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Solution TMA4315 GENERALIZED LINEAR MODELS

Tuesday December 6th, 2011

Problem 1 Christmas gift preferences

a) GLM for model 1:

Respnose: Yi ∼ Bin(1, pi)
Assume that the Y1, . . . YN are independent.

Logit link: ηi = log( pi
1−pi )

Linear component: ηi = β0 + β1xi1 + β2xi2 = Xβ
where β0 is the intercept, xi1 = 0 for females and xi1 = 1 for males, and xi2 is the
age for child i.

Design matrix for β = (β0, β1, β2)
T :

X =


1 0 7.8
1 1 10.5
1 0 2.0
1 0 8.0
1 1 2.0
1 0 4.0


Identifiability: Here corner-stone parametrization is used as we set x1 = 0 for females.
An alternative would be to use a sum-to zero constraint (beta1,male + β1,female = 0), or
(as sex has only two levels and is the only factor) omit the intercept.
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b) In model 1 both sex and age is included. This implies that girls and boys have different
models, but the effect of age is the same for both sexes.

In model 2 only age is included, i.e. we have the same model for boys and girls.

In model 3 there are also an interaction between age and sex, hence model 1 in extended
such that also the effect of age can differ between the sexes.

The R notation sex*age gives a model with interaction between sex and age, i.e. the
linear component becomes

ηi = β0 + β1xi1 + β2xi2 + β3xi1xi2

c) For model 1 is the linear component η = β0 + β1x1 + β2xs with estimate β0 = −0.69613,
β1 = 0.78254 and β2 = 0.06906. Further is the logit-link: ηi = log( pi

1−pi ), hence is the
probability of preferring hard gifts pi = ( exp(ηi)

1+exp(ηi)
), and soft gifts 1− pi = 1

1+exp(ηi)
.

• Probability that a 5 years old (x2 = 5) girl (x1 = 0) prefer soft gifts: 0.59

• Probability that a 15 years old (x2 = 15) girl (x1 = 0) prefer soft gifts: 0.42

• Odds ratio between a 15 years old girl and a 15 year old boy for preferring soft gifts:
Odds for 15 years old (x2,girl = 15) girl (x1,girl = 0) Ogirl = exp(β0 + β1 · 0 + β215)
and for 15 years old (x2,boy = 15) boy (x1,boy = 1): Oboy = exp(β0 + β1 · 1 + β215)

OR =
Oboy

Ogirl
= exp(β1) = 2.18.

d) Models can be compared either using AIC or, if they are nested, likelihood ratio tests.
For AIC the lower the better, and between model1-4, model 4 is the best. Likelihood
ratio tests are for nested models, for example model 1 and model 2.

Hypothesis:

H0: Model 2 is correct (has fewest parameters)

H1: Model 1 is correct
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Likelihood-ratio test: ∆D = D2−D1 ∼ χ2(p1− p2) Where D1 is the deviance for model
1 (with p1 degrees of freedom) and D2 is the deviance for model 2 (with p2 degrees of
freedom).
∆D = 1374 − 1338 = 36, and p1 − p2 = 998 − 997 = 1. And for a test on 5% level we
have a critical value of (from table) 3.841, so we reject model 2, and conclude that model
1 fits better.

To evaluate fit for one particular model we can use the sampling distribution of the
deviance. For model 1 the deviance is D = 1338 with ν = 997 degrees of freedom. The
deviance is approximately χ2(ν)-distributed, and D = 1338 is in the right tail, i.e. the
fit is not very good. (χ2 with many degrees of freedom is approximately Gaussian with
mean ν and standard division

√
2ν = 44.7.)

To evaluate the models graphically we can plot residuals against fitted values, as well as
against covariates. But for binary data this is not very useful, but box plots for residuals
for ranges of for example ages might give insight. plot of residuals vs leverage can be
useful to find outliers / influential observations.

A next model to fit could either be an extension of model 3 with and age2 term to account
for non-linearity in the age effect (in model 4 agegr2 has the largest coefficient), or to
include an interaction term in model 4 (as model 3 is better then model 1 according to
AIC).

e) One possible solution: We can now include electronic gifts as a third response category,
and have a multinomial response function y ∼M(pH , pS, pE) where pH is the probability
of preferring hard gifts, pS soft gifts and pE electronic gifts. The probabilities have to
sum to one; pH + pS + PE = 1. We chose to use pE as reference category, and link
functions; ηS = log( pS

pH
) and ηE = log( pE

pH
). Further is each of ηS and ηE given a linear

component similar to model 1.

Problem 2 Number of Christmas gifts

a) Let Y1, . . . YN be independent responses with Yi ∼ Po(µ), i.e. probability function

f(y;µ) =
µy

y!
exp(−µ) = exp(y ln(µ)− ln(y!)− µ)

A probability function is member of the exponential family if is can be written as;

f(y; θ) = exp(a(y)b(θ) + c(θ) + d(y))

which we can with a(y) = y, b(µ) = ln(µ), c(µ) = −µ and d(y) = − log(y!), i.e. it is a
member of the exponential family. Since a(y) = y it is also of canonical form.
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b) The log likelihood for one observation;

li(µi) = yi ln(µi)− ln(yi!)− µi = li(α, β)yi(α + βxi)− ln(yi!)− exp(α + βxi)

For n = 20 observations the likelihood is;

L(α, β; y1, . . . , yn) =
n∏
i=1

Li(α, β)

and the log-likelihood is

l(α, β; y1, . . . , yn) = log(
n∏
i=1

Li(α, β)) =
n∑
i=1

(li(α, β)).

The score functions are

U(α) =
∂l

∂α
=

n∑
i=1

(− exp(α + βxi) + y) =
n∑
i=1

(yi − µi)

and

U(β) =
∂l

∂β
=

n∑
i=1

(− exp(α + βxi)xi + y) =
n∑
i=1

(yi − µi)xi

And hence;

U(α, β) =

(
U1(α, β)
U2(α, β)

)
=

n∑
i=1

(
1
xi

)
(Yi − µi)

The information matrix is given by;

I = −E(

(
∂2l
∂α2

∂2l
∂α∂β

∂2l
∂α∂β

∂2l
∂β2

)
) =

n∑
i=1

(
µi µixi
µixi µix

2
i

)
c) A saturated model (one µi per observation yi, or sometimes defined as one per covariance

pattern); dlli/dµi = 0⇒ µ̂i = yi.
For model of interest; fitted value for observation i; E(Yi) = µ̂i = ŷi.

d) Deviance;

D = 2(lsaturated − lmodel))

= 2
N∑
i=1

(yi ln(yi)− ln(yi!)− yi − (yi ln(ŷi)− ln(yi!)− ŷi))

= 2
N∑
i=1

(yi ln
yi
ŷi
− (yi − ŷi))
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There are two parameters in this model (α and β) and 20 data, hence we have 20−2 = 18
degrees of freedom.

For Poisson models deviance can be used both for comparing nested models, and (as
there are no nuisance parameters) to evaluate fit. See discussion in 1 d).

Problem 3 Valid GLMs Requirements:

Likelihoods: 1. Independent observation

2. Member of the exponential family of canonical form.

3. Should be of same kind for all observations, but possible different expectation/parameter.

Link functions: 1. monotone

2. differentiable

Linear component: 1. linear in parameters

Likelihoods: 1. Gaussian; Y ∼ N(µ, σ2) OK

2. Multinomial; Y ∼ M([p1, p2, p3, p4], N) Not member of exponential family,
but OK with Poisson justification. But needs three (4-1) link functions
and linear components

3. Poisson; Y ∼ Po(θ) OK

Link functions: 1. η = cos(µ) Not monotone

2. η = µ OK

3. η = log(µ) OK

Linear component: 1. η = β0 + β1x1 + β2x2 OK

2. η = β0 + β1x1 + β2x
2
1 OK

3. η = β0 + β1x1 + β2
1x2 Not linear in β

The two linear components (1 and 2) can be used for any of the models, which leave us with
four alternatives for the link and response:

• Gaussian response with identity link: A common model to used
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• Gaussian response with log-link: Gives a model that only has positive expected value
(but observations can be negative). Only for special situations.

• Poisson response with identity link. Poisson requires positive expectation, and with this
link restrictions has to be imposed on the parameters.

• Poisson response with log link: A common model to use.


