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TMA4315 Generalized linear models, Solution, December 2019

Problem 1

a) The pmf is

fY (y) = exp(y ln(1− p)− ln(1− p) + ln p)

= exp(yθ − θ + ln(1− eθ))
(1)

so it belongs to the expoential family. The canonical parameter is θ = ln(1 − p) and
b(θ) = θ − ln(1− eθ).
Via general formulas, we recover the usual expressions for the mean and variance,

EY = b′(θ) = 1 +
eθ

1− eθ
=

1

1− eθ
=

1

p
(2)

and

VarY =
φ

wi
b′′(θ) =

eθ

(1− eθ)2
=

1− p
p2

, (3)

of the geometric distribution.

b) Using the canonical link function, the log likelihood is

l(β) =
n∑
i=1

yiηi − b(ηi), (4)

where ηi = xTi β. Differentiation with respect to β leads to

s(β) =
n∑
i=1

(yi − µi)
∂ηi
∂β

=
n∑
i=1

(yi −
1

pi
)xi, (5)

and

F(β) = Var(s(β)) =
n∑
i=1

1− pi
p2i

xix
T
i . (6)

In one or several dimensions dimension, Newton’s methods search for the root of the
equation f(x) = 0 by setting a linear approximation of f(x) around our current estimate
xj of the solution equal to zero and solving. This is repeated until convergence.
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For optimizations problems (such as finding the solution of s(β) = 0) the algorithm takes
the form

βj+1 = βj + H(βj)
−1s(β) (7)

where H(βj) = − ∂2l
∂β∂βT

. Fisher scoring differs form this in that H(β) is replaced by the

expected Fisher information F(β) = EH(β) which has the advantage that it is always
positive definite and invertible at the interior of the parameter space.

We have the constraint 0 < pi = 1 − eηi < 1 which translates to ηi = xTi β < 0 for all
observations i = 1, 2, . . . , n. Thus, if the model includes an intercept β0, the parameters
need to satisfy the constraint β0 < minni=1(β1xi1 + . . . βkxik) β0 < minni=1(−β1xi1 − · · · −
βkxik).

Thus, an initial parameter vector β0 = (0, 0, . . . , 0)T would not work.

Based on asymptotic normality of MLEs, approximate the standard errors of the param-
eters estimates can be found by taking the square root of the diagonal elements of the
inverse of the expected Fisher information at the MLE of β.

Problem 2

a) The model assumes independent yi ∼ Poisson(λi) where lnλi = β0+β1altitudei+ln areai
for i = 1, 2, . . . , n.

Keeping everything else constant, the effect of a 100 meter increase in altitude is to change
the expected number of plants inside a sampling square by a factor of exp(−0.000586 ·
100) = 0.94, that is, the expected number of plants is reduced by about 6%.

b) If the individuals plants are points in a spatial Poisson process within each sampling
square, then the total plant count inside each square will follow a Poisson distribution.

Using ln areai as an offset means that

E(yi) = eβ0+β1altitudei+ln areai = eβ0+β1altitudeiareai (8)

such that the resonable a priori assumption of direct proportionality between E(yi) and
areai has been built into the model.

c) Under the null hypothesis of no overdispersion (φ = 1 φ = 0), the devianceD is chi-square
with n− p = 100− 2 = 98 degrees of freedom. Large values of D indicate overdispersion
so we reject if D > χ2

0.95,98 = 122.1. Given the observed value of D = 235.4 we thus
reject H0 and conclude that there is overdispersion in the data.

This can be caused by missing covariates, an incorrect link function, or positive covariance
between the number of plants in disjoint subareas in the spatial Poisson process.
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The dispersion parameter can be estimated by φ̂ = D/(n − p) = 235.4/98 = 2.40. For
the quasilikelihood model, the corresponding Wald Z statistic for the effect of altitude
changes to

T =
β̂1√

φ̂SE(β̂1)

=
−0.000586√

2.41 · 0.000415
= −0.909. (9)

Under H0, this statistic is approximately student-T with n− p degrees of freedom so we
reject if |T | > t0.025,98 = 1.98. Hence, we cannot rejct H0 : β1 = 0.

d) Conditional in the random effects γ01, . . . , γ0m associated with each year i = 1, 2, . . . ,m,
the model assumes independent yij|γ0i ∼ Poisson(λij) where lnλij = β0 + β1altitudeij +
γ0i+ ln areaij for i = 1, 2, . . . ,m and j = 1, 2, . . . , ni. The random effects γ01, . . . , γ0m are
iid N(0, τ 20 ).

The MLE of τ 20 is τ̂ 20 = 0.44.

For γ0i = 0 and at sea level in a 50 square meter sampling square, an estimate of the
conditional expected response becomes

̂E(yij|γ0i = 0) = e−2.77−0.00125·0+log(50) = 3.13 (10)

The expected value in a randomly chosen year becomes

Eyij = EE(yij|γ0i)
= Eeβ0+β1altitudeij+γ0i+log areaij

= eβ0+β1altitudeij+log areaijE(eγ0i)

= eβ0+β1altitudeij+log areaijeτ
2
0 /2

(11)

since eγ0i ∼ lognormal(0, τ̂ 20 ). An estimate of this unconditional expectation is therefore

Êyij = E(e−2.77−0.00125·0+log(50)+.44/2) = 3.90 (12)

e) We want to test the null hypothesis H0 : τ 20 = 0 against the alternative H1 : τ 20 > 0.

The expected value of all components of the score vector s(β,θ) are zero when evaluated
at the true parameter values. Thus, under the above H0 in particular, since the score
vector asymptotically has a normal (symmetric) distribution, there is a 50% chance that
the MLE of τ0 under H1 falls on the boundary of the parameter space such that the
corresponding LRT statistic takes a value of 0.

The overall asymptotic distribution of the LRT statistics can thus be seen as a 50-
50% mixture of two chi-squares with 0 (a point mass at zero) and 1 degree of freedom
respectively.
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We want to find a critical value c, such that the probability of rejection equals the nominal
level of α = 0.005, that is,

α = P (LRT > c) =
1

2
P (χ2

0 > c)︸ ︷︷ ︸
=0

+
1

2
P (χ2

1 > c). (13)

The critical value c is therefore the upper 2α quantile of the chi-square distribution with
1 degree of freedom, c = 6.63.

Given the observed values of LRT = 2(−177 − (−225)) = 96 we can thus reject H0 in
favour of the model including the random intercepts.

f) If we only observe zi = 1 if yi ≥ 1 and zi = 0 otherwise, we get the glm where zi ∼
bin(1, pi) and

pi = P (yi ≥ 1) = 1− P (yi = 0) = 1− e−λi = 1− e−eηi (14)

such that
cloglog pi = ln(− ln(1− pi)) = ηi (15)

and ηi equals the linear predictor in point d.

Problem 3

a) Using the law of total probability and the assumption of independence between clusters,
the likelihood can be written

L(β,θ) =
m∏
i=1

∫
f(yi|β,γi)f(γi|θ)dγi. (16)

This can be computed via a Laplace approximation or via numerical integration.

For GLMMs, the restricted likelihood can be defined as

LR(θ) =

∫
L(β,θ)dβ, (17)

that is, we also integrate out β in addition to γ. This can be done by doing the above
Laplace approximation instead with respect to both γ and β. As for LMMs, the REML
estimators of θ are often less biased. The estimates can be interpreted as the maximum
a posteriori estimates of θ if a uniform improper prior were used on β so in a sense we
are dealing with β (which are nuisance parameters from the point of view of estimating
θ) in a similar way to how nuisance parameters are dealt with in Bayesian inference.
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b) It follows that
w = ATy = AT (Xβ + ε) = ATε. (18)

Thus, w is multinormal with zero mean vector and variance matrix ATσ2InA = σ2In−p

The restricted likelihood is therefore

L(σ2) = (2π)−(n−p)/2|σ2In−p|−1/2 exp

{
− 1

2σ2
wTw

}
(19)

Since |σ2In−p|−1/2 = (σ2)−(n−p)/2 and wTw = (ATy)TATy = yTAATy = yT (In−H)y =
((In −H)y)T (In −H)y = (y − ŷ)T (y − ŷ) = SSE, the log likelihood simplifies to

l(σ2) = −n− p
2

ln(2πσ2)− 1

2σ2
SSE. (20)

Maximising this we find the REML estimator of σ2,

σ̂2 =
1

n− p
SSE, (21)

which equals the usual unbiased estimator of σ2 for LMs.


