
TMA4315 Generalized linear models
Tentative solutions to exam 19.12.2018

Mette Langaas
12/31/2018

Report improvements to Mette.Langaas@ntnu.no

Problem 1: Inverse Gaussian distribution

[15 points]

Consider a random variable Y . In our course we have considered the univariate exponential family having
distribution (probability density function for continuous variables and probability mass function for discrete
variables)

f(y) = exp
(
yθ − b(θ)

φ
w + c(y, φ, w)

)
where θ is called the natural parameter (or parameter of interest) and φ the dispersion parameter. In this
problem we will let w = 1.

The inverse Gaussian distribution is a continuous distribution, and the probability density function can be
written

f(y) = 1√
2πy3σ

exp[− 1
2y (y − µ

µσ
)2], for y > 0.

Remark: our “Tabeller og formler i statistikk” uses a slightly different version with λ = 1/σ2.

(1) Show that the inverse Gaussian distribution is an univariate exponential family, and specify what the
elements of the exponential family (θ, φ, b(θ), c(y, φ)) are. (Remember we have set w = 1, so c(y, φ, w) = c(y, φ)
here.)

Answer:

f(y) = 1√
2πy3σ

exp[− 1
2y (y − µ

µσ
)2] = exp(−1

2 ln(2πy3σ2) exp[−(y
2 − 2µy + µ2

2yµ2σ2 )]

= exp(−1
2 ln(2πy3σ2) exp[−

y 1
2µ2 − 1

µ + 1
2y

σ2 ] = exp(−1
2 ln(2πy3σ2) exp(− 1

2yσ2 ) exp(
−y 1

2µ2 + 1
µ

σ2 )

This shows that we may define: θ = − 1
2µ2 , b(θ) = − 1

µ = −
√
−2θ, φ = σ2, and c(y, φ) = exp(− 1

2 ln(2πy3σ2)−
1

2yφ ).

Other solutions: It is possible to put the minus and/or the 2 with σ2 instead of in θ and b(θ).

(2) What is the connections between E(Y ) and Var(Y ) and elements of the exponential family?

Answer: For an univariate exponential family we have proven that E(Y ) = b′(θ) and Var(Y ) = b′′(θ)φ
w .

(3) Use these connections to derive the mean and variance for the inverse Gaussian distribution.

Answer:

E(Y ) = b′(θ) = d

dθ
(−
√
−2θ) = d

dθ
(−(−2θ)− 1

2 ) = −1
2(−2θ)− 1

2 · (−2) = 1√
−2θ

= µ
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Var(Y ) = b′′(θ)φ
w

= d

dθ
(φ(−2θ)− 1

2 ) = φ(−1
2(−2θ)− 3

2 · (−2)) = φ(−2θ)− 3
2 = σ2µ3

(4) What constrains should be put on the parameters involved?

Answer: We see that the pdf is defined for y > 0, and need to have E(Y ) ≥ 0. This means that since
E(Y ) = 1√

−2θ this means that we need to assume that θ ≤ 0.

In addition we must have that Var(Y ) ≥ 0, which means that φ = σ2 ≥ 0, since we have already assumed
that θ ≤ 0.

(5) If the inverse Gaussian distribution is used as the distribution for the response in a generalized linear
model, what is the canonical link function?

Answer: The canonical link function is defined to be when η = θ, so that the canonical link function is
g(µ) = − 1

2µ2 .

(6) What advantages are there in using a canonical link function.

Answer: When we have a canonical link the maths get easier, and the loglikelihood function is nice and
concave. This will lead to that the expected and observed Fisher information are equal.

Problem 2: The generalized linear model

[20 points]

This course is called generalized linear models (GLM) and this model constitutes the core of the course. Write
a short text describing and explaining the following:

1. The three model components for the GLM, and the connection to the exponential family of distributions.
2. The role and general formulas for the likelihood, score function and expected Fisher information matrix

in parameter estimation for GLMs. Remark: You do not need to derive the formulas, but all notation
needs to be well explained. Insightful explanations are rewarded.

3. The role of the deviance for model assessment and model choice for GLM.

If you want you may use one of the data sets from this exam, or an example you come up with yourself, as a
running thread in your short text.

This is a minimal solution:

1) The three model components of the GLM:

• the random component Yi is assumed to come from an exponential family with mean µi
• the systematic component is defined using ηi = xTi β, and we require that the n × p design matrix

X = (xT1 ,xT2 , . . . ,xTn ) has full rank (which is p).
• finally, the link between the random and systematic component is via the link function ηi = g(µi) or

using the inverse thereof, the response function µi = h(ηi). And, we require that the link function is
one-to-one and twice differentiable.

We also require the Yis to be independent.

The role and general formulas for the likelihood, score function and expected Fisher informa-
tion matrix in parameter estimation for GLMs:

To estimate parameters in a GLM we find the maximum likelihood estimators. This is done by first setting
up the likelihood and log likelihood.

l(β) =
n∑
i=1

li(β) =
n∑
i=1

1
φ

(yiθi − b(θi))wi +
n∑
i=1

c(yi, φ, wi)
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where the elements here are as specified in the start of Problem 1.

Then we differentiate the loglikelihood with respect to the unknown parameters, the θ and if present, also the
φ. However, for an univariate exponential family it turns out that the parameters are orthogonal and we
may handle the estimation of θ first, then impute parameter estimates and solve for φ. The derivative of the
loglikelihood with respect to the regression parameters β is called the score function, and is a p-dimensional
vector. The general form for the score function is:

s(β) =
n∑
i=1

(yi − µi)xih′(ηi)
Var(Yi)

= XTDΣ−1(y− µ)

where Σ = diag(Var(Yi)) and D = diag(h′(ηi)) (derivative wrt ηi).

To find maximum likelihood estimators we solve the set of p equations s(β) = 0, and we usually do this using
the Fisher scoring algorithm. At step t+ 1 the Fisher scoring algoritm is given as:

β(t+1) = β(t) + F (β(t))−1s(β(t))

Insert formulas for expected Fisher information and score function.

This means that we need to compute the expected Fisher information matrix F(β). For element h, l in the
p× p expected Fisher information matrix:

F[h,l](β) =
n∑
i=1

xihxil(h′(ηi))2

Var(Yi)

or with matrix notation
F (β) = XTWX

where W = diag( h
′(ηi)2

Var(Yi) ). The expected Fisher information if often most easily found by the relationship

F (β) = Cov(s(β)).

In addition, since β̂ is a maximum likelihood estimator, it has an asymptotic multivariate distribution with
mean β and covariance matrix F−1(β̂). This can be used as the basis for performing inference about β.

The role of the deviance for model assessment and model choice:

The deviance is based on the likelihood ratio statistics, and is also referred to as the scaled deviance. We
use the following notation. A: the larger model (this is H1) and B: the smaller model (under H0), and the
smaller model is nested within the larger model (that is, B is a submodel of A). The likelihood ratio statistic
is defined as

−2 lnλ = −2(lnL(β̂B , φ̃B)− lnL(β̂A, φ̃A))

(so, −2 times small minus large), when a dispersion parameter is present. Under weak regularity conditions
the test statistic is approximately χ2-distributed with degrees of freedom equal the difference in the number of
parameters in the large and the small model. P -values are calculated in the upper tail of the χ2-distribution.

To compute the deviance we define model A as the saturated model and B as the candidate model. The
saturated model is a model where we have a perfect fit to our data, so that the difference between observed
values yi and fitted values ŷi is zero. For our candidate model assume that the estimator for µi is µ̂i, and for
the saturated model the estimator for µi is ŷi.

D = −2[
G∑
i=1

(li(µ̂i)− li(ŷi))]

with approximate χ2-distribution with G− p degrees of freedom, if the saturated model has G parameters
and the candidate model has p.
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For discrete response variables we group observations together in groups of maximal size (covariate patterns or
interval versions thereof). Group i has ni observations, and there are G groups. The asymptotic distribution
approximation is good if all groups have large ni. For individual discrete data asymptotic results can not be
trusted. For continuous reponse variables the approximation should be good for individual data also, but the
total number of observations need to be large.

When performing model selection this can (preferably) be done based on choosing model with low AIC. But,
alternatively a likelihood ratio test (LRT) can be used to choose between two nested models. The LRT can
be performed by looking at the deviance from the two nested models, and since the saturated model part
then will cancel the difference in deviance statistics can be related to a χ2-distribution with the difference in
number of estimated parameters in the two models.

Problem 3: Lung cancers in Danish cities - model1

We will look at a data set giving the number of new cases of lung cancer in four Danish cities in the period
1968-1971. The data set has 24 observations of the following four variables.

• Cases: the number of lung cancer cases.
• Pop: the population of each age group in each city.
• Age: the age group, a factor with the six levels Age40-54, Age55-59, Age60-64, Age65-69, Age70-74

and Age>74. Dummy variable coding is used, with Age40-54 as reference category.
• City: the city, a factor with levels Fredericia, Horsens, Kolding and Vejle. Dummy variable coding

is used, with Fredericia as reference category. The names CityH for Horsens, CityK for Kolding, and
CityV for Vejle, will be used in print-outs.

Since the population for each combination of city and age group differ, we would not like to model the number
of new lung cancer cases, but instead the rate of new lung cancers. The rate is given as the number of new
lung cancer cases per unit of population. In Figure 1 (in the pdf-file) is plot of this lung cancer rate (that is,
‘Cases/Pop) against the age group, for each of the cities.

We have fitted a Poisson regression with log link to Cases as response, with log(Pop)(natural log) as offset,
and with Age, City and the interaction between Age and City as covariates, see the R print-out in the pdf-file
for model summary. We refer to this as model1.

Let Yi be the observed number of new lung cancer cases for observation i, for 1 = 1, . . . , 24 (all combinations
of Age and City), and let the corresponding population be denoted ti. Further, let λi = E(Yi) and ηi = xTi β
be the linear predictor (for some choice of covariates and corresponding regression parameters β).
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Answer the following questions:

(1) What is the connection between λi, ti and ηi for our Poisson regression with log link and log(Pop) as
offset?

Answer: We have that Yi ∼ Poisson(λi), with E(Yi) = λi. We would not link λi to ηi, but instead λi/ti to
ηi. With log-link this is

log(λi
ti

) = ηi ⇔ log(λi) = log(ti) + ηi

The latter formulation is then why we talk about log(Pop)= log(ti) (natural log) as offset. In addition this
also gives

λi = ti exp(ηi)

(2) In the print-out from R in the pdf-file, the estimate for the intercept is −5.63. Explain what this number
means, and relate it to the rate of new lung cancer cases.

Answer: ηi = β0 for city=Fredericia and Age=Age40-54. This means that if we look at persons in
Fredericia of age 40-54 then the estimated rate of new lung cancer cases in 1968-1971 is λ̂i/ti = exp(β̂0) =
exp(−5.63) = 0.0036.

Remark: since we have fitted a saturated model (see below) this is also equal to the ratio yi/ti for
city=Fredericia and Age=Age40-54 in the data set. This is not given in the problem, but the data
is 11 new cases and population 3059, so 11/3059 = 0.0036.
model1 <- glm( Cases ~ offset(log(Pop)) + City * Age, family=poisson, data=danishlc)
summary(model1)

##
## Call:
## glm(formula = Cases ~ offset(log(Pop)) + City * Age, family = poisson,
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## data = danishlc)
##
## Deviance Residuals:
## [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [24] 0
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -5.62795 0.30151 -18.666 < 2e-16 ***
## CityH 0.22770 0.40967 0.556 0.578343
## CityK -1.03837 0.58387 -1.778 0.075335 .
## CityV -0.59463 0.53936 -1.102 0.270257
## Age55-59 1.34123 0.42640 3.145 0.001658 **
## Age60-64 1.46058 0.42640 3.425 0.000614 ***
## Age65-69 1.56578 0.43693 3.584 0.000339 ***
## Age70-74 1.79340 0.42640 4.206 2.6e-05 ***
## Age>74 1.52530 0.43693 3.491 0.000481 ***
## CityH:Age55-59 -1.13671 0.65223 -1.743 0.081368 .
## CityK:Age55-59 0.44798 0.74620 0.600 0.548271
## CityV:Age55-59 0.04961 0.72434 0.068 0.945398
## CityH:Age60-64 -0.17991 0.57045 -0.315 0.752471
## CityK:Age60-64 0.35483 0.75807 0.468 0.639737
## CityV:Age60-64 0.33237 0.69413 0.479 0.632058
## CityH:Age65-69 -0.58918 0.60649 -0.971 0.331320
## CityK:Age65-69 0.94450 0.72926 1.295 0.195268
## CityV:Age65-69 0.84855 0.67995 1.248 0.212051
## CityH:Age70-74 -0.36029 0.58487 -0.616 0.537886
## CityK:Age70-74 0.78788 0.73684 1.069 0.284945
## CityV:Age70-74 0.21891 0.71191 0.307 0.758469
## CityH:Age>74 -2.09376 0.87626 -2.389 0.016874 *
## CityK:Age>74 1.13520 0.72405 1.568 0.116915
## CityV:Age>74 0.21508 0.73059 0.294 0.768463
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1.2991e+02 on 23 degrees of freedom
## Residual deviance: -2.6645e-15 on 0 degrees of freedom
## AIC: 144.39
##
## Number of Fisher Scoring iterations: 3
exp(model1$coefficients[1])

## (Intercept)
## 0.003595946

(3) Perform a test to investigate if the regression coefficients for Age55-59 and Age60-64 are equal, and
report the p-value, see R print-out in the pdf-file for needed numerical values.

Answer: Let β5 denote the coefficient for Age55-59 and β6 the coefficient for Age60-64. The hypothesis
test we want to investigate is

H0 : β5 = β6 vs. H1 : β5 6= β6
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which is equivalent to testing
H0 : β5 − β6 = 0 vs. H1 : β5 − β6 6= 0

Under the null hypothesis the test statistic

β̂5 − β̂6

ŜD(β̂5 − β̂6)
≈ N(0, 1)

The ŜD(β̂5 − β̂6) is found from the covariance matrix of β̂, and the R print-out gives that

Ĉov(β̂5, β̂6) =
( 2

11
1

111
11

2
11

)
.

model1$coefficients[5:6]

## Age55-59 Age60-64
## 1.341232 1.460578
vcov(model1)[5:6,5:6]

## Age55-59 Age60-64
## Age55-59 0.18181818 0.09090909
## Age60-64 0.09090909 0.18181818
11*vcov(model1)[5:6,5:6]

## Age55-59 Age60-64
## Age55-59 2 1
## Age60-64 1 2

From this matrix we calculate ŜD(β̂5 − β̂6) as

ŜD(β̂5 − β̂6) =
√

V̂ar(β̂5) + V̂ar(β̂6)− 2Ĉov(β̂5, β̂6) =
√

2
11 + 2

11 − 2 · 1
11 =

√
2
11 =

√
0.18

#alternatively using linear comb
length(model1$coefficients)#24

## [1] 24
cvec=matrix(c(rep(0,4),1,-1,rep(0,18)),nrow=1)
cvec%*%vcov(model1)%*%t(cvec)

## [,1]
## [1,] 0.1818182

This gives observed test statistic:

z0 = β̂5 − β̂6

ŜD(β̂5 − β̂6)
= 1.34− 1.46√

0.18
= −0.28

and a p-value of 2 · P (Z ≤ −0.28) = 0.78.
z0=(model1$coefficients[5]-model1$coefficients[6])/sqrt(2/11)
z0

## Age55-59
## -0.279893

7



2*pnorm(abs(z0),lower.tail=FALSE)

## Age55-59
## 0.7795596

(4): Explain why the (residual) deviance in the print-out in the pdf-file is practically 0 and has 0 degrees of
freedom.

Answer: The fitted model is the saturated model, and we have a perfect fit to all observations. Thus the
deviance is 0 and we have 0 degrees of freedom.

Problem 4: Lung cancers in Danish cities - models2-4

[10 points]

This is a continuation of Problem 3. Based on the model fit in Problem 3 for model1 we proceed to look at
models without City as covariate, but with different codings of age.

Let AgeNum be a numerical version for age, where the lower limit of the age group is used. This means that
we have six unique values for AgeNum: 40, 55, 60, 65, 70 and 74.

We consider the following three models:

• model2: Age as factor
• model3: AgeNum as linear term
• model4: AgeNum as linear and quadratic term

Answer the following questions:

(1) Using the AIC as a measure for model choice, which model would you prefer?
model2 <- glm(Cases~offset(log(Pop))+Age, family=poisson, data=danishlc)
model3 <- glm(Cases~offset(log(Pop))+AgeNum, family=poisson, data=danishlc)
model4 <- glm(Cases~offset(log(Pop))+AgeNum+I(AgeNum^2), family=poisson, data=danishlc)

AIC(model2,model3,model4)

## df AIC
## model2 6 136.6946
## model3 2 149.3556
## model4 3 134.8876

Answer: The AIC for model4 is the lowest, followed by model2. Since model4 is a smaller model (less
parameters estimated) than model2 and the AIC is smaller, we choose model4.

(2) Based on likelihood ratio tests performed in the R print-out in the pdf-file, which model would you
prefer? Specify which hypothesis test(s) you are investigating, and which of the results in the R print-out in
the pdf-file you are using.
anova(model2,model3,test="LRT")

## Analysis of Deviance Table
##
## Model 1: Cases ~ offset(log(Pop)) + Age
## Model 2: Cases ~ offset(log(Pop)) + AgeNum
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 18 28.307
## 2 22 48.968 -4 -20.661 0.0003696 ***
## ---
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## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(model2,model4,test="LRT")

## Analysis of Deviance Table
##
## Model 1: Cases ~ offset(log(Pop)) + Age
## Model 2: Cases ~ offset(log(Pop)) + AgeNum + I(AgeNum^2)
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 18 28.307
## 2 21 32.500 -3 -4.1931 0.2414
anova(model3,model4,test="LRT")

## Analysis of Deviance Table
##
## Model 1: Cases ~ offset(log(Pop)) + AgeNum
## Model 2: Cases ~ offset(log(Pop)) + AgeNum + I(AgeNum^2)
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 22 48.968
## 2 21 32.500 1 16.468 4.948e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Answer: The likelihood ratio test (LRT) can only be performed for nested models. For our three models
only model3 is nested within model4, so these two can be compared. We may not use the LRT to compare
model2 with either of model3 and model4. (However, the LRT could have been used to compare model1 and
model2.)

Comparing model3 to model4 we test

H0 : βage2 = 0 vs. H1 : βage2 6= 0

That is, “model 3 and 4 are equally good” vs. “model 4 is better than model 3”.

The difference in twice the loglikelihood is reported in the print-out to be 16.47, and the difference in number
of parameters is 1. The p-value is calculated as the tail-probability in the chi-squared distribution with one
degree of freedom, and is reported to be 5 · 10−5. Thus, we reject the null hypothesis that the models are
equally good, and prefer the larger model4 to the smaller model3.

(3) For simplicity we now use model2. For another Danish city we consider individuals in the Age55-59 year
group and observe that the population size is 1000. Estimate the expected number of new lung cancer cases
(for 1968-1971). Also give a 95% confidence interval for this quantity.

Answer:
coefficients(model2)

## (Intercept) Age55-59 Age60-64 Age65-69 Age70-74 Age>74
## -5.862253 1.082342 1.501676 1.750287 1.847222 1.408281
vcov(model2)

## (Intercept) Age55-59 Age60-64 Age65-69 Age70-74
## (Intercept) 0.03030303 -0.03030303 -0.03030303 -0.03030303 -0.03030303
## Age55-59 -0.03030303 0.06155303 0.03030303 0.03030303 0.03030303
## Age60-64 -0.03030303 0.03030303 0.05355884 0.03030303 0.03030303
## Age65-69 -0.03030303 0.03030303 0.03030303 0.05252525 0.03030303
## Age70-74 -0.03030303 0.03030303 0.03030303 0.03030303 0.05530303
## Age>74 -0.03030303 0.03030303 0.03030303 0.03030303 0.03030303

9



## Age>74
## (Intercept) -0.03030303
## Age55-59 0.03030303
## Age60-64 0.03030303
## Age65-69 0.03030303
## Age70-74 0.03030303
## Age>74 0.06256109
33*vcov(model2)

## (Intercept) Age55-59 Age60-64 Age65-69 Age70-74 Age>74
## (Intercept) 1 -1.00000 -1.000000 -1.000000 -1.000 -1.000000
## Age55-59 -1 2.03125 1.000000 1.000000 1.000 1.000000
## Age60-64 -1 1.00000 1.767442 1.000000 1.000 1.000000
## Age65-69 -1 1.00000 1.000000 1.733333 1.000 1.000000
## Age70-74 -1 1.00000 1.000000 1.000000 1.825 1.000000
## Age>74 -1 1.00000 1.000000 1.000000 1.000 2.064516

As an estimate for the rate we have λ̂ = t exp(η̂), and we have been informed to use t = 1000. From the
print-out from model2 we find the estimated linear predictor for the Age55-59 year group (call coefficient for
this year group β1) to be η̂ = β̂0 + β̂1 = −5.86 + 1.08 = −4.78. Then the estimate for the expected number
of new lung cancer cases is t · exp(η̂) = 1000 · exp(−4.78) = 8.4.

To proceed to find confidence interval we may calculate the estimated standard deviation of η̂ in a similar
way as in Problem 3 (for the difference between the estimated betas).

V̂ar(η̂) = V̂ar(β̂0) + V̂ar(β̂1) + 2Ĉov(β̂0, β̂1) = 1
33 + 2.031

33 + 2 · −1
33 = 1.031

33 = 0.031

#alternatively using linear comb
length(model2$coefficients)#6

## [1] 6
cvec=matrix(c(1,1,0,0,0,0),nrow=1)
cvec%*%vcov(model2)%*%t(cvec)

## [,1]
## [1,] 0.03125

To find a confidence interval for λ we start by finding a confidence interval for the linear predictor, because
since the estimated regression parameters are asymptotically normal, the estimated linear predictor will also
be asymptotic normal.
etaL=sum(coef(model2)[1:2])-qnorm(0.975)*sqrt(cvec%*%vcov(model2)%*%t(cvec))
etaU=sum(coef(model2)[1:2])+qnorm(0.975)*sqrt(cvec%*%vcov(model2)%*%t(cvec))
c(etaL,etaU)

## [1] -5.126387 -4.433435

95% CI for η:
[η̂L, η̂U ] = η̂ ± 1.96 · ŜD(η̂) = −4.78± 1.96 ·

√
0.031 = [−5.125,−4.435]

1000*exp(c(etaL,etaU))

## [1] 5.937976 11.873633

After finding the confidence interval for the linear predictor we then transform the upper and lower limits.
95% CI for λ:

[λ̂L, λ̂U ] = [t · exp η̂L, t · exp η̂U ] = [1000 · exp(−5.125), 1000 · exp(−4.435)] = [5.95, 11.86]
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Problem 5: GLM data analysis in R: low birth weight

We will study a data set on risk factors associated with low infant birth weight birthwt in the package MASS.
You may access the data set by first loading the MASS package, library(MASS) and then writing birthwt.
The data set consists of 189 observations of 10 variables, and we use the following four of the variables:

• low: indicator of low birth weight for infant (‘1’=birth weight below 2.5 kg, ‘0’=birth weight of 2.5 kg
or above)

• smoke: mother’s smoking status during pregnancy (‘0’=non-smoker, ‘1’=smoker)
• ht: history of hypertension for mother, (‘1’=history of hypertension, ‘0’=no hypertension)
• lwt: weight of mother at last menstrual period, numerical value in lbs.

Our aim is to model the probability of low birthweight for the infant. Fit a generalized linear model with
canonical link to the data. Use low as the response and smoke, ht and lwt as covariates. You may also need
to perform additional commands (in addition to fitting the model) on your fitted GLM-object.

The commands in R to fit the GLM:
library(MASS)
fit1=glm(low~smoke+ht+lwt,family=binomial,data=birthwt)
summary(fit1)

##
## Call:
## glm(formula = low ~ smoke + ht + lwt, family = binomial, data = birthwt)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.7067 -0.8312 -0.6892 1.1550 2.2815
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.083538 0.834219 1.299 0.19399
## smoke 0.683910 0.330954 2.066 0.03878 *
## ht 1.822025 0.686039 2.656 0.00791 **
## lwt -0.018046 0.006565 -2.749 0.00598 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 234.67 on 188 degrees of freedom
## Residual deviance: 216.86 on 185 degrees of freedom
## AIC: 224.86
##
## Number of Fisher Scoring iterations: 4

Based on your data analyses answer the following questions.

(i) Which type of GLM did you fit? Correct answer: Binomial

Possible choices: normal, binomial, Poisson, gamma, Other

(ii) Which link function did you use? Correct answer: Logit

Possible choices: identity, log, logit, exp, inverse, negative inverse, other

(iii) How would you explain the meaning of the estimated effect of smoke?
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When we compare two women where one smoked during pregnancy and one did not smoke during pregnancy
(but the their other covariates were the same), then

Correct answer: the odds of getting a low weight infant was multiplied by exp(βsmoke) for the woman who
smoked.

(iv) Consider a mother who smoked during pregnancy, had a history of hypertension and had weight 130
(lbs) at the last menstrual period. What is the predicted probability that the infant will be low weight?
(Write your answer with two significant digits, e.g. 0.0045 or 0.34.)

predict(fit1,newdata=data.frame(smoke=1,ht=1,lwt=130),type="response")

## 1
## 0.7761613
#or alternatively
eta=sum(fit1$coefficients*c(1,1,1,130))
exp(eta)/(1+exp(eta))

## [1] 0.7761613

(v) Perform a likelihood ratio test to compare the fittted model to the model where lwt is not included as
a covariate (so, only ht and smoke as covariates). Report the p-value from the test. (Write your answer
with two significant digits, e.g. 0.0045 or 0.34.)

fit2=glm(low~smoke+ht,family=binomial,data=birthwt)
anova(fit1,fit2,test="LRT")

## Analysis of Deviance Table
##
## Model 1: low ~ smoke + ht + lwt
## Model 2: low ~ smoke + ht
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 185 216.86
## 2 186 225.79 -1 -8.9342 0.002799 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correct answer: Read off the anova that the p-value is 0.0028.

(vi) The conclusion from the likelihood ratio test is that the model with lwd is the best. True or false?

Correct answer: True, since we reject the null hypothesis that both models are equally good and go for the
larger model. Formally, the null hypothesis is

H0 : βlwt = 0 vs. H1 : βlwt 6= 0

.

Problem 6: R-code for Problem 5 (optional)

Only to copy in the R-code in Problem 5.

Problem 7: GLM analysis in R back-up question: lime trees
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library(GLMsData)
data(lime)
model1 <- glm(Foliage ~ Origin * log(DBH),

family=Gamma(link="log"), data=lime)
summary(model1)

##
## Call:
## glm(formula = Foliage ~ Origin * log(DBH), family = Gamma(link = "log"),
## data = lime)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.7480 -0.5354 -0.1509 0.2528 3.2938
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.6289 0.2756 -16.793 < 2e-16 ***
## OriginNatural 0.3245 0.3882 0.836 0.40371
## OriginPlanted -1.5285 0.5727 -2.669 0.00793 **
## log(DBH) 1.8432 0.1016 18.149 < 2e-16 ***
## OriginNatural:log(DBH) -0.2040 0.1433 -1.424 0.15536
## OriginPlanted:log(DBH) 0.5768 0.2093 2.755 0.00614 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Gamma family taken to be 0.5443774)
##
## Null deviance: 508.48 on 384 degrees of freedom
## Residual deviance: 152.69 on 379 degrees of freedom
## AIC: 750.33
##
## Number of Fisher Scoring iterations: 6
exp(model1$coefficients)

## (Intercept) OriginNatural OriginPlanted
## 0.009765246 1.383368697 0.216862659
## log(DBH) OriginNatural:log(DBH) OriginPlanted:log(DBH)
## 6.316642306 0.815435562 1.780301334
nu1 = 1/summary(model1)$dispersion
dev=deviance(model1) * nu1
1-pchisq(dev,model1$df.residual)

## [1] 0.9999559
model2=glm(Foliage ~ Origin+log(DBH),

family=Gamma(link="log"), data=lime)
anova(model1,model2,test="LRT")

## Analysis of Deviance Table
##
## Model 1: Foliage ~ Origin * log(DBH)
## Model 2: Foliage ~ Origin + log(DBH)
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## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 379 152.69
## 2 381 160.58 -2 -7.8903 0.0007122 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
AIC(model1,model2)

## df AIC
## model1 7 750.3267
## model2 5 767.0195

We will analyse a data set with measurements on small-leaved lime trees grown in Russia, and the aim is
to model the foliage biomass. The data set consists of 385 observations, and we will look at the following
variables:

• Foliage: the foliage biomass, in kg (oven dried matter).
• DBH: the tree diameter, at breast height, in cm.
• Origin: the origin of the tree; one of Coppice, Natural, Planted. Dummy variable coding is used

with Coppice as reference category.

Print-out from fitting Foliage as response and log(DBH) (natural log), Origin and the interaction thereof
as covariates are presented in the print-out shown, along with additional analyses. Based on the print-out,
answer the following questions.

(i) Why are you answering Problem 7 and not Problem 5?

Possible choices: R failed, RStudio failed, MASS not installed, Other

(ii) Which type of GLM was fitted? Correct answer: Gamma.

Possible choices: normal, binomial, Poisson, gamma, other

(iii) What is the canonical link for this type of response? Correct answer: negative inverse.

Possible choices: log, logit, exp, inverse, negative inverse, other

(iv) We look at a tree from Coppice. If the log(DBH) of the tree increases by 1 cm, what is the multiplicative
change in the estimated mean foliage biomass? (Write your answer with two significant digits, e.g. 0.0045
or 0.34.)

Correct answer: exp(1.84) = 6.31.
exp(model1$coeff)

## (Intercept) OriginNatural OriginPlanted
## 0.009765246 1.383368697 0.216862659
## log(DBH) OriginNatural:log(DBH) OriginPlanted:log(DBH)
## 6.316642306 0.815435562 1.780301334

(v) A deviance test is performed in the print-out, and a p-value of 0.99996 is reported. The conclusion
from the deviance test is that the model is good. True or false.

Correct answer: True.

The null hypotesis is not rejected, which means that the saturated model and the candidate model is not
significantly different.

(vi) A likelihood ratio test is performed to compare this model to the model where the interaction between
log(DBH) and Origin is not included in the linear predictor. Report the p-value from the test.(Write
your answer with two significant digits, e.g. 0.0045 or 0.34.)

Correct answer 0.00071 directly from print-out ANOVA.
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vii) For the likelihood ratio test, which of the two model are preferred? Use a significance level of 0.05.

Correct answer: Origin*log(DHB). The hypothesis that the models are equally good is rejected and we
keep the largest model.
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