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Overview

Aim: Present methods for analysing correlated responses in a
generalized linear models setting - LMM meets GLM to become
GLMM.

Also here (as in module LMM) we will only consider two-level
models and in particular focus on random intercept models for
binomial and Poisson responses. Emphasis will be on
understanding.



Learning material
▶ Textbook: Fahrmeir et al (2013): Chapter 7.5: 389-394, 7.7.
▶ Classnotes (15.11.2018)

https://www.math.ntnu.no/emner/TMA4315/2018h/M8PL.pdf


Topics
▶ beaches example - revisited
▶ notation
▶ the generalized linear mixed effect model (three ingredients)
▶ the GLMM with random intercept
▶ the marginal model
▶ parameter estimation and Laplace approximation
▶ summing up: what do we need to know about the GLMM?
▶ additional info on different software (not on reading list)



Beaches example - revisited

This example is taken from Zuur et al. (2009, chapter 5, pages
101-142), and data are referred to as RIKZ. Data were collected on
nine different beaches in the Netherlands with the aim to
investigate if there is a relationship between:

▶ richness of species (number of species observed) and
▶ NAP: the height of the sampling station compared to mean

tidal level.

Data: 45 observations, taken at 9 beaches:
▶ beach: the beach that the samples were taken, for each beach

5 different samples were taken.
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We want to use the richness of species as the response in a
regression model.

In Module 7 we assumed that the response could be viewed as a
normal variable, but now we assume that the response comes from
a Poisson distribution.

As in the LMM module, we could (1) ignore the beach effect, (2)
include it as a fixed effect, or (3) use a random effect. Here we will
use (3), and extend the GLM framework to include random effects



But - first: what do we remember about GLMs (and Poission
regression with log-link in particular)?



Assumptions for GLM model (Poisson):

1. Random component from exponential family: We have for our
beaches: 𝑌𝑖 ∼ Poisson(𝜆𝑖), with E(𝑌𝑖) = 𝜆𝑖, and
Var(𝑌𝑖) = 𝜆𝑖.

2. Linear predictor: 𝜂𝑖 = x𝑇
𝑖 𝛽.

3. Log link
𝜂𝑖 = ln(𝜆𝑖) = 𝑔(𝜆𝑖)

and (inverse thereof) response function

𝜆𝑖 = exp(𝜂𝑖)

Canonical link for Poisson is log.



Generalized linear mixed effects models

Notation
combining GLM (Module 5) and LMM (Module 7)
We have 𝑛𝑖 repeated observations (𝑗 = 1, … , 𝑛𝑖) from each of
𝑖 = 1, … , 𝑚 clusters (or individuals).

▶ Responses: 𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑛𝑖
(e.g. species richness at beach 𝑖

sample 𝑗)
▶ Covariates: x𝑖1, x𝑖1, … , x𝑖𝑛𝑖

(e.g. NAP for beach 𝑖 sample 𝑗)
The covariates x𝑖𝑗 are 𝑝 × 1 vectors (as before, 𝑘 covariates and
one intercept so 𝑝 = 𝑘 + 1).



Repetition GLM
1. Random component - exponential family (now 𝑦𝑖𝑗)

𝑓(𝑦𝑖𝑗 ∣ 𝜃𝑖𝑗) = exp (𝑦𝑖𝑗𝜃𝑖𝑗 − 𝑏(𝜃𝑖𝑗)
𝜙 ⋅ 𝑤𝑖𝑗 + 𝑐(𝑦𝑖𝑗, 𝜙, 𝑤𝑖𝑗))

▶ 𝜃𝑖𝑗 is called the canonical parameter and is a parameter of
interest

▶ 𝜙 is called a nuisance parameter (and is not of interest to
us=therefore a nuisance (plage))

▶ 𝑤𝑖𝑗 is a weight function, in most cases 𝑤𝑖𝑗 = 1
▶ 𝑏 and 𝑐 are known functions.

We looked in detail into the binomial, Poisson and gamma
distribution (in addition to the normal).



2. Linear predictor (previously “systematic component”):

𝜂𝑖𝑗 = x𝑇
𝑖𝑗𝛽

3. Link function 𝑔- and response function ℎ

𝜂𝑖𝑗 = 𝑔(𝜇𝑖𝑗)

𝜇𝑖𝑗 = ℎ(𝜂𝑖𝑗)



New element
we add a random component (effect) to the linear predictor!

2.
𝜂𝑖𝑗 = x𝑇

𝑖𝑗𝛽 + u𝑇
𝑖𝑗𝛾𝑖

and we make the same assumptions as for the LMM

𝛾𝑖 ∼ 𝑁(0, Q)
and independent from covariates. Observe: we still assume
normality for the random effects!
In addition, the mean 𝜇𝑖𝑗 = E(𝑌𝑖𝑗 ∣ 𝛾𝑖) is now to be seen to be
conditional on the random effect 𝛾𝑖. This means that the specified
response distribution is conditional on the random effect:
𝑓(𝑦𝑖𝑗 ∣ 𝛾𝑖).



GLMM model assumptions
Distributional assumptions
(previously “1. Random component from exponential family”)

▶ Given the random effects 𝛾𝑖 and the covariates x𝑖𝑗 and u𝑖𝑗
▶ the responses 𝑌𝑖𝑗 are conditionally independent and
▶ the conditional distribution 𝑓(𝑦𝑖𝑗 ∣ 𝛾𝑖) belongs to and

exponential family.



Structural assumptions
(previously “2. Systematic component” and “3. Link function”)

▶ The conditional mean 𝜇𝑖𝑗 = E(𝑌𝑖𝑗 ∣ 𝛾𝑖) is linked to
▶ the linear predictor 𝜂𝑖𝑗 = x𝑇

𝑖𝑗𝛽 + u𝑖𝑗𝛾𝑖
▶ through the link function

𝜂𝑖𝑗 = 𝑔(𝜇𝑖𝑗)

▶ or equivalently through the response function

𝜇𝑖𝑗 = ℎ(𝜂𝑖𝑗)

▶ where ℎ−1 = 𝑔 (inverse functions).



Distributional assumptions for random effects
▶ The random effects 𝛾𝑖, 𝑖 = 1, … , 𝑚 are independent and

identically distributed

𝛾𝑖 ∼ 𝑁(0, Q)

▶ where the covariance matrix Q is a (𝑞 + 1) × (𝑞 + 1) positive
definite.

▶ An important special case is Q = 𝑑𝑖𝑎𝑔(𝜏2
0 , 𝜏2

1 , … , 𝜏2
𝑞 ).

Any questions? Notice that we still have normal distribution for
the random effects!
Remark: for LMMs we used that 𝜀 ∼ 𝑁(0, 𝜎2I), but said that it
was possible to let the error terms be correlated 𝜀 ∼ 𝑁(0, R)
where R could have non-zero off-diagonal elements. However, for
GLMMs this is much more complicated.



Alternative two-step formulation
Consider a random variable 𝑌𝑖𝑗 and a random effect 𝛾𝑖 for cluster 𝑖.
Alternative two step formulation:

1. 𝛾𝑖 ∼ 𝑁(0, Q)
2. Given the realization of 𝛾𝑖, then the 𝑌𝑖𝑗s are independent and

each have the distribution 𝑓(𝑦𝑖𝑗 ∣ 𝛾𝑖) with mean 𝜇𝑖𝑗 = ℎ(𝜂𝑖𝑗)
and linear predictor 𝜂𝑖𝑗 = x𝑇

𝑖𝑗𝛽 + u𝑇
𝑖𝑗𝛾𝑖.

Remark: this conditional formulation is “easy” to write down, but
to do inference we need the marginal distribution of all 𝑌𝑖𝑗s
together to construct the likelihood. We will soon see that this is
hard.



GLMM random intercept model

Distributional assumptions: we will focus on binomial and
Poisson responses.

Structural assumptions: The random effect is added to the linear
predictor

𝜂𝑖𝑗 = x𝑇
𝑖𝑗𝛽 + 𝛾0𝑖

and we only consider canonical links, so logit for binomial and log
for Poisson.

Distributional assumptions for random effects

The 𝛾0𝑖, 𝑖 = 1, … , 𝑚 are independent and identically distributed

𝛾0𝑖 ∼ 𝑁(0, 𝜏2
0 )



Poisson random intercept model
Distributional assumptions: The conditional distribution of the
response 𝑌𝑖𝑗 is Poisson with mean 𝜆𝑖𝑗

𝑓(𝑦𝑖𝑗 ∣ 𝛾𝑖) =
𝜆𝑦𝑖𝑗

𝑖𝑗
𝑦𝑖𝑗!

exp(−𝜆𝑖𝑗) for 𝑦 = 0, 1, 2, …

This is conditional on 𝜆𝑖𝑗, which means that it is really conditional
on the linear predictor - since the mean is a function of the linear
predictor, and in the linear predictor we have fixed and random
effects. So, conditional on the values for the fixed and random
effects.
Then the observations 𝑌𝑖𝑗 are conditionally independent for all 𝑖
and 𝑗 - but, not marginally independent.



Structural assumptions:

𝜂𝑖𝑗 = x𝑇
𝑖𝑗𝛽 + 𝛾0𝑖

ln(𝜆𝑖𝑗) = 𝜂𝑖𝑗 or 𝜆𝑖𝑗 = exp(𝜂𝑖𝑗)

Distributional assumptions for random effects

The 𝛾0𝑖, 𝑖 = 1, … , 𝑚 are independent and identically distributed

𝛾0𝑖 ∼ 𝑁(0, 𝜏2
0 )



Overdispersion
It is not necessary that 𝑛𝑖 > 1 to use this model, and this model
can be used to take care of overdispersion (when all 𝑛𝑖 = 1).
For the Poisson case, this would be equivalent to using a Poisson
log-normal distribution



Beach-example: Poisson GLMM with beach as random
intercept
(we will talk about parameter estimation soon)
RI=glmer(Richness~NAP +(1|Beach),data=RIKZ,

family=poisson(link=log))
summary(RI)$coefficients

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.6623311 0.17372603 9.568693 1.082653e-21
## NAP -0.5038922 0.07535222 -6.687158 2.275463e-11
summary(RI)$varcor

## Groups Name Std.Dev.
## Beach (Intercept) 0.47428



Beach-example: Poisson GLMM with overdispersion
Sample is 1:nrow(RIKZ)
RIod=glmer(Richness~NAP +(1|Beach) +(1|Sample),

data=RIKZ,family=poisson(link=log))
summary(RIod)$coefficients

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.636575 0.1747593 9.364738 7.623917e-21
## NAP -0.551958 0.0967145 -5.707087 1.149262e-08
summary(RIod)$varcor

## Groups Name Std.Dev.
## Sample (Intercept) 0.26555
## Beach (Intercept) 0.45822



library(sjPlot)
library(ggplot2)

plot_model(RI, type = "re") + ylab("BLUP") + xlab("Beaches")
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Comment on what you see. Would you expect that the solid and
dashed curve were identical?



Binomial random intercept model
We will study this model in the interactive session.
Simulation example
Aim: to show the difference between random intercept and random
slope logit models, and to compare the mean cluster curve with
the population curve (as for the Poisson model).
This example a slightly modified version (added line and changed
to ggplot) of an example in the Lecture notes by Magne Aldrin,
Norwegian Computing Centre (which is way the notation differs
slightly from what we have used).



The model we use is

(𝛾0𝑖
𝛾1𝑖

) ∼ 𝑁 ((0
0) , (4 0

0 1))

and then
𝜂𝑖𝑗 = 𝛽0 + 𝛽1𝑥𝑖𝑗 + 𝛾0𝑖

for the random intercept model and

𝜂𝑖𝑗 = 𝛽0 + 𝛽1𝑥𝑖𝑗 + 𝛾0𝑖 + 𝛾1𝑖𝑥𝑖𝑗

for the random slope model where 𝛽0 = 3 and 𝛽1 = 1. Logit-link
is used so 𝜂𝑖𝑗 = ln( 𝜋𝑖𝑗

1−𝜋𝑖𝑗
).

Only data for the random intercept and slope are simulated, while
parameter estimates are considered known. The number of clusters
is 𝑚 = 1000 and 𝑛𝑖 = 201 value of 𝑥 from −10 to 10 are studied.



Below 30 random lines are plotted together (in different colours).
The black dashed line is exp(𝛽0 + 𝛽𝑖𝑥)/(1 + exp(𝛽0 + 𝛽𝑖𝑥))
(denoted “not mean” in the plot) and the black solid line is the
population mean (really, the average of the 𝑚 curves).
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Conditional and marginal model

To do parameter estimation in the LMM we started with the
marginal model for 𝑌𝑖𝑗.

𝑓(𝑦𝑖𝑗) = ∫
𝛾𝑖

𝑓(𝑦𝑖𝑗 ∣ 𝛾𝑖)𝑓(𝛾𝑖)𝑑𝛾𝑖

where
𝑓(𝛾𝑖) is 𝑁(0, Q)

and 𝑓(𝑦𝑖𝑗 ∣ 𝛾𝑖) might be the binomial, Poisson, normal, gamma, …
distribution - chosen as an exponential family.

It turns out that this integral can only be written out analytically
in special cases.

In the special case that 𝑓(𝑦𝑖𝑗 ∣ 𝛾𝑖) is normal we saw in Module
LMM that the marginal distribution is also multivariate normal.



Another special case is the log-linear Poisson random intercept
where all 𝑛𝑖 = 1. See pages 393-394 in our textbook to see the
solution.

For the random intercept Poisson GLMM with log-link the
expected marginal mean is (Agresti, 2015, page 309)

E(𝑌𝑖𝑗) = E[E(𝑌𝑖𝑗 ∣ 𝛾0𝑖)] = exp(x𝑇
𝑖𝑗𝛽 + 𝜏2

0 /2)
The solid line in the plot to the left above gives this curve, while
the dashed is exp(x𝑇

𝑖𝑗𝛽). In Agresti (2015, page 310) the variance
of the marginal distribution is given as

Var(𝑌𝑖𝑗) = ⋯ = E(𝑌𝑖𝑗) + [E(𝑌𝑖𝑗)2(exp(𝜏2
0 ) − 1)]

so we see that the variance is larger than that of a Poisson
distribution.

Remark: the conditional mean is exp(x𝑇
𝑖𝑗𝛽 + 𝛾0𝑖), while the

marginal mean is exp(x𝑇
𝑖𝑗𝛽 + 𝜏2

0 /2).
(If the link function chosen had been the identity link then the
marginal mean would have been x𝑇

𝑖𝑗𝛽.)



Parameter estimation

The most popular method for parameter estimation for regression
is maximum likelihood. The likelihood of the data is given by the
marginal distribution of all 𝑌𝑖𝑗s jointly. However, this can not be
found analytically (as we saw above), so we must resort to
numerical methods to evaluate the likelihood of a general GLMM.

The parameters we want to estimate are the fixed effects 𝛽s, and
the parameters in Q for the random effects - denoted by 𝜗.



The contribution from observations in the 𝑖th cluster is

𝑓(y𝑖 ∣ 𝛽, 𝜗) = ∫
𝛾𝑖

𝑓(y𝑖 ∣ 𝛾𝑖, 𝛽)𝑓(𝛾𝑖 ∣ Q)𝑑𝛾𝑖

= ∫
𝛾𝑖

𝑛𝑖

∏
𝑗=1

𝑓(𝑦𝑖𝑗 ∣ 𝛾𝑖, 𝛽)𝑓(𝛾𝑖 ∣ Q)𝑑𝛾𝑖

And the likelihood is then (since the clusters are independent)

𝐿(𝛽, 𝜗) =
𝑚

∏
𝑖=1

𝑓(yi ∣ 𝛽, �)



To arrive at parameter estimates we need to maximize the
likelihood with respect to 𝛽 and 𝜗, which is a complicated
numerical problem, because wee need to integtrate over the 𝛾𝑖’s.

Let 𝑙(y𝑖, 𝛾𝑖 ∣ 𝜃) = log((y𝑖, 𝛾𝑖 ∣ 𝛽, 𝜗)) be the joint log-likelihood of
the data and the random effects (with 𝜃 = (𝛽, 𝜗)).
Observe that 𝑙(y𝑖, 𝛾𝑖 ∣ 𝛽, 𝜗) depends on the unknown random
effects 𝛾𝑖 and the parameters in 𝜃 = (𝛽, 𝜗) (here we have the fixed
effects and the parameters in Q for the random effects).



The maximum likelihood estimate for 𝜃 maximises

𝐿(𝜃) = ∫
𝛾

exp(𝑙(y𝑖, 𝛾𝑖 ∣ 𝜃))𝑑𝛾

with respect to 𝜃.

The random effects 𝛾𝑖 are now integrated out and the marginal
likelihood 𝐿(𝜃) is the likelihood of the data as a function of the
parameters only.



Approximations
There are a few approaches to approximating the integral:

▶ The Laplace Approximation
▶ Gauss-Hermite Quadrature
▶ Simulation (usually MCMC: see TMA4300 for more)
▶ INLA (Bayesian, much more advance. Involves nested Laplace

approximations)
glmer function in lme4 uses the Laplace approximation as a
default, but can also use Gauss-Hermite Quadrature. Bayesian
methods abound: MCMC is slow, but more flexible.



The Laplace Approximation
The Laplace Approximation assumes that 𝑙(y𝑖, 𝛾 ∣ 𝜃) is quadratic
in 𝛾: this is equivalent to either

▶ assuming a Gaussian distribution for the sampling distribution
of each 𝛾𝑖, or

▶ using a single quadrature point in Gauss-Hermite Quadrature



The Approximation
Let 𝑔(𝛾) = ln(𝑓(𝑦 ∣ 𝛾)𝑓(𝛾)), and look at the second order Taylor
expansion around �̂�(𝜃):

𝑔(𝛾𝑖) ≈ ̃𝑔(𝛾𝑖) = 𝑔( ̂𝛾𝑖) + (𝛾𝑖 − ̂𝛾𝑖)𝑔′( ̂𝛾𝑖) + 1
2(𝛾𝑖 − ̂𝛾𝑖)2𝑔″( ̂𝛾𝑖)

= 𝑔( ̂𝛾𝑖) − 1
2(𝛾𝑖 − ̂𝛾𝑖)2(−𝑔″( ̂𝛾𝑖))

This means that exp( ̃𝑔(𝛾𝑖)) is proportional to the normal density
with mean 𝜇 = ̂𝛾𝑖 and variance 𝜎2 = −1/𝑔″( ̂𝛾𝑖).
Putting this back into our integral:

𝐿(𝜃) = ∫
𝛾

exp(𝑙(y𝑖, 𝛾𝑖 ∣ 𝜃))𝑑𝛾 ≈ ∫
𝛾

exp( ̃𝑙(y𝑖, 𝛾𝑖 ∣ 𝜃))𝑑𝛾

= exp(𝑙(yi, �̂� ∣ 𝜃)) ∫
𝛾

exp(− 1
�2 (𝛾 − �̂�)2)d𝛾

= exp(𝑙(y𝑖, ̂𝛾 ∣ 𝜃))√−2𝜋/𝑔″( ̂𝛾𝑖)



Now we can plus this into our full likelihood, pausing only to note
that 𝐻(𝜃) is the Hessian of 𝑙(y𝑖, 𝛾𝑖 ∣ 𝜃) evaluated at ̂𝛾(𝜃), so
contains 𝑔″( ̂𝛾𝑖) terms

Let ̂𝛾(𝜃) be the maximum of 𝑙(y𝑖, 𝛾𝑖 ∣ 𝜃) w.r.t 𝛾.

The Laplace approximation for the marginal likelihood 𝐿(𝜃) is then

𝐿∗(𝜃) = (2𝜋)𝑛/2det(𝐻(𝜃))−1/2 exp(𝑓(�̂�, 𝜃))



Gauss-Hermite Quadrature
If the dimension of 𝛾𝑖 is small, for example our random intercept
model, then the Gauss-Hermite quadrature may be used to
approximate the integral above. This is because the form

∫
∞

−∞
ℎ(𝛾) exp(−𝛾2)𝑑𝛾

can be written as a sum of weights and quadrature points that are
roots of Hermite polynomials. This can then be maximized using
Newton-Raphson methods.
When the dimension of 𝛾 gets large, this gets too slow, so other
methods are usually better.
In essence, this is a better approximation than the Laplace
Approximation, but there is a computational cost that might not
be worth paying.



What have we not covered?

▶ We have skipped a lot of technicalities about the parameter
estimation.

▶ How to predict the random effects 𝛾𝑖: “the conditional
modes” of the random effects.

▶ What is fitted values, and how are residuals calculated.
▶ How to test hypotheses?
▶ AIC to compare models (very similar to LMM).
▶ And, surely, much more.



Summing up - what have we learned about the GLMM?

▶ The GLMM can be formulated using three ingredients:
▶ distributional assumption: 𝑓(𝑦𝑖𝑗 ∣ 𝛾𝑖) from exponential family
▶ structural assumptions: linear predictor 𝜂𝑖𝑗 = x𝑇

𝑖𝑗𝛽 + u𝑖𝑗𝛾𝑖 and
link function 𝜂𝑖𝑗 = 𝑔(𝜇𝑖𝑗) where 𝜇𝑖𝑗 = E(𝑌𝑖𝑗 ∣ 𝛾𝑖).

▶ distributional assumptions for the random effects:
𝛾𝑖 ∼ 𝑁(0, Q).

▶ The GLMM likelihood function is expressed as an integral with
respect to the random effects and does (in general) not have a
closed form solution.

▶ Numerical approximation methods need to be used to find
parameter estimates, and one possibility is to use the Laplace
approximation, but many competing method exists.



▶ Three R packages that can be investigated is lme4(function
glmer) and glmmTMB (template model builder), and the
NTNU-flagship inla. How to use these three packages on a
simulated data set (binary data, logit link, random intercept
and slope) is shown in the end of the module page (NOT on
our reading list but for the interested student).



R packages

# install.packages('arm')
install.packages("reshape2")
install.packages("sp")
install.packages("glmmTBM")
install.packages("INLA", repos = "https://inla.r-inla-download.org/R/stable", dep = TRUE)
install.packages("lme4")
install.packages("devtools")
library(devtools)
# install_github('romunov/AED')
install.packages("sjPlot")
install.packages("sjmisc")



Further reading

▶ Bolker et al. (2008):Generalized linear mixed models: a
practical guide for ecology and evolution

▶ Zuur et al. (2009): “Mixed Effects Models and Extensions in
Ecology with R”, chapter 13 (pages 323-341). Available as
free ebook from Springer for NTNU students. More
explanations and less mathematics than Fahrmeir et al (2013),
more focus on understanding. Link to ebook Chapter 13

▶ Agresti (2015): Foundations of linear and generalized linear
models, Chapter 9.

http://avesbiodiv.mncn.csic.es/estadistica/curso2011/regm26.pdf
http://avesbiodiv.mncn.csic.es/estadistica/curso2011/regm26.pdf
https://link.springer.com/chapter/10.1007/978-0-387-87458-6_13

