LØSNINGSFORSLAG
EXAM IN TMA4315 GENERALIZED LINEAR MODELS
Monday 30 November 2009
Time: 09:00-13:00

Oppgave $1 \quad N(N>100)$ independent observations Y_{1}, \ldots, Y_{N} have normal distributions with the same variance σ^{2}.

$$
\begin{gathered}
E Y_{1}=\mu_{1}=\beta_{1}+\beta_{2} \\
E Y_{2}=E Y_{3}=\ldots=E Y_{N}=\mu=\beta_{1}
\end{gathered}
$$

where β_{1} and β_{2} are parameters of interest.
a) What is the design matrix X ?

Solution. X is a $N \times 2$ matrix of the form

$$
X=\left[\begin{array}{ccc}
1 & & 1 \\
1 & & 0 \\
1 & & 0 \\
& \cdots & \\
1 & & 0
\end{array}\right]
$$

b) Using the simple rule of thumb $h_{i i}>2 p / N$ show that the first observation (and only it) is highly influential (here $H=\left[h_{i j}\right]$ is the hat matrix, and p is the number of parameters, $p=2$).
Solution.

$$
X^{T} X=\left[\begin{array}{cc}
N & 1 \\
1 & 1
\end{array}\right],\left(X^{T} X\right)^{-1}=\frac{1}{N-1}\left[\begin{array}{cc}
1 & -1 \\
-1 & N
\end{array}\right]
$$

and therefore the hat matrix is

$$
H=X\left(X^{T} X\right)^{-1} X^{T}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & \frac{1}{N-1} & \cdots & \frac{1}{N-1} \\
. & \dot{1} & \cdot & \dot{1} \\
0 & \frac{1}{N-1} & \cdots & \frac{1}{N-1}
\end{array}\right]
$$

Thus

$$
h_{11}>\frac{2 p}{N}
$$

and

$$
h_{i i}<\frac{2 p}{N}, \quad i=2, \ldots, N
$$

(here $p=2$ and $N>100$).
c) Find the maximum likelihood estimator of $\beta=\left(\beta_{1}, \beta_{2}\right)^{T}$.

Solution. It is easy to see that

$$
\left(X^{T} X\right)^{-1} X^{T}=\frac{1}{N-1}\left[\begin{array}{ccccc}
0 & 1 & 1 & \ldots & 1 \\
N-1 & -1 & -1 & \ldots & -1
\end{array}\right],
$$

therefore MLE is

$$
b=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\left(X^{T} X\right)^{-1} X^{T} Y=\left[\begin{array}{c}
\frac{1}{N-1} \sum_{i=2}^{N} Y_{i} \\
Y_{1}-\frac{1}{N-1} \sum_{i=2}^{N} Y_{i}
\end{array}\right] .
$$

Oppgave $2 \quad X_{1}$ and X_{2} are two independent random variables having the same distribution with the probability density function

$$
f_{X}(x ; \theta)=\theta x^{\theta-1} I_{(0,1)}(x), \theta>0
$$

Let $Y=\max \left\{X_{1}, X_{2}\right\}$.
a) Does the distribution of Y belong to the exponential family?

Solution.

$$
F_{X}(x)= \begin{cases}0 & \text { for } x<0 \\ x^{\theta} & \text { for } 0 \leq x \leq 1 \\ 1 & \text { for } x>1\end{cases}
$$

therefore

$$
\begin{gathered}
F_{Y}(y)=\left[F_{X}(y)\right]^{2}= \begin{cases}0 & \text { for } y<0, \\
y^{2 \theta} & \text { for } 0 \leq y \leq 1, \\
1 & \text { for } y>1,\end{cases} \\
f_{Y}(y)=2 \theta y^{2 \theta-1} I_{(0,1)}(y)=e^{2 \theta \ln y+\ln \theta+\ln 2-\ln y} \text { for } 0<x<1 .
\end{gathered}
$$

The distribution of Y belongs to the exponential family:

$$
a(y)=\ln y, b(\theta)=2 \theta, c(\theta)=\ln \theta, d(y)=\ln 2-\ln y .
$$

b) Show that

$$
E \ln Y=-\frac{1}{2 \theta}
$$

Solution.

$$
E \ln Y=E a(Y)=-\frac{c^{\prime}(\theta)}{b^{\prime}(\theta)}=-\frac{1}{2 \theta}
$$

Oppgave 3 Consider the following GLM: Y_{1}, \ldots, Y_{N} are independent, $N=2 n ; Y_{i} \sim \operatorname{binomial}\left(n_{i}, \pi_{i}\right)$, $\mathrm{i}=1, \ldots, \mathrm{~N}\left(n_{i}\right.$ are known); $\beta=\left(\beta_{1}, \beta_{2}\right)^{T}$ are parameters of interest;

$$
\ln \frac{\pi_{i}}{1-\pi_{i}}=x_{i}^{T} \beta
$$

where the design matrix has form

$$
X=\left[\begin{array}{ccc}
a_{1} & & 0 \\
& \ldots & \\
a_{n} & & 0 \\
0 & & c_{1} \\
& \cdots & \\
0 & & c_{n}
\end{array}\right]
$$

a) Find the score vector (in terms of $Y_{i}, n_{i}, \pi_{i}, a_{i}, c_{i}$) and show that b_{1} does not depend of Y_{n+1}, \ldots, Y_{N} while b_{2} does not depend of Y_{1}, \ldots, Y_{n}, where $b=\left(b_{1}, b_{2}\right)^{T}$ is the maximum likelihood estimator of $\beta=\left(\beta_{1}, \beta_{2}\right)^{T}$.
Solution. The log-likelihood function is

$$
\begin{gathered}
l(\beta ; Y)=\sum_{i=1}^{N}\left(Y_{i} \ln \frac{\pi_{i}}{1-\pi_{i}}+n_{i} \ln \left(1-\pi_{i}\right)+\ln \binom{n_{i}}{Y_{i}}\right)= \\
=\sum_{i=1}^{N}\left(Y_{i} x_{i}^{T} \beta-n_{i} \ln \left(1+e^{x_{i}^{T} \beta}\right)+\ln \binom{n_{i}}{Y_{i}}\right) .
\end{gathered}
$$

U_{1} and U_{2} are obtained by differentiation of $l(\beta ; Y)$ with respect to β_{1} and β_{2} respectively.
Taking into account that

$$
\pi_{i}=\frac{e^{x_{i}^{T} \beta}}{1+e^{x_{i}^{T} \beta}}
$$

we obtain

$$
U=\left(U_{1}, U_{2}\right)^{T}=\left(\sum_{i=1}^{n}\left(Y_{i}-n_{i} \pi_{i}\right) a_{i}, \sum_{i=n+1}^{N}\left(Y_{i}-n_{i} \pi_{i}\right) c_{i-n}\right)^{T} .
$$

Since π_{1}, \ldots, π_{n} depend only of β_{1} and $\pi_{n+1}, \ldots, \pi_{N}$ depend only of β_{2}, so do U_{1} and U_{2} respectively. Equations $U_{1}\left(\beta_{1}\right)=0, U_{2}\left(\beta_{2}\right)=0$ are solved separately.
b) Find the information matrix and show that the method of scoring for b has the form

$$
\begin{gathered}
b_{1}^{(m)}=b_{1}^{(m-1)}+\frac{\sum_{i=1}^{n}\left(Y_{i}-n_{i} \pi_{i}^{(m-1)}\right) a_{i}}{\sum_{i=1}^{n} n_{i} \pi_{i}^{(m-1)}\left(1-\pi_{i}^{(m-1)}\right) a_{i}^{2}}, \\
b_{2}^{(m)}=b_{2}^{(m-1)}+\frac{\sum_{i=n+1}^{N}\left(Y_{i}-n_{i} \pi_{i}^{(m-1)}\right) c_{i-n}}{\sum_{i=n+1}^{N} n_{i} \pi_{i}^{(m-1)}\left(1-\pi_{i}^{(m-1)}\right) c_{i-n}^{2}} .
\end{gathered}
$$

Solution. The information matrix is

$$
I=\left[\begin{array}{cc}
E U_{1}^{2} & E U_{1} U_{2} \\
E U_{1} U_{2} & E U_{2}^{2}
\end{array}\right]=\left[\begin{array}{cc}
\sum_{i=1}^{n} n_{i} \pi_{i}\left(1-\pi_{i}\right) a_{i}^{2} & 0 \\
0 & \sum_{i=n+1}^{N} n_{i} \pi_{i}\left(1-\pi_{i}\right) c_{i}^{2}
\end{array}\right] .
$$

Thus

$$
I^{-1} U=\left[\frac{\sum_{i=1}^{n}\left(Y_{i}-n_{i} \pi_{i}\right) a_{i}}{\sum_{i=1}^{n} n_{i} \pi_{i}\left(1-\pi_{i}\right) a_{i}^{2}}, \frac{\sum_{i=n+1}^{N}\left(Y_{i}-n_{i} \pi_{i}\right) c_{i-n}}{\sum_{i=n+1}^{N} n_{i} \pi_{i}\left(1-\pi_{i}\right) c_{i-n}^{2}}\right]^{T},
$$

and the result follows.

