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Solution TMA4315 GENERALIZED LINEAR MODELS

Tuesday December 13th, 2012

Problem 1 Precipitation in Trondheim tomorrow?

a) GLM for model 1:

Respnose: Yi ∼ Bin(1, pi)
Assume that the Y1, . . . YN are independent.

Logit link: ηi = log( pi
1−pi )

Linear component: Model 1: ηi = β1xi1+β2xi2+β3x3 = X1β where xi1 is the amount
in forecast for day i, xi2 = 1 if precipitation in forecast, and is zero otherwise.
β3 is a vector β3 = {β3,OF=0, β3,OF=1, β3,OF=2, β3,OF=3} and xi3 is a vector of
length four of zeros except for the element corresponding to OF1 which is one.
Model with Fore as covariate, and ForeBin and OF as factors.

Model 2: ηi = β0 + β1xi1 + β2xi2 + β3x3 = X2β where β0 is an intercept, xi1 and
xi2 = 1 as for Model 1, and β3 and x3i are now a scalars. Model with Fore and
OF as covariates, and ForeBin as factor.

Model 3: ηi = β0 + β1xi1 = X3β where β0 is an intercept, xi1 as for Model 1.
Model with Fore as covariates.

Discussion assumptions: Independence is the most critical assumptions. The weather
today and tomorrow are not independent, but as the model here includes the forecast (in
different versions), it is closer to being the error in the forecast that should be indepen-
dent. Also note that OF is really an interaction term between yesterday’s precipitation
forecast and occurrence. Hence, model 2 includes yesterdays weather, so much of the
temporal should be included from there.

Model 1 include OF as a factor (with 4 levels), while Model 2 include OF as a covariate.
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Identifiability: Here corner-stone parametrization is used as we set x1 = 0 for no precipi-
tation for model 1 and model 2. For model 1 OP is treated as a factor, and identifiability
is ensured by omitting the intercept.

Design matrix for model 1:

X1 =


3.0 1 0 0 0 1
0.5 1 0 0 0 1
0.0 0 0 0 1 0
0.0 0 1 0 0 0
0.0 0 1 0 0 0
0.0 0 1 0 0 0



X2 =


1 3.0 1 3
1 0.5 1 3
1 0.0 0 2
1 0.0 0 0
1 0.0 0 0
1 0.0 0 0



X3 =


1 3.0
1 0.5
1 0.0
1 0.0
1 0.0
1 0.0


b) According to model 1 : What is the probability for precipitation if it the forecast is 5mm

and OF = 0 ?
ηi = 1.56, pi = ( exp(ηi)

1+exp(ηi)
) = 0.83

According to model 2 : What is the probability for precipitation if it the forecast is 5mm
and OF = 3 ?
ηi = 1.29, pi = ( exp(ηi)

1+exp(ηi)
) = 0.78

According to model 3 :What is the odds ratio between a day with forecast 0mm and a
day with forecast 5mm?
OFore=5 = exp(β0 + β1 · 5) OR = OFore=5

OFore=0
= exp(β1(5− 0)) = 28.2.

c) Model 1 and model 3 are nested, and we can use a likelihood ratio test.

Likelihood ratio tests are for nested models, for example model 1 and model 2.

Hypothesis:
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H0: Model 3 is correct (has fewest parameters)

H1: Model 1 is correct

Likelihood-ratio test: ∆D = D3−D1 ∼ χ2(p1− p3) Where D1 is the deviance for model
1 (with p1 parameters) and D3 is the deviance for model 3 (with p3 parameters).
∆D = 101.09 − 104.91 = 3.7, and p1 − p3 = 6 − 2 = 4. And for a test on 5% level we
have a critical value of (from table) 9.5, so we can not reject model 3, and conclude that
model 3 fits better.

Model 2 and model 3 are also nested, and a log-ratio test of these also result in not
rejecting H0 : Model 3 is correct.

AIC can also be used for comparing models. For AIC the lower the better, and between
model1-3, also AIC indicates that model 3 is the best.

d) Model 4: Same model for all locations.
Model 5: Same linear relation of forecast for all models.
Model 6: Each location has their own model.

One assumption of GLMs is that the observations are independent. As we now have data
for three close locations, it is reasonable that they are dependent. For example if the
forecast gave no precipitation, but a weather-system containing precipitation hits, it will
often give precipitation at all locations. Hence, the assumption of independence should
at least be tested.

An alternative model would be a GLMM with day number as a random effect.

Problem 2 Precipitation in Trondheim as snow, sleet or rain?

a) As the kind of precipitation goes from snow, to sleet to rain with increasing temperature,
it is reasonable to use a model for ordinal data, e.g. a proportional odds ordinal odds
model.

The model should be set up, linear components written out and parameters interpreted.
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Problem 3

a) Member of exponential family if

f(y) = exp(a(y)b(θ) + c(θ) + d(y))

Set in for α = αi and β = µi/αi, and get

fY (y) =
1

βαΓ(α)
yα−1 exp(−y/β) = exp(a(y)b(µi) + c(µi) + d(y))

with
a(yi) = yi
b(µi) = −αi/µi
c(µi) = − ln((µi/αi)

αiΓ(αi)) = −αi ln(µi) + αi ln(αi)− ln(Γ(αi))
d(yi) = (αi − 1) ln(yi)

I.e. member of the exponential family of canonical for as a(y) = y.

This gives us E(Yi) = b′(µi)/c
′(µi) = · · · = µi and V ar(Yi) = · · · = µ2

i /αi.

Interpretation of αi: We see that the standard deviation is proportional to the expected
value, and that α is a scaling parameter for the variance.

b) A saturated model is a model with as many paramters as possible. In most cases one
parameter per observation. Log-likelihood for one observation:

li = log(fY (y)) = yib(µi) + c(µi) + d(yi)

To find maximum likelihood for the saturated model we take the derirative with respect
to µi, set equal to zero, and solve for µi.

yib
′(µi) + c′(µi) = 0 · · · ⇒ µ̂imax = yi

Let µ̂i be the fitted value from our model. The deviance is;

D = 2(lsaturated − lmodel))
= . . .

= −2
N∑
i=1

αi ln(yi/µ̂i) + αi
µ̂i − yi
µ̂i
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c) It is reasonable to use gamma distribution for amount of precipitation given precipitation.
From a) and b) we have learned that it is member of the exponential family, and hence
it can be used as response function for a GLM. Gamma distributions require a positive
expected value, and hence a log-link (or an other monotone differential function that
ensures positive µ) should be used. For the linear component ηi = β0 + β1xi is one
alternative. But as a log link is used E(Yi) = exp(ηi), and ηi = β0 +β1 log(xi) is an other
natural choice.


