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(Latest changes: 08.11.2018 - typos).

(Warning: some changes may occur before the second week.)



Overview

Aim: Present methods for analysing correlated responses in a
(normal/Gaussian) regression setting.

We will only consider two-level models and in particular focus on
random intercept and random slope models.



Learning material
▶ Textbook: Fahrmeir et al (2013): Chapter 2.4, 7.1-7.3, 7.7. In

greater detail: pages 349-354 (not “Alternative view on the
random intercept model”), 356-365 (not 7.1.5 “Stochastic
Covariates”“), 368-377 (not”Bayesian Covariance Matrix”“),
379-380 (not”Testing Random Effects or Variance
Parameters” “, only last part on page 383), 383 (middle),
401-409 (orange juice). Note: Bayesian solutions not on the
reading list.

▶ Alternative readings: Zuur et al. (2009): “Mixed Effects
Models and Extensions in Ecology with R”, chapter 5 (pages
101-142). Available as free ebook from Springer for NTNU
students. More explanations and less mathematics than
Fahrmeir et al (2013), more focus on understanding. Link to
ebook Chapter 5

▶ Classnotes 01.11.2018
▶ Classnotes 08.11.2018

https://link.springer.com/chapter/10.1007/978-0-387-87458-6_5
https://link.springer.com/chapter/10.1007/978-0-387-87458-6_5
https://www.math.ntnu.no/emner/TMA4315/2018h/M7w12018.pdf
https://www.math.ntnu.no/emner/TMA4315/2018h/M7w22018.pdf


Topics
First week

▶ correlated responses - when and why?
▶ repeated measurements: clustered and longitudinal
▶ example of clustered data from ecology: species richness

▶ notation
▶ random intercept models

▶ intra class correlation (ICC)
▶ linear mixed effects models

▶ measurement model and distributional assumptions
▶ conditional and marginal formulation

▶ parameter estimation
▶ with maximum likelihood for fixed effects
▶ distribution of fixed parameter estimators

Jump to interactive (week 1)



Second week
▶ what did we do last week: beaches example
▶ parameter estimation (cont.)

▶ (restricted) maximum likelihood for random effects
▶ predicting

▶ random effects: method, formula, plots
▶ random errors: two types of residuals

▶ random slope models
▶ sleep study
▶ interpretation of random effects

▶ hypothesis tests
▶ model selection
▶ fitting LMM with function lmer in package lme4
▶ what have we not covered?

SECOND WEEK



Notation and LMM

▶ In the first week we started with models with a random
intercept, using the beach-example - which we saw was a
special case of linear mixed models (LMM).

▶ We looked at observations from clusters (family, beach) and
will now also look at longitudinal data (repeated
measurements on the same units).

▶ For cluster 𝑖 we wrote the LMM model in a measurement
model part and a distributional assumptions part:

Words to know: measurement model, distributional model,
conditional model, marginal model, global model.



Measurement model

Y𝑖 = X𝑖𝛽 + U𝑖𝛾𝑖 + 𝜀𝑖

Distributional model

𝛾𝑖 ∼ 𝑁(0, Q)
𝜀𝑖 ∼ 𝑁(0, 𝜎2I)

This gave the marginal model for each cluster:

Y𝑖 ∼ 𝑁(𝜇𝑖 = X𝑖𝛽, V𝑖 = 𝜎2I + U𝑖QU𝑇
𝑖 )

Q: explain what the different parameters and random variables are,
and what are their dimensions.



A:
▶ design matrix for fixed effects for cluster 𝑖: X𝑖 is 𝑛𝑖 × 𝑝

(intercept included)
▶ parametervector for fixed effects: 𝛽 𝑝 × 1
▶ design matrix for random effects for cluster 𝑖: U𝑖 is

𝑛𝑖 × (𝑞 + 1) (intercept included)
▶ random effects - used to model correlated responses: 𝛾𝑖

,(𝑞 + 1) × 1
▶ random errors: 𝜀𝑖 𝑛𝑖 × 1
▶ covariance matrix for the random effects: Q, (𝑞 + 1) × (𝑞 + 1)
▶ parameter 𝜎2 for variance of the random errors Cov(𝜀𝑖) = 𝜎2I

with dimension 𝑛𝑖 × 𝑛𝑖.



Beach-example: Parameter estimation
## Linear mixed model fit by REML ['lmerMod']
## Formula: Richness ~ NAP + (1 | Beach)
## Data: RIKZ
##
## REML criterion at convergence: 239.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4227 -0.4848 -0.1576 0.2519 3.9794
##
## Random effects:
## Groups Name Variance Std.Dev.
## Beach (Intercept) 8.668 2.944
## Residual 9.362 3.060
## Number of obs: 45, groups: Beach, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 6.5819 1.0958 6.007
## NAP -2.5684 0.4947 -5.192
##
## Correlation of Fixed Effects:
## (Intr)
## NAP -0.157



Global model
For all cluster together (even more letters now)

Y = X𝛽 + U𝛾 + 𝜀

Y =
⎛⎜⎜⎜
⎝

Y1
Y2
⋮

Y𝑚

⎞⎟⎟⎟
⎠

, X =
⎛⎜⎜⎜
⎝

X1
X2
⋮

X𝑚

⎞⎟⎟⎟
⎠

, U =
⎛⎜⎜⎜
⎝

U1 0 … 0
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0 0 ⋱ 0
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⎞⎟⎟⎟
⎠



𝛾 =
⎛⎜⎜⎜
⎝

𝛾1
𝛾2
⋮

𝛾𝑚

⎞⎟⎟⎟
⎠

, 𝜀 =
⎛⎜⎜⎜
⎝

𝜀1
𝜀2
⋮

𝜀𝑚

⎞⎟⎟⎟
⎠

Y = X𝛽 + U𝛾 + 𝜀 = X𝛽 + 𝜀∗

𝜀∗ = U𝛾 + 𝜀
V = Cov(𝜀∗) = Cov(𝜀) + Cov(U𝛾) = 𝜎2I + UGU𝑇

𝜀∗ ∼ 𝑁(0, V)

Here G is a 𝑚 ̇(𝑞 + 1) block-diagonal matrix with Q 𝑚 times on
the diagonal, which gives

Y ∼ 𝑁(X𝛽, V = 𝜎2I + UGU𝑇 )



Parameter estimation

Fixed effects 𝛽 (repetition)
estimated using maximum likelihood, with the marginal
distribution as starting point:

Y ∼ 𝑁(X𝛽, V = 𝜎2I + UGU𝑇 )

We assume that the parameters in V are known, then we get the
weighted least squares solution for 𝛽.

�̂� = (X𝑇 V−1X)−1X𝑇 V−1Y = (
𝑚

∑
𝑖=1

X𝑇
𝑖 V−1

𝑖 X𝑖)−1
𝑚

∑
𝑖=1

X𝑇
𝑖 V−1

𝑖 Y𝑖

�̂� ∼ 𝑁(𝛽, (
𝑚

∑
𝑖=1

X𝑇
𝑖 V−1

𝑖 X𝑖)−1)



We insert estimates for V𝑖 (which we will find next), and the same
distribution - but only asymptotically - to be used for inference for
the fixed effects.

�̂� = (
𝑚

∑
𝑖=1

X𝑇
𝑖 V̂−1

𝑖 X𝑖)−1
𝑚

∑
𝑖=1

X𝑇
𝑖 V̂−1

𝑖 Y𝑖

≈ 𝑁(𝛽, (
𝑚

∑
𝑖=1

X𝑇
𝑖 V̂−1

𝑖 X𝑖)−1)



Now follows:
▶ Random effects parameters 𝜎2 and Q (in V): estimated using

restricted maximum likelihood (REML). We denote all
parameters for random effect for 𝜗. For the random intercept
model this is 𝜗 = (𝜎2, 𝜏2

0 ).
Then, for the random effects 𝛾𝑖 and 𝜀𝑖 we also provide predictions

▶ Predicted values for the random effects 𝛾𝑖 using best linear
unbiased predictors (BLUP).

▶ Prediction values for the random effects 𝜀𝑖 are our residuals.



Parameter estimation with restricted maximum likelihood
(REML) for random effects
There are two ways to explain the REML - a transformation
method (we start with this), and an integration method (to come
next).
Transformation method
To aid in our understanding we start by looking at the REML
solution for multiple linear regression (Module 2),

Y = X𝛽 + 𝜀 with 𝜀 ∼ 𝑁(0, 𝜎2I)

where X is a 𝑛 × 𝑝 design matrix. Remember that
SSE = Y𝑇 (I − H)Y where the hat matrix is H = X(X𝑇 X)−1X𝑇 .

▶ We found that the maximum likelihood estimator for 𝜎2 was
�̂�2 = SSE

𝑛 , which is found from maximizing the likelihood
inserted our estimate of �̂� (i.e. disregarding the uncertainty in
the estimation).



▶ This estimator is biased, and has mean E(�̂�2) = 𝑛−𝑝
𝑛 𝜎2 (too

small= biased downwards), where 𝑛 is the number of
observations and 𝑝 the number of parameters estimated.

▶ It is possible to find an 𝑛 × (𝑛 − 𝑝) matrix A such that A𝑇 Y
follows a 𝑛 − 𝑝-dimensional multivariate normal distribution
with mean vector 0 and covariance matrix A𝑇 A𝜎2.

▶ This means that we have eliminated 𝛽 as unknown parameter
and we can proceed to use maximum likelihood on the
𝑛 − 𝑝-dimensional vector A𝑇 Y with 𝜎2 as the only unknown
parameter, which will give the parameter estimator

�̂�2 = SSE/(𝑛 − 𝑝) = Y𝑇 (I − H)Y/(𝑛 − 𝑝)

This is called the REML estimate for 𝜎2.



Remark: There are many solutions to A but to get
E(A𝑇 Y) = A𝑇 X𝛽 = 0 then A can be chosen to have linearly
independent columns orthogonal to columns space of the design
matrix.

Remark: We can not choose A = I − H since we need A to have
dimension 𝑛 × 𝑛 − 𝑝. But we can for example choose an
(othogonal) basis with 𝑛 − 𝑝 vectors for the column space of I − H.



Now, move to our linear mixed effects model. We have the
model

Y = X𝛽 + U𝛾 + 𝜀
with the marginal distribution

Y ∼ 𝑁(X𝛽, V = 𝜎2I + UGU𝑇 )

▶ The REML estimator for the parameters in V (called 𝜗, and
for the random intercept model that is 𝜎2 and 𝜏2

0 ) - and also
then V(𝜗) - are now

▶ found by maximizing the likelihood for A𝑇 Y
▶ where A is any 𝑁 × (𝑁 − 𝑝) full-rank matrix with columns

orthogonal to the columns of the design matrix X.
▶ Again A𝑇 Y follows a multivariate normal distribution with

mean vector 0 and now covariance matrix A𝑇 V(𝜗)A, which
is independent of 𝛽.



▶ The maximization does not give a closed form solution, but
we get a new V̂ - which now will be less biased (sadly only
unbiased in “simple and balanced cases”).

▶ Even if 𝛽 is not estimated in this optimization we already
know that

�̂� = (X𝑇 V−1X)−1X𝑇 V−1Y

and now we have a new V̂ which we insert in this equation,
and thus get a new REML-estimator for 𝛽:

�̂� = (X𝑇 V̂−1X)−1X𝑇 V̂−1Y

▶ This means, that when using REML-estimation for our linear
mixed effects model this will influence both the fixed effects
and the random effects parameters. However, asymptotically
we will still have the same asymptotic distribution for the
fixed effects as with ML estimation.



In addition the main justification for using REML is that in the
absence of information on 𝛽 then no information about the
parameters in 𝜗 is lost when likelihood estimation is based on
A𝑇 Y instead of on Y. In statistical inference this is referred to as
A𝑇 Y is marginally sufficient for 𝜗 (but this is way beyond the
scope of this course).

In addition, according to Verbeke and Molenbergs (2000, page 46,
Equation 5.8), the likelihood function of A𝑇 Y is

𝐿(𝜗) = 𝐶|
𝑚

∑
𝑖=1

X𝑇
𝑖 V(𝜗)−1

𝑖 X𝑖|−1/2𝐿𝑀𝐿(�̂�(𝜗), 𝜗)

where 𝐶 is a constant not depending on 𝜗, and 𝐿𝑀𝐿 is the
marginal likelihood of (𝛽, 𝛾). Also, the term |∑𝑚

𝑖=1 X𝑇
𝑖 V(𝜗)−1

𝑖 X𝑖|
does not depend on 𝛽.



Therefore both 𝛽 and 𝜗 can be found by maximizing what is
referred to as the REML likelihood function:

𝐿𝑅𝐸𝑀𝐿(𝜗, 𝛽) = |
𝑚

∑
𝑖=1

X𝑇
𝑖 V(𝜗)−1

𝑖 X𝑖|−1/2𝐿𝑀𝐿(𝛽, 𝜗)

Further reading: Theoretical explanation for REML (beyond the
scope of this course) by Inge Helland, UiO and also by Verbeke
and Molenberghs (2000), Section 5.3 (free ebook from Springer for
NTNU students).

http://www.uio.no/studier/emner/matnat/math/STK4070/v05/reml.pdf
http://www.uio.no/studier/emner/matnat/math/STK4070/v05/reml.pdf
https://link.springer.com/book/10.1007%2F978-1-4419-0300-6
https://link.springer.com/book/10.1007%2F978-1-4419-0300-6


Comparing ML and REML estimation for the beaches example
fitML = lmer(Richness ~ NAP + (1 | Beach), data = RIKZ, REML = FALSE)
REMLest = c(fixef(fitREML), as.data.frame(VarCorr(fitREML))[, 4])
MLest = c(fixef(fitML), as.data.frame(VarCorr(fitML))[, 4])
df = data.frame(REML = REMLest, ML = MLest)
rownames(df) = c("$\\beta_0$", "$\\beta_1$", "$\\tau_0$", "$\\sigma$")
kable(df, digits = 4)

REML ML
$\beta_0$ 6.5819 6.5844
$\beta_1$ -2.5684 -2.5757
$\tau_0$ 8.6675 7.5068
$\sigma$ 9.3622 9.1110

Q: Comment on what you see.
Remark: the default for lmer is REML, and we need to write
REML=FALSE to get ML.



Integration method: Another Justification For REML

Y ∼ 𝑁(X𝛽, V(𝜗) = 𝜎2I + UGU𝑇 )
For the fixed effects we started with the log-likelihood function and
maximized to get estimator for 𝛽 dependent on 𝜗. If we now
assume that we have found 𝛽(𝜗) and insert this estimate into the
loglikelihood then the profile log-likelihood is (discregarding an
additive constant)

𝑙𝑃 (𝜗) = −1
2 ln|𝑉 (𝜗)| − 1

2(y − X�̂�(𝜗))𝑇 𝑉 (𝜗)−1(y − X�̂�(𝜗))



The integration method (can be motivated from the Bayesian
perspective by assuming a flat prior on 𝛽) constructs a marginal or
restricted log-likelihood by integrating 𝛽 out of the likelihood

𝑙REML(𝜗) = ln ∫ 𝐿(𝛽, 𝜗)𝑑𝛽



It can be shown that the REML log-likelihood is

𝑙REML(𝜗) = 𝑙𝑃 (𝜗) − 1
2 ln|

𝑚
∑
𝑖=1

X𝑇
𝑖 V(𝜗)−1

𝑖 X𝑖|

Maximizing of 𝑙REML(𝜗) provides the REML estimator for 𝜗.



What do you need to know about REML?
▶ That REML is used to get a better estimator (less downwards

biased) for the random effects parameters than using ML,
▶ so REML is the default choice in the lmer function for fitting

LMMs in the lme4-package in R.
▶ Two ways of motivating this: by transformation or by

integration.
▶ But sadly, for LMM this does not in general give unbiased

estimates for the parameters 𝜗 in V - but less biased.



REML estimation for the beaches example
## Linear mixed model fit by REML ['lmerMod']
## Formula: Richness ~ NAP + (1 | Beach)
## Data: RIKZ
##
## REML criterion at convergence: 239.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4227 -0.4848 -0.1576 0.2519 3.9794
##
## Random effects:
## Groups Name Variance Std.Dev.
## Beach (Intercept) 8.668 2.944
## Residual 9.362 3.060
## Number of obs: 45, groups: Beach, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 6.5819 1.0958 6.007
## NAP -2.5684 0.4947 -5.192
##
## Correlation of Fixed Effects:
## (Intr)
## NAP -0.157

Q: What have we covered so far, and what is missing? Explain the
elements of the print-out!



ML estimation for the beaches example
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: Richness ~ NAP + (1 | Beach)
## Data: RIKZ
##
## AIC BIC logLik deviance df.resid
## 249.8 257.1 -120.9 241.8 41
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4258 -0.5010 -0.1791 0.2452 4.0452
##
## Random effects:
## Groups Name Variance Std.Dev.
## Beach (Intercept) 7.507 2.740
## Residual 9.111 3.018
## Number of obs: 45, groups: Beach, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 6.5844 1.0321 6.380
## NAP -2.5757 0.4873 -5.285
##
## Correlation of Fixed Effects:
## (Intr)
## NAP -0.164

Q: Look for differences between the REML and ML output.



Prediction of random effects and random errors

Predicted values for random effects 𝛾
Why do we want a prediction? To rank the beaches (or schools,
patients?). In breeding: estimate the genetic worth of an
animal/plant (=“breeding value”).
Model check can also use this to check that 𝛾 is normal is in
agreement with our fitted model (same as when using residuals to
check distribution of errors).



Best Linear Unbiased Predictor (BLUP) ̂𝛾𝑖
▶ linear function in Y (linear)
▶ E( ̂𝛾𝑖) = 0 (unbiased)
▶ for any linear combination a𝑇 𝛾𝑖 of random effects

[E(a𝑇 ̂𝛾𝑖 − a𝑇 𝛾𝑖)]2 is minimized among all such linear
unbiased predictors (best)



Beaches random intercept - predicted intercept and estimated
fixed effects
fit = lmer(Richness ~ NAP + (1 | Beach), data = RIKZ)
plot_model(fit, type = "re")
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Joint distribution of Y and 𝛾
The joint distribution of Y and 𝛾 is:

(Y
𝛾 ) ∼ 𝑁((X𝛽

0 ) , (V = UGU𝑇 + 𝜎2I UG
GU𝑇 G ))



Maximizing the likelihood based on the joint distribution
This is maximized with respect to 𝛽 and 𝛾, to give

̂𝛾 = GU𝑇 V−1(Y − X�̂�)

But, here the elements of G and V needs to be estimated, and we
get:

̂𝛾 = ĜU𝑇 V̂−1(Y − X�̂�)
̂𝛾𝑖 = Q̂U𝑇

𝑖 V̂−1
𝑖 (Y𝑖 − X𝑖�̂�)

Remark: For details on this calculation - involving the Henderson’s
mixed model equations, see pages 371-372 of Fahrmeir et al
(2013), or pages 98-99 in Verbeke and Molenberghs (2000),
Section 5.3 (free ebook from Springer for NTNU students).

https://link.springer.com/book/10.1007%2F978-1-4419-0300-6
https://link.springer.com/book/10.1007%2F978-1-4419-0300-6


Conditional mean
Remember:

(Y
𝛾 ) ∼ 𝑁((X𝛽

0 ) , (V = UGU𝑇 + 𝜎2I UG
GU𝑇 G ))

(Alternatively) The predicted random effects can be found as the
mean of the conditional distribution of 𝛾 given Y. If we also
calculate the covariance of the estimated 𝛾 we can make
approximate prediction intervals for the predicted random effects.
The general formula for the conditional multivariate normal X
(known from TMA4267) is:

X ∼ 𝑁(𝜇, Σ)

X2 ∣ (X1 = x1) ∼ 𝑁(𝜇2 + Σ21Σ−1
11 (x1 − 𝜇1), Σ22 − Σ21Σ−1

11 Σ12)



If we use the formula for the mean with X1 = Y and X2 = 𝛾, then

E(𝛾 ∣ Y) = 0 + GU𝑇 V−1(Y − X𝛽)

which can be used (inserted parameter estimates) to give our
estimated random effects.



We may find the covariance matrix of GU𝑇 V−1(Y − X�̂�)
(directly), and for each ̂𝛾𝑖 this is given as

QU𝑇
𝑖 (V−1

𝑖 − V−1
𝑖 X𝑖(

𝑚
∑
𝑖=1

X𝑇
𝑖 V−1

𝑖 X𝑖)−1X𝑇
𝑖 V−1

𝑖 ) U𝑖Q

(according to Verbeke and Molenberghs (2000), page 78). We
insert estimates Q and V𝑖 (thus underestimating the variability)
and get the estimated covariance matrix for the random effect.
Such an estimate is used in the catepillar plot.



Random intercept models: ̂𝛾𝑖
For 𝑖 = 1, … , 𝑚:

Y𝑖 = X𝑖𝛽 + U𝑖𝛾0𝑖 + 𝜀𝑖

where
𝜀𝑖 ∼ 𝑁(0, 𝜎2I) and 𝛾0𝑖 ∼ 𝑁(0, 𝜏2

0 )
and U𝑖 is a 𝑛𝑖 × 1 vector of ones. Further, the 𝑛𝑖 × 𝑛𝑖 marginal
covariance matrix for Y𝑖 is

V𝑖 = 𝜎2I + 𝜏2
0 11𝑇 with inverse V−1

𝑖 = 1
𝜎2 (I − 𝜏2

0
𝜎2 + 𝑛𝑖𝜏2

0
11𝑇 )

which means that the elements on the main diagonal for V−1 are

1
𝜎2(𝜎2 + 𝑛𝑖𝜏2

0 )

and the off-diagonal entries are −𝜏2
0 .



The fixed effect estimate use this inverse matrix as the weighting
matrix V−1

𝑖 in

�̂� = (
𝑚

∑
𝑖=1

X𝑇
𝑖 V̂−1

𝑖 X𝑖)−1
𝑚

∑
𝑖=1

X𝑇
𝑖 V̂−1

𝑖 Y𝑖

The predicted random intercepts are

̂𝛾0𝑖 = Q̂U𝑇
𝑖 V̂−1

𝑖 (Y𝑖 − X𝑖�̂�) = ⋯ = 𝑛𝑖 ̂𝜏2
0

�̂�2 + 𝑛𝑖 ̂𝜏2
0

𝑒𝑖

where 𝑒𝑖 is the average (raw, level 0 - see below) residual

𝑒𝑖 = 1
𝑛𝑖

𝑛𝑖

∑
𝑗=1

(𝑌𝑖𝑗 − x𝑇
𝑖𝑗�̂�)



Interpretation

̂𝛾0𝑖 = 𝑛𝑖 ̂𝜏2
0

�̂�2 + 𝑛𝑖 ̂𝜏2
0

𝑒𝑖

Remember

E(𝛾 ∣ Y) = 0 + GU𝑇 V−1(Y − X𝛽)

The formula for ̂𝛾𝑖0 can be seen as a weighted sum between the
conditional expectation 0 and the average residual 𝑒𝑖, with
weighting factor 𝑛𝑖 ̂𝜏2

0
�̂�2+𝑛𝑖 ̂𝜏2

0
for the average residual (and 1-this for 0).

The larger the 𝑛𝑖 the closer the weight is to 1 and the smaller the
shrinkage. Shrinkage is also high if the error variance 𝜎2 is large
compared to the random effect variance 𝜏2

0 . The latter gives a very
small ICC, so then it makes sense to have random effects close to
0.



Plotting predictions of random effects
We can also use the R package sjPlot to produce plots and
outputs from fitting linear mixed effects models with function lmer
in the R package lme4. This plotting package can also be used to
produce nice plots for lm and glm. The package uses ggplot2 and
other tidyverse packages.
For details see

▶ sjPlot and more specifically
▶ sjPlot on CRAN - for vignettes and
▶ vignette on plotting random effects in LMM

For our beach-example: First the predicted values for the
estimated random effect for each Beach - with confidence intervals.
Unsorted and sorted version. (horisontal version of catepillar plot).
Then QQ-plots for the estimated random effects.

http://cran.revolutionanalytics.com/web/packages/sjPlot/sjPlot.pdf
https://cran.r-project.org/web/packages/sjPlot/index.html
https://cran.r-project.org/web/packages/sjPlot/vignettes/sjplmer.html


plot_model(fit, type = "re", y.offset = 0.4)
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plot_model(fit, type = "re", sort.est = "(Intercept)", y.offset = 0.4)
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Q: comment on what you see.



Predicted values for random errors 𝜀𝑖 (residuals)
Let 𝜇𝑖 denote E(Y𝑖). Fitted values for the LMM can be made on two
levels:

Level 0, marginal ∶ ̂𝜇𝑖 = X𝑖�̂�
𝑒𝑖 = Y𝑖 − X𝑖𝛽

Level 1, conditional ∶ ̃𝜇𝑖 = X𝑖�̂� + U𝑖 ̂𝛾𝑖
𝑒𝑖 = Y𝑖 − X𝑖𝛽 − U𝑖 ̂𝛾𝑖

For lmer the function fitted gives the level 1 fitted values (for our
two-level models). This means that raw residuals can also be made on
two levels, and the default is level 1 for lmer.
In addition to raw residuals, also Pearson residuals (standardized) are
popular.
The residuals can be used in the same way as for the Multiple linear
model (module 2).



fit = lmer(Richness ~ NAP + (1 | Beach), data = RIKZ)
df = data.frame(fitted = fitted(fit), resid = residuals(fit, scaled = TRUE))
ggplot(df, aes(fitted, resid)) + geom_point(pch = 21) + geom_hline(yintercept = 0,

linetype = "dashed") + geom_smooth(se = FALSE, col = "red", size = 0.5, method = "loess") +
labs(x = "Fitted values", y = "Residuals", title = "Residuals vs Fitted values")
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Q: any trend? homoscedastic?



ggplot(df, aes(sample = resid)) + stat_qq(pch = 19) + geom_abline(intercept = 0,
slope = 1, linetype = "dotted") + labs(x = "Theoretical quantiles", y = "Standardized residuals",
title = "Normal Q-Q")
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Q: normally distributed?



Random intercept and slope model
Example: Sleep deprivation study
In a study on the effect of sleep deprivation the average reaction
time per day were measured. On day 0 the subjects had their
normal amount of sleep. Starting that night they were restricted to
3 hours of sleep per night. The observations represent the average
reaction time on a series of tests given each day to each subject.
This was measured for 18 subjects for 10 days (days 0-9).
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We observe that each subject’s reaction time increases
approximately linearly with the number of sleepdeprived days. But,
it appears that subjects have different slopes and intercepts.

As a first model we may assume that there is a common intercept
and slope for the population - called fixed effects, but allow for
random deviations for the intercept and slope for each individual.
This is called a random intercept and slope model.



fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
summary(fm1)

## Linear mixed model fit by REML ['lmerMod']
## Formula: Reaction ~ Days + (Days | Subject)
## Data: sleepstudy
##
## REML criterion at convergence: 1743.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.9536 -0.4634 0.0231 0.4634 5.1793
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## Subject (Intercept) 612.10 24.741
## Days 35.07 5.922 0.07
## Residual 654.94 25.592
## Number of obs: 180, groups: Subject, 18
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 251.405 6.825 36.838
## Days 10.467 1.546 6.771
##
## Correlation of Fixed Effects:
## (Intr)
## Days -0.138

Q: What are our parameter estimates and their interpretation?



A: Here the population fixed effects estimates are an intercept of
251.4 ms and a slope of 10.47 ms/day. The random effects for the
intercept and the slope have estimated standard deviations 24.74
ms and 5.92 ms/day.



library(sjPlot)
plot_model(fm1, type = "re")
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Measurement model

𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝑥𝑖𝑗 + 𝛾0𝑖 + 𝛾1𝑖𝑥𝑖𝑗 + 𝜀𝑖𝑗

▶ 𝛽0: population intercept (fixed)
▶ 𝛾0𝑖: deviation (for members of cluster 𝑖) from the population

intercept 𝛽0 - not a parameter but a random variable!
▶ 𝛽0 + 𝛾0𝑖: random intercept for cluster 𝑖
▶ 𝛽1: population slope (fixed), common to all clusters
▶ 𝛾1𝑖: deviation (for members of cluster 𝑖) from the population

slope 𝛽0 - not a parameter but a random variable!
▶ 𝛽1 + 𝛾1𝑖: random slope for cluster 𝑖.



Distributional assumptions

𝜀𝑖 ∼ 𝑁(0, 𝜎2I)

𝛾𝑖 = (𝛾0𝑖
𝛾1𝑖

) ∼ 𝑁 ((0
0) , Q = ( 𝜏2

0 𝜏01
𝜏01 𝜏2

1
))

The parameter 𝜏01 gives the covariance beween the random
intercept and random slope.



Marginal covariances for Y𝑖

Cov(𝑌𝑖𝑗, 𝑌𝑘𝑙) = E[(𝑌𝑖𝑗 − 𝜇𝑖𝑗)(𝑌𝑘𝑙 − 𝜇𝑘𝑙)]

Cov(𝑌𝑖𝑗, 𝑌𝑘𝑙) =
⎧{
⎨{⎩

𝜏2
0 + 2𝜏01𝑥𝑖𝑗 + 𝜏2

1 𝑥2
𝑖𝑗 + 𝜎2 = Var(𝑌𝑖𝑗) for 𝑖 = 𝑘, 𝑗 = 𝑙

𝜏2
0 + 𝜏01𝑥𝑖𝑗 + 𝜏01𝑥𝑖𝑙 + 𝜏2

𝑖 𝑥𝑖𝑗𝑥𝑖𝑙 for 𝑖 = 𝑘, 𝑗 ≠ 𝑙
0 for 𝑖 ≠ 𝑘, 𝑗 ≠ 𝑙

⎫}
⎬}⎭

The correlation between 𝑌𝑖𝑗 and 𝑌𝑖𝑙 (two observations in the same
cluster, that is, same beach) depends in a complicated way on the
observed values for 𝑥 and is rather difficult to interpret.

Corr(𝑌𝑖𝑗, 𝑌𝑖𝑙) = Cov(𝑌𝑖𝑗, 𝑌𝑖𝑙)
√Var(𝑌𝑖𝑗)Var(𝑌𝑖𝑙)



Hypothesis testing
Testing fixed effects

�̂� = (
𝑚

∑
𝑖=1

X𝑇
𝑖 V̂−1

𝑖 X𝑖)−1
𝑚

∑
𝑖=1

X𝑇
𝑖 V̂−1

𝑖 Y𝑖 ≈ 𝑁(𝛽, (
𝑚

∑
𝑖=1

X𝑇
𝑖 V̂−1

𝑖 X𝑖)−1)

Approximate Wald tests for fixed effects

C𝛽 = d vs. C𝛽 ≠ d

where C is a 𝑟 × 𝑝 constant matrix and d a 𝑟 × 1 constant vector.
Then:

(�̂� − 𝛽)𝑇 C𝑇 [C(
𝑚

∑
𝑖=1

X𝑇
𝑖 V̂−1

𝑖 X𝑖)−1C𝑇 ]−1C(�̂� − 𝛽)

asymptotically follows a 𝜒2-distribution with 𝑟-degrees of freedom.



Beach-example: Hypothesis testing with normal approximation
fit = lmer(Richness ~ NAP + (1 | Beach), data = RIKZ, REML = FALSE)
summary(fit)
z = (summary(fit)$coefficients[2, 3])
1 - pchisq(z^2, 1)

## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: Richness ~ NAP + (1 | Beach)
## Data: RIKZ
##
## AIC BIC logLik deviance df.resid
## 249.8 257.1 -120.9 241.8 41
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4258 -0.5010 -0.1791 0.2452 4.0452
##
## Random effects:
## Groups Name Variance Std.Dev.
## Beach (Intercept) 7.507 2.740
## Residual 9.111 3.018
## Number of obs: 45, groups: Beach, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 6.5844 1.0321 6.380
## NAP -2.5757 0.4873 -5.285
##
## Correlation of Fixed Effects:
## (Intr)
## NAP -0.164
## [1] 1.254807e-07



Likelihood ratio tests for fixed effects
Notation:

▶ A: the larger model and
▶ B: the smaller model (under 𝐻0), and the smaller model is

nested within the larger model (that is, B is a submodel of A).
The random effects parts of these models are assumed to be the
same, while the changes are only to the fixed effects part.
The likelihood ratio statistic is defined as

−2 ln 𝜆 = −2(ln 𝐿(�̂�𝐵) − ln 𝐿(�̂�𝐴))

which under the null is asymptotically 𝜒2-distributed with degrees
of freedom equal the difference in the number of parameters in the
large and the small model. Again, 𝑝-values are calculated in the
upper tail of the 𝜒2-distribution.
Remark: this is the log-likelihood, not the REML version.



Remark: this result is not valid if the the models are fitted using
REML istead of ML. The reason for this is that the mean structure
of the model fitted under the null hypothesis is not the same mean
structure under the alternative hypothesis, which leads to that
different matrices A must be used for the REML method.
Therefore these REML log-likelihoods are based on different
observations and are therefore not comparable.



Beach-example: Hypothesis testing with likelihood ratio test
fit = lmer(Richness ~ NAP + (1 | Beach), data = RIKZ, REML = FALSE)
fit0 = lmer(Richness ~ 1 + (1 | Beach), data = RIKZ, REML = FALSE)
anova(fit0, fit)

## Data: RIKZ
## Models:
## fit0: Richness ~ 1 + (1 | Beach)
## fit: Richness ~ NAP + (1 | Beach)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## fit0 3 269.30 274.72 -131.65 263.30
## fit 4 249.83 257.06 -120.92 241.83 21.474 1 3.586e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Q: Which is model A (large) and model B (small)? What do we
conclude? Compare to the Wald test result (above).



Testing parameters for random effects
In most situations the fixed effects model is of prime interest,
however, a good choice of covariance structure is useful for
interpreting the data and essential to be able to perform valid
inference for the fixed effects.

▶ Overparameterization: gives inefficient estimation.
▶ Too restrictive specification: invalid inference about the fixed

effects.
Wald test can also be used for random effects parameters 𝜗 in Q
and 𝜎2, and

▶ asymptotically also ̂𝜗 follows a multivariate normal distribution
(under regularity conditions) with mean 𝜗 and covariance
matrix given by the inverse of the Fisher information matrix.

▶ We may use the negative of the second order partial
derivatives (Hessian) of the log-likelihood (ML or REML) wrt.
𝜗.



But there is a problem: the performance of the normal
approximation depends strongly on the true value of 𝜗 and large
samples are needed for values of 𝜗 that are close to the boundary
of the parameter space (for the hyptothesis tested), and when on
the boundary the normal approximation fails.

We will not dive deep into this matter in this course, but report
that the solution to this - both for the Wald and the likelihood
ratio test (preferably using the REML log-likelihood) is to use a
mixture of 𝜒2 distributions in these cases.



Likelihood ratio test for random effects
▶ A: the larger model and
▶ B: the smaller model (under 𝐻0), and the smaller model is

nested within the larger model (that is, B is a submodel of A).
The fixed effects parts of these models are assumed to be the
same, while the changes are only to the random effects part - and
the changes gives nested models.
The likelihood ratio statistic is defined as

−2 ln 𝜆 = −2(ln 𝐿( ̂𝜗𝐵) − ln 𝐿( ̂𝜗𝐴))

and the REML-likelihood is preferred.



For testing a random intercept model vs. no random intercept
(need for this random effect) then

𝐻0 ∶ Q = 0 vs. 𝐻1 ∶ Q = 𝜏2
0

asymptotically −2 ln 𝜆 is a mixture of 𝜒2
1 and 𝜒2

0 with equal
weights. Here 𝜒2

0 is the distribution that gives probability mass 1
to the value 0.

If we instead had used the classical null distribution (𝜒2
1) then the

𝑝-values would be too large and the null hypotheses kept to often.

For testing a random intercept versus a random slope (with Q
having three parameters) when 𝑝-values is found from 0.5 times a
𝜒2

1 and a 𝜒2
2 distribution.

Similar strategies for other situations - see Verbeke and
Molenberghs (2000) pages 69-72.



Model selection methods

There are two main strategies:
▶ Hypothesis testing

▶ asymptotic Wald tests for fixed effects
▶ likelihood ratio test for fixed effects and parameters for random

effects
▶ Information criteria: AIC and BIC



AIC and BIC for Maximum likelihood estimation (ML)

AIC = −2 ⋅ 𝑙(�̂�, ̂𝜗) + 2 ⋅ 𝑟
BIC = −2 ⋅ 𝑙(�̂�, ̂𝜗) + ln(𝑁) ⋅ 𝑟

▶ 𝑟: number of parameters in the model, both the 𝛽s and the
parameters in the variance of the random effects, i.e. the 𝜎2

from our error and then all variances and covariances for the
random effects in Q.

▶ 𝑁 = ∑𝑚
𝑖=1 𝑛𝑖

▶ 𝑙(�̂�, ̂𝜗) is the maximum log-likelihood inserted the parameter
estimates

This can be used directly in the ML estimation, and as before BIC
will give a smaller model than AIC.



AIC and BIC for Restricted Maximum likelihood estimation
(REML)

AIC = −2 ⋅ 𝑙(�̂�, ̂𝜗) + 2 ⋅ 𝑟
BIC = −2 ⋅ 𝑙(�̂�, ̂𝜗) + ln(𝑁 − 𝑝) ⋅ 𝑟

▶ 𝑟: number of parameters in the model, both the 𝛽s and the
parameters in the variance of the random effects, i.e. the 𝜎2

from our error and then all variances and covariances for the
random effects in Q.

▶ 𝑙(�̂�, ̂𝜗) is now the restricted maximum log-likelihood inserted
the parameter estimates

Remember:

𝑙REML(𝜗) = 𝑙𝑃 (𝜗) − 1
2 ln|

𝑚
∑
𝑖=1

X𝑇
𝑖 V(𝜗)−1

𝑖 X𝑖|



Sleep study - comparing random effects models
fm1 = lmer(Reaction ~ Days + (Days | Subject), data = sleepstudy)
# random slope and intercept, correlated
fm2 = lmer(Reaction ~ Days + ((1 | Subject) + (0 + Days | Subject)), data = sleepstudy)
# random slope and intercept, uncorrelated
fm3 = lmer(Reaction ~ Days + (1 | Subject), data = sleepstudy)
# random intercept
AIC(fm1, fm2, fm3) #with REML
extractAIC(fm1)
extractAIC(fm2)
extractAIC(fm3) #refit and give ML

## df AIC
## fm1 6 1755.628
## fm2 5 1753.669
## fm3 4 1794.465
## [1] 6.000 1763.939
## [1] 5.000 1762.003
## [1] 4.000 1802.079
Q: What are the three models? Which model to choose?



A:

All three models have a population intercept and a slope in Days,
but the random part of the models differ.

▶ fm1 is the most complex with a random intercept and a
random slope, and a full 2 × 2 matrix Q

▶ fm2 also has a random intercept and slope, but the Q-matrix
is diagonal.

▶ fm3 only has a random intercept and only one element in the
Q-matrix.

The fm2 model gives the lowest AIC.



Top-down strategy for model selection
1. Start with model with all explanatory variables and possible

interactions for the fixed effects - called a beyond optimal
model. (Nothing is really done her, just decide on the largest
possible fixed part).

2. With this beyond optimal fixed effects model we now focus on
the random effects. The idea is that since we have many
explanatory variables in the fixed effects the random
component should not contain information that we would
prefer to have in the fixed effect. To do this we may either use
testing or AIC or BIC. Testing is problematic due to that the
null hypotheses tested is on the boundary of the parameter
values tested (𝜏2 = 0). REML must be used (to get as
unbiased estimates as possible).



3. Now we have the optimal random effect, so we focus on the
optimal fixed effect model. ML must be used because
different fixed effects will give incomparable
REML-log-likelihoods. Testing or AIC or BIC can be used.

4. The final model is then presented with REML estimates.



Top-down strategy for the beach-data
This example is taken from Zuur et al. (2009), pages 127-128.
1. We decide on fixed model with intercept, main effect of NAP

and Exposure and the interaction thereof. (fExp is just a
slight adjustment of Exposure by letting level 8 be 10 - just
replicate what Zuur did, so fExp only has values 10 and 11. )

2. Fit the fixed model from 1 to “no random effect”, “random
intercept” and “random interept and slope for NAP”. Use
REML.

B1 = gls(Richness ~ 1 + NAP * fExp, data = RIKZ, method = "REML")
B2 = lmer(Richness ~ 1 + NAP * fExp + (1 | Beach), data = RIKZ)
B3 = lmer(Richness ~ 1 + NAP * fExp + (1 + NAP | Beach), data = RIKZ)
AIC(B1, B2, B3)

## df AIC
## B1 5 238.5329
## B2 6 236.4925
## B3 8 237.1331
Conclusion: choose the random intercept model (lowest AIC).



3. With the random intercept, now compare the different fixed
effects models. Use ML.

F2 = lmer(Richness ~ 1 + NAP * fExp + (1 | Beach), data = RIKZ, REML = FALSE)
confint(F2)
F2a = lmer(Richness ~ 1 + NAP + fExp + (1 | Beach), data = RIKZ, REML = FALSE)
confint(F2a)

## 2.5 % 97.5 %
## .sig01 0.0000000 3.145294
## .sigma 2.3114668 3.681773
## (Intercept) 6.9045813 10.804288
## NAP -4.7299177 -2.275315
## fExp2 -8.1969707 -2.303772
## NAP:fExp2 0.1919491 3.877650
## 2.5 % 97.5 %
## .sig01 0.000000 3.297744
## .sigma 2.435935 3.879425
## (Intercept) 6.562780 10.630777
## NAP -3.578864 -1.644351
## fExp2 -7.563508 -1.505626



F2b = lmer(Richness ~ 1 + NAP + (1 | Beach), data = RIKZ, REML = FALSE)
confint(F2b)
F2c = lmer(Richness ~ 1 + fExp + (1 | Beach), data = RIKZ, REML = FALSE)
confint(F2c)
AIC(F2, F2a, F2b, F2c)

## 2.5 % 97.5 %
## .sig01 1.484204 5.100814
## .sigma 2.435429 3.877572
## (Intercept) 4.324560 8.824909
## NAP -3.566901 -1.599779
## 2.5 % 97.5 %
## .sig01 0.000000 3.95707
## .sigma 3.178126 5.05812
## (Intercept) 5.385254 10.29475
## fExp2 -8.522119 -1.15788
## df AIC
## F2 6 242.1135
## F2a 5 244.7589
## F2b 4 249.8291
## F2c 4 265.4332



Conclusion: keep the full model. No confidence intervals cover 0,
and the AIC supports the full model.

Remark: In Zuur et al (2009), page 128, the conclusion was to use
the additive model (model F2a above), based on asymptotic
𝑝-values (but this was smaller than 0.05) using the nlme package.
We have instead used AIC for this selection.



summary(B2)

## Linear mixed model fit by REML ['lmerMod']
## Formula: Richness ~ 1 + NAP * fExp + (1 | Beach)
## Data: RIKZ
##
## REML criterion at convergence: 224.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4849 -0.4161 -0.0770 0.1521 3.7313
##
## Random effects:
## Groups Name Variance Std.Dev.
## Beach (Intercept) 3.307 1.819
## Residual 8.660 2.943
## Number of obs: 45, groups: Beach, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 8.8611 1.0208 8.680
## NAP -3.4637 0.6279 -5.517
## fExp2 -5.2556 1.5452 -3.401
## NAP:fExp2 2.0005 0.9461 2.114
##
## Correlation of Fixed Effects:
## (Intr) NAP fExp2
## NAP -0.181
## fExp2 -0.661 0.120
## NAP:fExp2 0.120 -0.664 -0.221



Fitting LMM with function lmer in package lme4

This is based on the article Fitting Linear Mixed-Effects Models
Using lme4 by Bates, Bolker, Mächler and Walker (2015) in
Journal of Statistical Software, and in particular pages 30 and
onwards.

We use a data set called the ergonometrics experiment data set
ergoStool for illustration.

▶ effort: the effort required (on the “Borg scale”) to arise
from a stool (krakk) - this is our response

▶ Type: the type of stool - types T1, T2, T3 and T4 studied.
▶ Subject: each of nine different subjects tested the four

different stools (in random order?). Subjects

Was there any clear winner among the stools, when the goal was
to minimize effort?

https://www.jstatsoft.org/index.php/jss/article/view/v067i01/v67i01.pdf
https://www.jstatsoft.org/index.php/jss/article/view/v067i01/v67i01.pdf
https://www.jstatsoft.org/index.php/jss/article/view/v067i01/v67i01.pdf


The ergoStool data set
is found in the MEMSS package.
library(MEMSS)
summary(ergoStool)
table(ergoStool$Subject)
contrasts(ergoStool$Type) #default contrast used

## effort Type Subject
## Min. : 7.00 T1:9 A : 4
## 1st Qu.: 8.00 T2:9 B : 4
## Median :10.00 T3:9 C : 4
## Mean :10.25 T4:9 D : 4
## 3rd Qu.:12.00 E : 4
## Max. :15.00 F : 4
## (Other):12
##
## A B C D E F G H I
## 4 4 4 4 4 4 4 4 4
## T2 T3 T4
## T1 0 0 0
## T2 1 0 0
## T3 0 1 0
## T4 0 0 1
Observe that the type of stool is coded as dummy variable, with
T1 as reference category.



Fit a LMM with lmer: summary
library(lme4)
fit = lmer(effort ~ Type + (1 | Subject), data = ergoStool)
summary(fit)$coefficients

## Estimate Std. Error t value
## (Intercept) 8.5555556 0.5760123 14.853079
## TypeT2 3.8888889 0.5186838 7.497610
## TypeT3 2.2222222 0.5186838 4.284348
## TypeT4 0.6666667 0.5186838 1.285304



The model formula gives first the fixed effects, which here is an
intercept and then type of stool (with T1 as reference, so estimate
difference from T1). We use a random intercept for each Subject,
given as (1|Subject).

From the print-out from summary we see that REML is used to fit
the model, and quantiles of scaled Pearson residuals. Could also
have used:
formula(fit)
REMLcrit(fit)
quantile(residuals(fit, "pearson", scaled = TRUE))

## effort ~ Type + (1 | Subject)
## [1] 121.1308
## 0% 25% 50% 75% 100%
## -1.80200345 -0.64316591 0.05783115 0.70099706 1.63142054



Then there is a part on the fitted random effects and residual
variation. The intra class correlation could also be calculated from
VarCorr(fit) (an object of class VarCorr.merMod). Observe the
very high ICC of 0.6.
vc = VarCorr(fit)
print(vc, comp = "Variance")
df = as.data.frame(vc)
print(df)
print(vc)
nobs(fit)
ngrps(fit)
sigma(fit)
ICC = df[4][[1]][1]/sum(df[4][[1]])
ICC

## Groups Name Variance
## Subject (Intercept) 1.7755
## Residual 1.2106
## grp var1 var2 vcov sdcor
## 1 Subject (Intercept) <NA> 1.775463 1.332465
## 2 Residual <NA> <NA> 1.210648 1.100295
## Groups Name Std.Dev.
## Subject (Intercept) 1.3325
## Residual 1.1003
## [1] 36
## Subject
## 9
## [1] 1.100295
## [1] 0.5945736



Then to the fitted fixed effects, which is interpreted as for lm with
treatment contrast (dummy effect coding), but without any
𝑝-values, and anova gives the analysis of variance table. See
help("pvalues") to explore your options to find 𝑝-values for
testing fixed effects.
fixef(fit)
coef(summary(fit))
anova(fit)
help("pvalues")

## (Intercept) TypeT2 TypeT3 TypeT4
## 8.5555556 3.8888889 2.2222222 0.6666667
## Estimate Std. Error t value
## (Intercept) 8.5555556 0.5760123 14.853079
## TypeT2 3.8888889 0.5186838 7.497610
## TypeT3 2.2222222 0.5186838 4.284348
## TypeT4 0.6666667 0.5186838 1.285304
## Analysis of Variance Table
## npar Sum Sq Mean Sq F value
## Type 3 81.194 27.065 22.356

It is easiest to rise from the stool of Type T1, followed by Type T4
and the Type T3 and finally Type T2.



We may also get confidence intervals for the fixed effects (and
random effects variances), based on the profile likelihood, which
might be thought of as analogues to 𝑝-values. However, keep in
mind our coding of Type (dummy), so if the intervals contain 0 the
Type is not different from the reference Type T1 (the best type wrt
effort to arise). The confidence intervals are made using the Wald
approximation for the fixed effects. A bootstrap confidence interval
can also be provided.
confint(fit)

## 2.5 % 97.5 %
## .sig01 0.7342354 2.287261
## .sigma 0.8119798 1.390104
## (Intercept) 7.4238425 9.687269
## TypeT2 2.8953043 4.882473
## TypeT3 1.2286377 3.215807
## TypeT4 -0.3269179 1.660251



Finally, there is a part on the correlation between estimated fixed
effects, here we have the estimated correlation between the three
levels of type of stool. We can get the variance-covariance matrix
with vcov, and can calculated correlations from that matrix.
vcov(fit)

## 4 x 4 Matrix of class "dpoMatrix"
## (Intercept) TypeT2 TypeT3 TypeT4
## (Intercept) 0.3317901 -0.1345165 -0.1345165 -0.1345165
## TypeT2 -0.1345165 0.2690329 0.1345165 0.1345165
## TypeT3 -0.1345165 0.1345165 0.2690329 0.1345165
## TypeT4 -0.1345165 0.1345165 0.1345165 0.2690329



Diagnostic plots
Fitted vs. residuals and normal qq-plot (from lattice). Not
ggplot - see below for more plotting.
plot(fit, type = c("p", "smooth"))
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library(lattice)
qqmath(fit, id = 0.05)
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Comparing models
We may also use anova to compare models. Assume that we want
to compare to the (probably very bad) model where type of stool is
not taken into account (which is stupic if we want to investigate
the types) - so just go show (better example for sleep study).
fit0 = lmer(effort ~ 1 + (1 | Subject), data = ergoStool)
anova(fit0, fit)

## Data: ergoStool
## Models:
## fit0: effort ~ 1 + (1 | Subject)
## fit: effort ~ Type + (1 | Subject)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## fit0 3 164.15 168.90 -79.075 158.15
## fit 6 134.14 143.65 -61.072 122.14 36.006 3 7.468e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The comparison is based on the likelihood ratio test with ML (not
REML), and also gives 𝑝-values.



𝑝-values in lme4
Excerpt from Fitting Linear Mixed-Effects Models Using lme4 by
Bates, Bolker, Mächler and Walker (2015) in Journal of Statistical
Software page 35:
Computing p values One of the more controversial design
decisions of lme4 has been to omit the output of p values
associated with sequential ANOVA decompositions of fixed effects.
The absence of analytical results for null distributions of parameter
estimates in complex situations (e.g., unbalanced or partially
crossed designs) is a long-standing problem in mixed-model
inference. While the null distributions (and the sampling
distributions of non-null estimates) are asymptotically normal,
these distributions are not t distributed for finite size samples – nor
are the corresponding null distributions of differences in scaled
deviances F distributed. Thus approximate methods for computing
the approximate degrees of freedom for t distributions, or the
denominator degrees of freedom for F statistics (Satterthwaite
1946; Kenward and Roger 1997), are at best ad hoc solutions.

https://www.jstatsoft.org/index.php/jss/article/view/v067i01/v67i01.pdf
https://www.jstatsoft.org/index.php/jss/article/view/v067i01/v67i01.pdf
https://www.jstatsoft.org/index.php/jss/article/view/v067i01/v67i01.pdf


However, computing finite-size-corrected p values is sometimes
necessary. Therefore, although the package does not provide them
(except via parametric bootstrapping, Section 5.1), we have
provided a help page to guide users in finding appropriate methods:

R> help("pvalues")



pvalues {lme4} R Documentation Getting p-values for fitted
models

Description

One of the most frequently asked questions about lme4 is “how do
I calculate p-values for estimated parameters?” Previous versions of
lme4 provided the mcmcsamp function, which efficiently generated
a Markov chain Monte Carlo sample from the posterior distribution
of the parameters, assuming flat (scaled likelihood) priors. Due to
difficulty in constructing a version of mcmcsamp that was reliable
even in cases where the estimated random effect variances were
near zero (e.g. https://stat.ethz.ch/pipermail/r-sig-mixed-
models/2009q4/003115.html), mcmcsamp has been withdrawn (or
more precisely, not updated to work with lme4 versions >=1.0.0).

Many users, including users of the aovlmer.fnc function from the
languageR package which relies on mcmcsamp, will be deeply
disappointed by this lacuna. Users who need p-values have a
variety of options. In the list below, the methods marked MC
provide explicit model comparisons; CI denotes confidence
intervals; and P denotes parameter-level or sequential tests of all
effects in a model. The starred (*) suggestions provide finite-size
corrections (important when the number of groups is <50); those
marked (+) support GLMMs as well as LMMs.

likelihood ratio tests via anova or drop1 (MC,+)

profile confidence intervals via profile.merMod and confint.merMod
(CI,+)

parametric bootstrap confidence intervals and model comparisons
via bootMer (or PBmodcomp in the pbkrtest package)
(MC/CI,*,+)

for random effects, simulation tests via the RLRsim package
(MC,*)

for fixed effects, F tests via Kenward-Roger approximation using
KRmodcomp from the pbkrtest package (MC,*)

car::Anova and lmerTest::anova provide wrappers for
Kenward-Roger-corrected tests using pbkrtest: lmerTest::anova
also provides t tests via the Satterthwaite approximation (P,*)

afex::mixed is another wrapper for pbkrtest and anova providing
“Type 3” tests of all effects (P,*,+)

arm::sim, or bootMer, can be used to compute confidence intervals
on predictions.

For glmer models, the summary output provides p-values based on
asymptotic Wald tests (P); while this is standard practice for
generalized linear models, these tests make assumptions both about
the shape of the log-likelihood surface and about the accuracy of a
chi-squared approximation to differences in log-likelihoods.

When all else fails, don’t forget to keep p-values in perspective:
http://www.phdcomics.com/comics/archive.php?comicid=905

https://stat.ethz.ch/pipermail/r-sig-mixed-models/2009q4/003115.html
https://stat.ethz.ch/pipermail/r-sig-mixed-models/2009q4/003115.html
http://www.phdcomics.com/comics/archive.php?comicid=905


What have we not covered?

▶ Multi-level models: we have only considered two levels
▶ Structures for the covariance matrix of 𝜀𝑖: we have only

considered 𝜎2I.
▶ Effective sample size.
▶ Details about testing random effects with mixtures of

𝜒2-distributions.
▶ External effects and the extended random intercept model to

give different scales for the within and between cluster effects.
See pages 353-354 in Fahrmeir et al (2013).

▶ Penalized least squares view.
▶ Bayesian view.


