapter 5

▶ Classnotes 01.11.2018
▶ Classnotes 08.11.2018

https://link.springer.com/chapter/10.1007/978-0-387-87458-6_5
https://link.springer.com/chapter/10.1007/978-0-387-87458-6_5
https://www.math.ntnu.no/emner/TMA4315/2018h/M7w12018.pdf
https://www.math.ntnu.no/emner/TMA4315/2018h/M7w22018.pdf


Topics
First week

▶ correlated responses - when and why?
▶ repeated measurements: clustered and longitudinal
▶ example of clustered data from ecology: species richness

▶ notation
▶ random intercept models

▶ intra class correlation (ICC)
▶ linear mixed effects models

▶ measurement model and distributional assumptions
▶ conditional and marginal formulation

▶ parameter estimation
▶ with maximum likelihood for fixed effects
▶ distribution of fixed parameter estimators

Jump to interactive (week 1)



Second week
▶ what did we do last week: beaches example
▶ parameter estimation (cont.)

▶ (restricted) maximum likelihood for random effects
▶ predicting

▶ random effects: method, formula, plots
▶ random errors: two types of residuals

▶ random slope models
▶ sleep study
▶ interpretation of random effects

▶ hypothesis tests
▶ model selection
▶ fitting LMM with function lmer in package lme4
▶ what have we not covered?

Jump to interactive (week 2)



FIRST WEEK



Correlated responses

We may get correlated responses when we work with repeated
measurements on a set of units. The units may be:

▶ subjects, patients, participants
▶ animal, plants
▶ families, towns, schools, classes, beaches

We will consider two types of repeated measurements: clustered
and longitudinal



Repeated measurements
Clustered data
The data are nested in the sense that a lower level unit can only
belong to one higher level unit (cluster), and there is in general no
natural ordering of the units within each cluster.
Two-level clustered - examples

▶ patients in hospitals
▶ siblings in families
▶ pupils in schools



Longitudinal data
The data for each individual are observed at multiple points in time
Two-level longitudinal data - examples

▶ patients with drug A and drug B monitored over time
▶ metabolic rate for patients at fasting, then 15, 45, 75 and 135

minutes after a heavy meal
Q: Why not only analyse using linear models?



A: Assuming independent responses when they are correlated does
not give the correct estimate for the standard error of the
estimated parameters of interest.



Example from ecology: beaches and species
This example is taken from Zuur et al. (2009, chapter 5, pages
101-142), and data are referred to as RIKZ because they were
collected by a Dutch institute with that name.
Data were collected on nine different beaches in the Netherlands
with the aim to investigate if there is a relationship between the

▶ species richness (number of species observed) and
▶ NAP: the height of the sampling station compared to mean

tidal level.
Data: 45 observations, taken at 9 beaches:

▶ beach: the beach that the samples were taken, for each beach
5 different samples were taken.

▶ exposure: an index describing how much the beach is exposed
to the sea was measured, but we will not be used now.



We want to use the richness of species as the response in a
regression model.

This is a count, so we should use Poisson regression, but to make
things simpler we assume that the counts are such that we instead
can assume a normal distribution.

(in the next module on generalized linear mixed effects models we
will use the Poisson distribution).



# library('AED')
RIKZ <- read.csv("http://faculty.concordia.ca/pperesne/BIOL_422_680/RIKZ.csv")
summary(RIKZ)

## Sample Richness Exposure NAP Beach
## Min. : 1 Min. : 0.000 Min. :1.000 Min. :-1.3360 Min. :1
## 1st Qu.:12 1st Qu.: 3.000 1st Qu.:1.000 1st Qu.:-0.3750 1st Qu.:3
## Median :23 Median : 4.000 Median :1.000 Median : 0.1670 Median :5
## Mean :23 Mean : 5.689 Mean :1.444 Mean : 0.3477 Mean :5
## 3rd Qu.:34 3rd Qu.: 8.000 3rd Qu.:2.000 3rd Qu.: 1.1170 3rd Qu.:7
## Max. :45 Max. :22.000 Max. :2.000 Max. : 2.2550 Max. :9



We first consider models with reponse Richness and one covariate
NAP, and analyse data from each beach separately.
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## 1 2 3 4 5 6
## (Intercept) 10.8218944 13.345694 3.400702 3.087716 12.782828 4.324634
## NAP -0.3718279 -4.175271 -1.755353 -1.248577 -8.900178 -1.388512
## 7 8 9
## (Intercept) 3.520626 4.951455 6.295053
## NAP -1.517613 -1.893066 -2.967530

The intercepts differ but the slopes are not that different.



Q: What if we now want to combine the regression models for the
nine beaches into one model (for the population of beaches), so we
can answer the question about relationship between species
richness and NAP on the population level. What can we do then?



Possible solutions
1. Use all 45 observations in a regression - with a common

intercept and linear effect in NAP.
Problem: violation of assumption of independent observations
lead to wrong estimates for variances of parameter estimates.

2. Add beach as covariate to regression - then we estimate one
regression coefficient for each beach (intercepts) in addition
to the linear effect in NAP.

Problem: why do we want to add 8 extra parameters to estimate
(why 8?) values for the 9 beaches? Loss of power and what would
we use the beach estimates for?



3. Add beach as a random covariate to the regression: this is
called random intercept models.

Problem: new stuff - slightly complicated. We do this because
beaches not of interest in themselves, only random sample from
population of beaches, and therefore we only need to account for
beaches, not estimate separate parameters.



Solution 1: all observations together - standard errors not correct
fitall = lm(Richness ~ NAP, data = RIKZ)
summary(fitall)

##
## Call:
## lm(formula = Richness ~ NAP, data = RIKZ)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0675 -2.7607 -0.8029 1.3534 13.8723
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.6857 0.6578 10.164 5.25e-13 ***
## NAP -2.8669 0.6307 -4.545 4.42e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.16 on 43 degrees of freedom
## Multiple R-squared: 0.3245, Adjusted R-squared: 0.3088
## F-statistic: 20.66 on 1 and 43 DF, p-value: 4.418e-05



Solution 2: fixed effects for each beach - many estimates not so
much of interest when population is in focus.
RIKZ$beachfactor = as.factor(RIKZ$Beach)
fitbeach = lm(Richness ~ NAP + beachfactor, data = RIKZ, contrasts = list(beachfactor = "contr.sum"))
summary(fitbeach)

##
## Call:
## lm(formula = Richness ~ NAP + beachfactor, data = RIKZ, contrasts = list(beachfactor = "contr.sum"))
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8518 -1.5188 -0.1376 0.7905 11.8384
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.5556 0.4885 13.421 2.30e-15 ***
## NAP -2.4928 0.5023 -4.963 1.79e-05 ***
## beachfactor1 3.2503 1.3554 2.398 0.0220 *
## beachfactor2 6.3284 1.2908 4.903 2.15e-05 ***
## beachfactor3 -3.1546 1.3020 -2.423 0.0207 *
## beachfactor4 -2.7826 1.2943 -2.150 0.0386 *
## beachfactor5 2.3520 1.2967 1.814 0.0783 .
## beachfactor6 -1.9728 1.2915 -1.528 0.1356
## beachfactor7 -2.1864 1.3167 -1.661 0.1057
## beachfactor8 -1.3027 1.2926 -1.008 0.3204
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.06 on 35 degrees of freedom
## Multiple R-squared: 0.7025, Adjusted R-squared: 0.626
## F-statistic: 9.183 on 9 and 35 DF, p-value: 5.645e-07

For the rest of this module — we focus on solution 3!



Notation

We have 𝑛𝑖 repeated observations (𝑗 = 1, … , 𝑛𝑖) from each of
𝑖 = 1, … , 𝑚 clusters (or individuals).

▶ Responses: 𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑛𝑖
(e.g. species richness at beach 𝑖

sample 𝑗)
▶ Covariates: x𝑖1, x𝑖1, … , x𝑖𝑛𝑖

(e.g. NAP for beach 𝑖 sample 𝑗)

The covariates x𝑖𝑗 are 𝑝 × 1 vectors (as before, 𝑘 covariates and
one intercept so 𝑝 = 𝑘 + 1).



Random intercept models

Model
Simple linear regression
We start with a simple linear regression (one fixed effect).
First, only one covariate (in addition to the intercept), observed for
cluster (beach) 𝑖 on occation 𝑗 we have 𝑥𝑖𝑗

𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝑥𝑖𝑗 + 𝜀𝑖𝑗 where 𝜀𝑖𝑗 i.i.d. 𝑁(0, 𝜎2)
but, we know that 𝑌𝑖1 and 𝑌𝑖2 are observed for the same cluster
and should not be independent (i.e. from same beach), to fix that
we insert a random intercept.



Cluster-specific parameters 𝛾0𝑖

𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝑥𝑖𝑗 + 𝛾0𝑖 + 𝜀𝑖𝑗 where 𝜀𝑖𝑗i.i.d.𝑁(0, 𝜎2)
▶ 𝛽0: population intercept (fixed)
▶ 𝛾0𝑖: deviation (for members of cluster 𝑖) from the population

intercept 𝛽0 - not a parameter but a random variable!
▶ 𝛽0 + 𝛾0𝑖: random intercept for cluster 𝑖
▶ 𝛽1: population slope (fixed), common to all clusters

The clusters are assumed to be random samples from a large
population, and for the cluster deviation intercept we assume

𝛾0𝑖 ∼ 𝑁(0, 𝜏2
0 )

and that the 𝛾0𝑖s and the 𝜀𝑖𝑗s are mutually independent random
variables. So, we have now two error terms.



Beach-example: Parameter estimates
(will talk about parameter estimation with ML and REML later)
Q: Try to identify ̂𝛽0, ̂𝛽1, �̂�2, ̂𝜏2

0 in the print-out.
## Linear mixed model fit by REML ['lmerMod']
## Formula: Richness ~ NAP + (1 | Beach)
## Data: RIKZ
##
## REML criterion at convergence: 239.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4227 -0.4848 -0.1576 0.2519 3.9794
##
## Random effects:
## Groups Name Variance Std.Dev.
## Beach (Intercept) 8.668 2.944
## Residual 9.362 3.060
## Number of obs: 45, groups: Beach, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 6.5819 1.0958 6.007
## NAP -2.5684 0.4947 -5.192
##
## Correlation of Fixed Effects:
## (Intr)
## NAP -0.157



A: ̂𝛽0 = 6.5818929, ̂𝛽1 = -2.5683996 , �̂�2 = 9.3621916, and ̂𝜏2
0 =

8.6675183



Intra class correlation (ICC)
The conditional distribution of 𝑌𝑖𝑗 given the value of 𝛾0𝑖
(=regarding 𝛾0𝑖 as known) is

𝑌𝑖𝑗 ∣ 𝛾0𝑖 ∼ 𝑁(𝛽0 + 𝛽1𝑥𝑖𝑗 + 𝛾0𝑖, 𝜎2)

One motivation for inserting this new random intercept was to
make sure that observations from the same cluster are dependent,
but between clusters are independent. This means that we need to
look at Cov(𝑌𝑖𝑗, 𝑌𝑘𝑙) when 𝑖 = 𝑘 and when 𝑖 ≠ 𝑘. To do that we
need the (joint) marginal distribution of the responses.



What is the marginal distribution for 𝑌𝑖𝑗?

𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝑥𝑖𝑗 + 𝛾0𝑖 + 𝜀𝑖𝑗



What is the marginal distribution for 𝑌𝑖𝑗?

𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝑥𝑖𝑗 + 𝛾0𝑖 + 𝜀𝑖𝑗

𝑌𝑖𝑗 ∼ 𝑁(𝛽0 + 𝛽1𝑥𝑖𝑗, 𝜎2 + 𝜏2
0 )

We will consider 𝑌𝑖𝑗, and 𝑌𝑘𝑙, where

𝑌𝑘𝑙 = 𝛽0 + 𝛽1𝑥𝑘𝑙 + 𝛾0𝑘 + 𝜀𝑘𝑙 ∼ 𝑁(𝛽0 + 𝛽1𝑥𝑘𝑙, 𝜎2 + 𝜏2
0 )



Now to the covariance between 𝑌𝑖𝑗 and 𝑌𝑘𝑙.

Cov(𝑌𝑖𝑗, 𝑌𝑘𝑙) = E[(𝑌𝑖𝑗 − 𝜇𝑖𝑗)(𝑌𝑘𝑙 − 𝜇𝑘𝑙)]

And

𝑌𝑖𝑗 − 𝜇𝑖𝑗 = (𝛽0 + 𝛽1𝑥𝑖𝑗 + 𝛾0𝑖 + 𝜀𝑖𝑗) − (𝛽0 + 𝛽1𝑥𝑖𝑗)
= 𝛾0𝑖 + 𝜀𝑖𝑗

Note that we assume independence, so 𝐶𝑜𝑣(𝛾0𝑖, 𝛾0𝑘) = 0 etc.



Cov(𝑌𝑖𝑗, 𝑌𝑘𝑙) =
⎧{
⎨{⎩

𝜏2
0 + 𝜎2 = Var(𝑌𝑖𝑗) for 𝑖 = 𝑘, 𝑗 = 𝑙

𝜏2
0 for 𝑖 = 𝑘, 𝑗 ≠ 𝑙

0 for 𝑖 ≠ 𝑘, 𝑗 ≠ 𝑙

⎫}
⎬}⎭

⊕ derivations on the board in class



If we put this into a covariance matrix for the vector of responses
for cluster 𝑖 this type of structure is called compound symmetry.

⊕ write this out on the board in class

Cov(Y𝑖) = 𝜏2
0 11𝑇 + 𝜎2I

where as before 1 is a 𝑛𝑖 × 1 vector of 1s and I is a 𝑛𝑖 × 𝑛𝑖
identity matrix.



The correlation between 𝑌𝑖𝑗 and 𝑌𝑖𝑙 (two observations in the same
cluster that is - same beach) is called the within subject or within
cluster correlation coefficient, and is for our random intercept
model

Corr(𝑌𝑖𝑗, 𝑌𝑖𝑙) = Cov(𝑌𝑖𝑗, 𝑌𝑖𝑙)
√Var(𝑌𝑖𝑗)Var(𝑌𝑖𝑙)

= 𝜏2
0

𝜏2
0 + 𝜎2 for 𝑗 ≠ 𝑙

Inserted parameter estimates this is called the intra class
correlation (ICC) for the random intercept model.



Beach-example: ICC
## Linear mixed model fit by REML ['lmerMod']
## Formula: Richness ~ NAP + (1 | Beach)
## Data: RIKZ
##
## REML criterion at convergence: 239.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4227 -0.4848 -0.1576 0.2519 3.9794
##
## Random effects:
## Groups Name Variance Std.Dev.
## Beach (Intercept) 8.668 2.944
## Residual 9.362 3.060
## Number of obs: 45, groups: Beach, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 6.5819 1.0958 6.007
## NAP -2.5684 0.4947 -5.192
##
## Correlation of Fixed Effects:
## (Intr)
## NAP -0.157

Q: What is the ICC for our fit? Hint:
Corr(𝑌𝑖𝑗, 𝑌𝑖𝑙) = 𝜏2

0
𝜏2

0 +𝜎2 for 𝑗 ≠ 𝑙.



A: 8.688/(8.688+9.362)=0.48.



Summing up - so far
We have now looked at models with a random intercept, which is a
special case of linear mixed models (LMM). We have now see that
we have used two components in our model:

▶ fixed effects - like we have used so far in our GLM-course.
This can be gender, age, time, experimental condition.

▶ random effects - used to model correlated responses.
Remember the correlation (ICC) in the previous example.



But, what if we also need the different clusters to have different
slopes? The generalization of the random intercept model is the
random slope model which can be written as:

𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝑥𝑖𝑗 + 𝛾0𝑖 + 𝛾1𝑖𝑥𝑖𝑗 + 𝜀𝑖𝑗

and where the new parts are
▶ 𝛽1: population slope (fixed), common to all clusters
▶ 𝛾1𝑖: deviation (for members of cluster 𝑖) from the population

slope 𝛽0 - not a parameter but a random variable!
▶ 𝛽1 + 𝛾1𝑖: random slope for cluster 𝑖.

More about this model in week 2.



Linear mixed effects model (LMM)

We now define the LMM from a measurement model and
distributional assumption for clusters 𝑖 = 1, … , 𝑚.
Measurement model
for the 𝑖th cluster:

Y𝑖 = X𝑖𝛽 + U𝑖𝛾𝑖 + 𝜀𝑖

▶ Y𝑖: 𝑛𝑖 × 1 random vector of responses
▶ X𝑖: 𝑛𝑖 × 𝑝 design matrix
▶ U𝑖: 𝑛𝑖 × (𝑞 + 1) design matrix for random effects
▶ 𝛽: 𝑝 × 1 vector of fixed coefficients (common for all clusters)
▶ 𝛾𝑖: (𝑞 + 1) × 1 random vector
▶ 𝜀𝑖: 𝑛𝑖 × 1 random vector



Distributional assumptions
for the 𝑖th cluster:

𝛾𝑖 ∼ 𝑁(0, Q)
𝜀𝑖 ∼ 𝑁(0, 𝜎2I)

All elements of 𝛾1, 𝛾2, … , 𝛾𝑚 and 𝜀1, 𝜀2, … , 𝜀𝑚 are mutually
independent. The dimension of I is 𝑛𝑖 × 𝑛𝑖, and Q is
(𝑞 + 1) × (𝑞 + 1).
Remark: one possible generalization is to assume 𝜀𝑖 ∼ 𝑁(0, Σ)
where Σ is general, but we will not look into that in our course.
This can be needed for example if time series structure (like AR1)
is present.



Questions

Y𝑖 = X𝑖𝛽 + U𝑖𝛾𝑖 + 𝜀𝑖

𝛾𝑖 ∼ 𝑁(0, Q)
𝜀𝑖 ∼ 𝑁(0, 𝜎2I)

Q:
▶ What is U𝑖, 𝛾𝑖 and Q for the random intercept model?
▶ General: what is the marginal distribution of Y𝑖?



A:
▶ We had U𝑖 = 1 (𝑛𝑖 × 1) and scalar 𝛾𝑖 = 𝛾0𝑖, and Q = 𝜏2

0 .
▶ Y𝑖 ∼ 𝑁(X𝑖𝛽, U𝑖QU𝑇

𝑖 + 𝜎2I).



Marginal and Conditional Formulatios

We can write a conditional formulation if we condition on 𝛾𝑖, or a
margunal if we do not (in which case we marginalise over the
distribution of𝛾𝑖

Conditional formulation
Conditional Gaussian model for the response Y𝑖 given the random
effect 𝛾𝑖:

Y𝑖 ∣ 𝛾𝑖 ∼ 𝑁(X𝑖𝛽 + U𝑖𝛾𝑖, 𝜎2I)



Marginal Gaussian model
for the response for cluster 8, Y𝑖 (Laird and Ware (1982)
formulation)

Y𝑖 = X𝑖𝛽 + U𝑖𝛾𝑖 + 𝜀𝑖 = X𝑖𝛽 + 𝜀∗
𝑖

𝜀∗
𝑖 = U𝑖𝛾𝑖 + 𝜀𝑖

E(𝜀∗
𝑖) = 0

V𝑖 = Cov(𝜀∗
𝑖) = Cov(U𝑖𝛾𝑖) + Cov(𝜀𝑖) = U𝑖QU𝑇

𝑖 + 𝜎2I
𝜀∗

𝑖 ∼ 𝑁(0, V𝑖)

which gives

Y𝑖 ∼ 𝑁(𝜇𝑖 = X𝑖𝛽, V𝑖 = 𝜎2I + U𝑖QU𝑇
𝑖 )



Global model
From the cluster specific model:

Y𝑖 = X𝑖𝛽 + U𝑖𝛾𝑖 + 𝜀𝑖

into the global model for all clusters:

Y = X𝛽 + U𝛾 + 𝜀
where

Y =
⎛⎜⎜⎜
⎝

Y1
Y2

⋮
Y𝑚

⎞⎟⎟⎟
⎠

, X =
⎛⎜⎜⎜
⎝

X1
X2

⋮
X𝑚

⎞⎟⎟⎟
⎠

, U =
⎛⎜⎜⎜
⎝

U1 0 … 0
0 U2 … 0
0 0 ⋱ 0
0 0 … U𝑚

⎞⎟⎟⎟
⎠

, 𝛾 =
⎛⎜⎜⎜
⎝

𝛾1
𝛾2
⋮

𝛾𝑚

⎞⎟⎟⎟
⎠

, 𝜀 =
⎛⎜⎜⎜
⎝

𝜀1
𝜀2
⋮

𝜀𝑚

⎞⎟⎟⎟
⎠



Let 𝑁 = ∑𝑚
𝑖=1 𝑛𝑖, then dimensions are:

▶ Y, 𝜀: 𝑁 × 1
▶ X: 𝑁 × 𝑝
▶ 𝛽: 𝑝 × 1
▶ U_: 𝑁 × 𝑚(𝑞 + 1)
▶ 𝛾: 𝑚(𝑞 + 1) × 1



Conditional Gaussian model
for the response Y given the random effect 𝛾:

Y ∣ 𝛾 ∼ 𝑁(X𝛽 + U𝛾, 𝜎2I)

Now I is 𝑁 × 𝑁 where 𝑁 = ∑𝑚
𝑖=1 𝑛𝑖.



Marginal Gaussian model
for the response Y

Y = X𝛽 + U𝛾 + 𝜀 = X𝛽 + 𝜀∗

𝜀∗ = U𝛾 + 𝜀
V = Cov(𝜀∗) = Cov(𝜀) + Cov(U𝛾) = 𝜎2I + UGU𝑇

𝜀∗ ∼ 𝑁(0, V)

Here G is a 𝑚 ̇(𝑞 + 1) block-diagonal matrix with Q 𝑚 times on
the diagonal (see below). This gives

Y ∼ 𝑁(X𝛽, V = 𝜎2I + UGU𝑇 )



G =
⎛⎜⎜⎜
⎝

Q 0 … 0
0 Q … 0
0 0 ⋱ 0
0 0 … Q

⎞⎟⎟⎟
⎠



Parameter estimation

▶ Fixed effects 𝛽: estimated using maximum likelihood
▶ Random effects parameters 𝜎2 and Q (in V): estimated using

restricted maximum likelihood (REML).

For the random effects 𝛾𝑖 and 𝜀𝑖 we also provide predictions
▶ Predicted values for the random effects 𝛾𝑖 using best linear

unbiased predictors (BLUP).
▶ Prediction values for the random effects 𝜀𝑖 are our residuals.

Two types of residuals possible “response minus fixed effects”“,
or”response minus fixed and predicted random effects”.



Parameter estimation with maximum likelihood for fixed effects
Cluster specific model:

Y𝑖 ∼ 𝑁(𝜇𝑖 = X𝑖𝛽, V𝑖 = 𝜎2I + U𝑖QU𝑇
𝑖 )

Global model:

Y ∼ 𝑁(X𝛽, V = 𝜎2I + UGU𝑇 )

The log-likelihood function is then (± some constants)

𝑙(𝛽, V) = −1
2 ln|V| − 1

2(y − X𝛽)𝑇 V−1(y − X𝛽)

We assume that the parameters in V are known, and transform
our problem with V−1/2 to get the standard multiple linear
regression model.



In TMA4267 Exam 2014 Problem 4, the weighted least squares
estimator was derived from a similar situation. Now we have

Y = X𝛽 + 𝜀∗

where
𝜀∗ ∼ 𝑁(0, V)

We then define V−1/2 based on eigenvalue-vector decomposition
of V, and premultiply the above equation to get:

V−1/2Y = V−1/2X𝛽 + V−1/2𝜀∗

Y• = X•𝛽 + 𝜀•

where 𝜀• ∼ 𝑁(0, I). We then know that the ML estimator for 𝛽 is
given as

�̂� = (X•𝑇 X•)−1X•𝑇 Y•



Inserting then for X•𝑇 and Y• leads to the weighted least squares
solution for 𝛽

�̂� = (X𝑇 V−1X)−1X𝑇 V−1Y

Since we have independence between clusters, we had
block-diagonal V and then

�̂� = (
𝑚

∑
𝑖=1

X𝑇
𝑖 V−1

𝑖 X𝑖)−1
𝑚

∑
𝑖=1

X𝑇
𝑖 V−1

𝑖 Y𝑖

But, we really don’t know V so an estimate must be inserted
(week 2 with REML).



Beach-example: parameter estimation for fixed effects
## Linear mixed model fit by REML ['lmerMod']
## Formula: Richness ~ NAP + (1 | Beach)
## Data: RIKZ
##
## REML criterion at convergence: 239.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4227 -0.4848 -0.1576 0.2519 3.9794
##
## Random effects:
## Groups Name Variance Std.Dev.
## Beach (Intercept) 8.668 2.944
## Residual 9.362 3.060
## Number of obs: 45, groups: Beach, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 6.5819 1.0958 6.007
## NAP -2.5684 0.4947 -5.192
##
## Correlation of Fixed Effects:
## (Intr)
## NAP -0.157

Q: Where is the parameter estimat for effect of NAP, with
standard deviation? What is the interpretation of “Correlation of
Fixed Effects”?



A:”Fixed effects, NAP, Estimate and Std. Error”. Correlation of
fixed effects is the off-diagonal elements of Cov(�̂�) which here is
only Cov( ̂𝛽0, ̂𝛽1).



Properties of parameters estimators
Since �̂� is a linear function of Y𝑖, it has a multivariate normal
distribution - let us write with

�̂� = (X𝑇 V−1X)−1X𝑇 V−1Y = AY

Mean:

E(�̂�) = AE(Y) = (X𝑇 V−1X)−1X𝑇 V−1X𝛽 = 𝛽

so �̂� is unbiased.



Variance-covariance matrix:

Cov(�̂� = ACov(Y)A𝑇 = AVA𝑇

= (X𝑇 V−1X)−1X𝑇 V−1VV−1X(X𝑇 V−1X)−1 = (X𝑇 V−1X)−1

Since V is block diagonal this can be written as a sum with the
clusters:

Cov(�̂�) = (
𝑚

∑
𝑖=1

X𝑇
𝑖 V−1

𝑖 X𝑖)−1



Also, if we insert V̂ as an estimate for V then

�̂� = (
𝑚

∑
𝑖=1

X𝑇
𝑖 V̂−1

𝑖 X𝑖)−1
𝑚

∑
𝑖=1

X𝑇
𝑖 V̂−1

𝑖 Y𝑖

is asymptotic multivariate normal (under regularity conditions).



Remark: this is only asymptotically, so we need large samples for
this to hold. And, we do not arrive at a 𝑡-distribution here -
however approximations for 𝑡 (and F) exists, but the problem is the
number of degrees of freedom (in particular when we have time
varying fixed effects).

In this course we will only use the asymptotic normality for
confidence intervals (and when a Wald type test is desired). We
will consider hypothesis testing with likelihood ratio test under
“Model selection” in the end of this module.



Beach-example: confidence interval for fixed effects
## 2.5 % 97.5 %
## .sig01 1.484204 5.100814
## .sigma 2.435429 3.877572
## (Intercept) 4.324560 8.824909
## NAP -3.566901 -1.599779
Q: Interpret! First the last two rows. The first two we have not
covered yet - since we don’t know how to estimate the parameters
in V but what do you think this is?



A: Estimate ± 1.96 times standard error of estimate.




