

Norwegian University of Science and Technology

Department of Mathematical Sciences

Examination paper for TMA4315 Generalised Linear Models

Academic contact during examination: Professor Havard Rue

Phone: 92600021

Examination date: 13th December 2016
Examination time (from-to): 09:00-13:00

Permitted examination support material: C. No written or handwritten examination support materials are permitted. A simple calculator is permitted.

Other information:

You may write your answers for this exam in English, *Norsk (bokmål og/eller nynorsk)*, or any mix of these.

Language: English
Number of pages: 1

Number of pages enclosed: 0

Checked by:

Informasjon om trykking av eksamensoppgave Originalen er: 1-sidig ☑ 2-sidig ☑	7/12-16 Relita
sort/hvit ⊠ farger □ skal ha flervalgskjema □	Date Signature

Problem 1 We will consider (binomial or binary) logistic regression, where we have independent observations

$$y_i \sim \text{Binomial}(n_i, p_i), \qquad i = 1, \dots, n,$$

so that

$$Prob(y_i) = \binom{n_i}{y_i} p_i^{y_i} (1 - p_i)^{n_i - y_i}, \quad y_i = 0, 1, \dots, n_i.$$

The linear predictor is

$$\eta_i = \boldsymbol{x}_i^T \boldsymbol{\beta},$$

and

$$p_i = \frac{\exp(\eta_i)}{1 + \exp(\eta_i)}$$

or

$$logit(p_i) = \eta_i$$
.

Here, x_i is the vector of the p covariates for the i'th observation y_i with size (number of trials) n_i , and β is the vector of p unknown regression coefficients.

Write an introduction to logistic regression and its practical usage, for a student with a good background in statistics but no knowledge about Generalized Linear Models (GLM). Topics you may want to consider, are

- When to use it? Underlying assumptions.
- Parameter estimation, asymptotic results for the MLE, Fisher information and observed Fisher information, confidence intervals and hypothesis testing.
- Output analysis, residual plots (when its possible) and interpretation of the β -coefficients.
- Deviance and its usage.