Solution TMA4315 GENERALIZED LINEAR MODELS

Friday December 10th, 2010

Problem 1 Number of buss passengers
a) GLM for model 1:

Respnose: $Y_{i} \sim \operatorname{Po}\left(\lambda_{i}\right)$
Assume that the $Y_{1}, \ldots Y_{N}$ are independent.
$E\left(Y_{i}\right)=\lambda_{i}=\mu_{i}$
Link: $\eta_{i}=\log \left(\mu_{i}\right) \Rightarrow \mu_{i}=\exp \left(\eta_{i}\right)$
Linear component: $\eta_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}=X \beta$
where β_{0} is the intercept, $x_{i 1}=0$ for non-semester observations and $x_{i 1}=1$ for observations in the semester, and $x_{i 3}$ is the temperature for observation i.

Design matrix for $\beta=\left(\beta_{0}, \beta_{1}, \beta_{2}\right)^{T}$:

$$
X=\left[\begin{array}{ccc}
1 & 1 & 8.8 \\
1 & 0 & 11.5 \\
1 & 0 & 12.0 \\
1 & 1 & 14.8 \\
1 & 0 & -1.2 \\
1 & 0 & 7.8
\end{array}\right]
$$

Identifiability: Here corner-stone parametrization is used as we set $x_{1}=0$ for observations with nonsemester. An alternative would be to use a sum-to zero constraint

The R notation temp*semester gives a model with interaction between temperature and semester/non-semester, i.e. the linear component becomes

$$
\eta_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 1} * x_{i 2}
$$

This means that temperature is allowed to have a different effect (slope) when it is semester (slope $\beta_{2}+\beta_{3}$) or non-semester (slope β_{2}).
b) \quad - $\mu=\exp (0.254+1.085-5.4 \cdot 0.035)=3.16$

- $\mu=\exp (0.254+15.2 \cdot 0.035)=2.19$
c) Hypothesis:
H_{0} : Model 1 is correct
H_{1} : Model 2 is correct
Likelihood-ratio test: $\Delta D=D_{1}-D_{2} \sim \chi^{2}\left(p_{1}-p_{2}\right)$ Where D_{1} is the deviance for model 1 (with p_{1} degrees of freedom) and D_{2} is the deviance for model 2 (with p_{2} degrees of freedom).
$\Delta D=17.6777-13.981=3.696$, and $p_{1}-p_{2}=17-16=1$. And for a test on 5% level we have a critical value of (from table) 3.841, so we keep model 1. (But the test statistic is close to the critical value)
We can decide which of the models model 1, model 2 or model 3 to use in (at least) two.

1. We have already found that model 1 is better then model 2. We can then do a likelihood-ratio test between model 1 and model 3, and we conclude that we keep model 1.
2. We can use AIC, and choose the model with lowest AIC, i.e. model 2.

Both alternatives are correct. The very best answers are the ones that discuss both.
d) Let $Y_{1}, \ldots Y_{N}$ be independent responses with $Y_{i} \sim \operatorname{Po}\left(\lambda_{i}\right)$, i.e. pdf

$$
f(y ; \lambda)=\frac{\mu^{y}}{y!} \exp (-\mu)
$$

which gives log-likelihood;

$$
l_{i}\left(\mu_{i}\right)=y_{i} \ln \left(\mu_{i}\right)-\ln \left(y_{i}!\right)-\mu_{i}
$$

For saturated model (one μ_{i} per observation y_{i}); $\delta l_{i} / \delta \mu_{i}=0 \Rightarrow \hat{\mu}_{i}=y_{i}$. For model of interest; fitted value for observation $i ; E\left(Y_{i}\right)=\hat{\mu}_{i}=\hat{y}_{i}$.
Deviance;

$$
\begin{aligned}
D & \left.=2\left(l_{\text {saturated }}-l_{\text {model }}\right)\right) \\
& =2 \sum_{i=1}^{N}\left(y_{i} \ln \left(y_{i}\right)-\ln \left(y_{i}!\right)-y_{i}-\left(y_{i} \ln \left(\hat{y}_{i}\right)-\ln \left(y_{i}!\right)-\hat{y}_{i}\right)\right) \\
& =2 \sum_{i=1}^{N}\left(y_{i} \ln \frac{y_{i}}{\hat{y}_{i}}-\left(y_{i}-\hat{y}_{i}\right)\right)
\end{aligned}
$$

Problem 2 Negative binomial distribution
a) If a pdf is a member of the exponential family it can be written as

$$
f_{y}(y ; \theta)=\exp (a(y) b(\theta)+c(\theta)+d(y))
$$

The probability density function for a negative binomial random variable is

$$
f_{y}(y ; \theta, r)=\frac{\Gamma(y+r)}{y!\Gamma(r)}(1-\theta)^{r} \theta^{y}
$$

and

$$
\ln f_{y}=y \ln (\theta)+r \ln (1-\theta)+\ln (\Gamma(y+r)-\ln y!-\ln \Gamma(r))
$$

Hence, f_{y} belongs to the exponential family with $a(y)=y, b(\theta)=\ln (\theta), c(\theta)=r \ln (1-\theta)$ and $d(y)=\ln (\Gamma(y+r))-\ln y!-\ln \Gamma(r)$. It is of canonical form since $a(y)=y$.
Show that the negative binomial distribution is a member of the exponential family. You can in this question consider r as a known constant.
b) Use the general formulas for a exponential family;

$$
E(Y)=\frac{-c^{\prime}(y)}{b^{\prime}(\theta)}=r \frac{\theta}{1-\theta}
$$

and

$$
\operatorname{Var}(Y)=\frac{b^{\prime \prime}(\theta) c^{\prime}(\theta)-c^{\prime \prime}(\theta) b^{\prime}(\theta)}{\left(b^{\prime}(\theta)\right)^{3}}=\cdots=\mu \frac{1}{1-\theta}
$$

c) GLM for model 1 with negative binomial response:

Respnose: $Y_{i} \sim \operatorname{nbin}\left(\theta_{i}, r\right)$
Assume that the $Y_{1}, \ldots Y_{N}$ are independent.

$$
E\left(Y_{i}\right)=r \frac{\theta}{1-\theta}=\mu_{i}
$$

Link: $\eta_{i}=\log \left(\mu_{i}\right) \Rightarrow \mu_{i}=\exp \left(\eta_{i}\right)$
Linear component: $\eta_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}=\beta X$
where $\beta \mathrm{s}$ and $x_{i} \mathrm{~s}$ as in a).
Need a link-function that ensures positive μ_{i}, e.g. $\log (\cdot)$. r is a nuisance parameter, and can be used to fit $\operatorname{Var}\left(Y_{i}\right)$ (or adjust $E(Y)$ such that we get the desired $\left.\operatorname{Var}\left(Y_{i}\right)\right)$.
With this parametrization of the negative binomial the same sample space. An important difference is that for negative binomial we can have $\operatorname{Var}(Y)>E(Y)$. It can therefore be useful if the data are overdisperse.

