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Solution TMA4315 GENERALIZED LINEAR MODELS

Friday December 10th, 2010

Problem 1 Number of buss passengers

a) GLM for model 1:

Respnose: Yi ∼ Po(λi)
Assume that the Y1, . . . YN are independent.
E(Yi) = λi = µi

Link: ηi = log(µi) ⇒ µi = exp(ηi)

Linear component: ηi = β0 + β1xi1 + β2xi2 = Xβ
where β0 is the intercept, xi1 = 0 for non-semester observations and xi1 = 1 for
observations in the semester, and xi3 is the temperature for observation i.

Design matrix for β = (β0, β1, β2)
T :

X =


1 1 8.8
1 0 11.5
1 0 12.0
1 1 14.8
1 0 −1.2
1 0 7.8


Identifiability: Here corner-stone parametrization is used as we set x1 = 0 for observations
with nonsemester. An alternative would be to use a sum-to zero constraint
The R notation temp*semester gives a model with interaction between temperature
and semester/non-semester, i.e. the linear component becomes

ηi = β0 + β1xi1 + β2xi2 + β3xi1 ∗ xi2
This means that temperature is allowed to have a different effect (slope) when it is
semester (slope β2 + β3) or non-semester (slope β2).
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b) • µ = exp(0.254 + 1.085− 5.4 · 0.035) = 3.16

• µ = exp(0.254 + 15.2 · 0.035) = 2.19

c) Hypothesis:

H0: Model 1 is correct

H1: Model 2 is correct

Likelihood-ratio test: ∆D = D1−D2 ∼ χ2(p1− p2) Where D1 is the deviance for model
1 (with p1 degrees of freedom) and D2 is the deviance for model 2 (with p2 degrees of
freedom).
∆D = 17.6777− 13.981 = 3.696, and p1 − p2 = 17− 16 = 1. And for a test on 5% level
we have a critical value of (from table) 3.841, so we keep model 1. (But the test statistic
is close to the critical value)

We can decide which of the models model 1, model 2 or model 3 to use in (at least) two.

1. We have already found that model 1 is better then model 2. We can then do a
likelihood-ratio test between model 1 and model 3, and we conclude that we keep
model 1.

2. We can use AIC, and choose the model with lowest AIC, i.e. model 2.

Both alternatives are correct. The very best answers are the ones that discuss both.

d) Let Y1, . . . YN be independent responses with Yi ∼ Po(λi), i.e. pdf

f(y;λ) =
µy

y!
exp(−µ)

which gives log-likelihood;

li(µi) = yi ln(µi)− ln(yi!)− µi

For saturated model (one µi per observation yi); δli/δµi = 0⇒ µ̂i = yi.
For model of interest; fitted value for observation i; E(Yi) = µ̂i = ŷi.
Deviance;

D = 2(lsaturated − lmodel))

= 2
N∑
i=1

(yi ln(yi)− ln(yi!)− yi − (yi ln(ŷi)− ln(yi!)− ŷi))

= 2
N∑
i=1

(yi ln
yi
ŷi
− (yi − ŷi))
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Problem 2 Negative binomial distribution

a) If a pdf is a member of the exponential family it can be written as

fy(y; θ) = exp(a(y)b(θ) + c(θ) + d(y))

The probability density function for a negative binomial random variable is

fy(y; θ, r) =
Γ(y + r)

y!Γ(r)
(1− θ)rθy

and
ln fy = y ln(θ) + r ln(1− θ) + ln(Γ(y + r)− ln y!− ln Γ(r))

Hence, fy belongs to the exponential family with a(y) = y, b(θ) = ln(θ), c(θ) = r ln(1−θ)
and d(y) = ln(Γ(y + r))− ln y!− ln Γ(r). It is of canonical form since a(y) = y.
Show that the negative binomial distribution is a member of the exponential family. You
can in this question consider r as a known constant.

b) Use the general formulas for a exponential family;

E(Y ) =
−c′(y)

b′(θ)
= r

θ

1− θ
and

V ar(Y ) =
b′′(θ)c′(θ)− c′′(θ)b′(θ)

(b′(θ))3
= · · · = µ

1

1− θ

c) GLM for model 1 with negative binomial response:

Respnose: Yi ∼ nbin(θi, r)
Assume that the Y1, . . . YN are independent.
E(Yi) = r θ

1−θ = µi

Link: ηi = log(µi) ⇒ µi = exp(ηi)

Linear component: ηi = β0 + β1xi1 + β2xi2 = βX
where βs and xis as in a).

Need a link-function that ensures positive µi, e.g. log(·).
r is a nuisance parameter, and can be used to fit V ar(Yi) (or adjust E(Y ) such that we
get the desired V ar(Yi)).
With this parametrization of the negative binomial the same sample space. An important
difference is that for negative binomial we can have V ar(Y ) > E(Y ). It can therefore
be useful if the data are overdisperse.


