La). The pdf can be written as

$$
\begin{aligned}
f_{Y}(y) & =\lambda e^{-\lambda y}=e^{-\lambda y+\ln \lambda} \\
& =e^{\theta y-b(\theta)}
\end{aligned}
$$

where $\theta=-x$ is the natural parameter and $b(\theta)=-\ln (-\theta)$.

- Using formulas for the mean and variance

$$
E Y=b^{\prime}(\theta)
$$

and

$$
\operatorname{Var} Y=\frac{\phi}{w} b^{\prime \prime}(\theta)
$$

- we find

$$
E Y=+\frac{1}{-\theta}=\frac{1}{\lambda}
$$

and

$$
\operatorname{Var} Y=\frac{1}{\sigma^{2}}=\frac{1}{(-\lambda)^{2}}=\frac{1}{\lambda^{2}}
$$

- Given the cumulant genacting function (with $w=\phi=1$)

$$
K_{Y}(n)=b(\theta+n)-b(\theta)=-\ln (-\theta-n)+\ln (-\theta)
$$

We have

$$
\begin{aligned}
& K_{Y}^{\prime}(n):+\frac{1}{-\theta-n} \\
& K_{Y}^{\prime \prime}(n)=\frac{1}{(-\theta-n)^{2}} \\
& K_{Y}^{n \prime}(n)=\frac{2}{(-\theta-n)^{3}}
\end{aligned}
$$

the third central moment is

$$
E\left[(Y-E Y)^{3}\right]=K_{Y}^{\prime \prime \prime}(0)=\frac{2}{(-\theta)^{3}}=\frac{2}{\lambda^{3}}
$$

1b). Using the canonical link the natwal parameter $\theta_{i}=-\lambda_{i}$ is equated to the linear predictor $\eta_{i}=x_{i}^{\top} \beta$ so the expected value $\mu_{i}=E\left(y_{i}\right)=\frac{1}{\lambda_{i}}$ is related to y_{i} via

$$
\mu_{i}=\frac{1}{\lambda_{i}}=\frac{1}{-\theta_{i}}=\frac{1}{-y_{i}}
$$

or

$$
-\frac{1}{\mu_{i}}=\eta_{i}
$$

so the link function $g\left(\mu_{i}\right)=-\frac{1}{\mu_{i}}$.

- The log likelihood is

$$
l(\beta)=\sum_{i=1}^{n} \eta_{i} y_{i}-b\left(\eta_{i}\right)
$$

and the scare friction

$$
\underline{s}(\beta)=\sum_{i=1}^{n}\left(y_{i}-\mu_{i}\right) \frac{\partial y_{i}}{\partial \underline{\beta}}=\sum_{i=1}^{n}\left(y_{i}-\frac{1}{\lambda_{i}}\right) x_{\bar{n}}
$$

- The Fisher information can be found via

$$
\begin{aligned}
F(\underline{\beta}) & =\operatorname{Var}(\underline{s}(\underline{\beta}))=\sum_{i=1}^{n} \operatorname{Var}\left(\underline{x}_{i}\left(y_{i}-\frac{1}{\lambda_{i}}\right)\right) \\
& =\sum_{i=1}^{n} \underline{x}_{i} \frac{1}{\lambda_{i}^{2}} \underline{x}_{i}^{\top}=\sum_{i=1}^{n} \frac{1}{\lambda_{i}^{2}} x_{i} x_{i}^{\top}
\end{aligned}
$$

- The constraint $\lambda_{i}>0$ translates to

$$
\begin{aligned}
& -\frac{1}{\eta_{i}}>0 \\
& \eta_{i}<0
\end{aligned}
$$

$$
x_{i}^{2} \beta<0
$$

or assuming the the model includes an intercept

$$
\beta_{0}<-\sum_{j=1}^{k} \beta_{j} x_{i j}
$$

for all observations $i=1,2, \ldots, n, \quad i$ e,

$$
\beta_{0}<\min \left(-\sum_{j=1}^{k} \beta_{j} x_{i j}\right)
$$

Thus, the initial value $\underline{\beta}=(0, \ldots, 0)^{7}$ would not be on the interior of the parameter space.

- A more "natural" choice wound be the log link

$$
\ln \left(\mu_{i}\right)=y_{i}
$$

since this ensures that

$$
\frac{1}{\lambda_{i}}=\mu_{i}=e^{\eta_{i}}>0 \text { for any } \beta \in \in \mathbb{R}^{P}
$$

2a) The counts $\underline{Y}_{1}, y_{2}, \ldots, Y_{n}$ are independent,'

$$
\underline{y}_{i}=\left(y_{i A}, y_{i B}, \ldots, Y_{T F}\right) \sim \operatorname{Maltinom}\left(n_{i}, \underline{\pi}_{i}\right) \text {, }
$$

for $i=1,2, \ldots, n$ and

$$
\begin{aligned}
\operatorname{logit} P\left(y_{i} \leqslant r\right) & =\operatorname{logi}\left(\pi_{i z}+\ldots+\pi_{i r}\right) \\
& =\theta_{r}+x_{i}^{\top} \underline{\beta} .
\end{aligned}
$$

- $\hat{\theta}_{7}=-2.64, \hat{\theta}_{2}=-1.44, \ldots, \hat{\theta}_{5}=1.28$,
and $\hat{\beta}=(-0.26, \ldots,-1.58)$

2b) . The logit $\left(\log\right.$ odds) for a pass $\left(y_{i} \leqslant 5\right)$ change by -0.26 when comparing 2005 to 2004 (the reference category), so the odds of passing changes by

$$
e^{-0.26}=0.77
$$

i.e. a 23.l decrease in odds of passing.

- Similaty, compaining resit to ordihany exams, the odds of passing change by a factor of

$$
e^{-1.58}=0.21
$$

that is, the odds is 79\% smaller at a resit exam, regardless of the value of other coraisates.

- P(gotting a B in ordinary exam in 2008)

$$
\begin{aligned}
& =P\left(y_{i} \leqslant 2\right)-P\left(y_{i} \leqslant 1\right) \\
& =\frac{1}{1+e^{-\left[\hat{\theta}_{2}+\hat{\beta}_{2008}\right)}} \frac{1}{\left.1+e^{-\left(\hat{\theta}_{2}+\hat{\beta}_{2008}\right.}\right)}
\end{aligned}
$$

$$
=0.155
$$

Based on the observed data $\hat{\prod}_{i B}=\frac{y_{i B}}{n_{i}}=\frac{264}{113 \ldots+305}$ $=0.169$
So a reasonable agreement to the fitted model.
2c). Under the saturated model all $\pi_{i s}$ are free parameters. Given the constraint that $\sum_{s=1}^{6} \pi_{i s}=1$, we have a total of

$$
5 \times 10=50
$$ parameters.

- From the unultinomial likelihood, the deviance becomes

$$
D=2 \sum_{i=1}^{2_{0}} \sum_{s=1}^{6} y_{i s} \ln \frac{y_{i s} / n_{i}}{\tilde{\pi}_{i s}}
$$

- Since this is chi-square with $p_{2}-P_{0}$

$$
=50-10 \text { def. } E(D)=40 \text {. }
$$

- The critical value of the goodness - of -fit test is the quartile

$$
x_{0.05,40}^{2}=55.75
$$

Given the oboewed deviance $D=424$ we reject the hypothesis that the fitted model is the.

2d). In the model with an interaction between year and cont, the effect of an exam being a resit is different between the different years in terms of the log of the cumulative odds.

- The odds of passing in 2005 when comparing resit to ordinary exam now change by a factor

$$
e^{-1.64+0.14}=0.22
$$

i.e, a 78% reduction is odds of passing (instead of 79% in 26).

- The change in deviance between the models with and without the interaction is

$$
D_{0}-D_{1}=424.25-417.02=7.23
$$

The critical value is

$$
x_{\alpha, p_{1}-p_{0}}^{2}=x_{0.05,14-20}^{2}=9.487
$$

Thus, the null hypothesis of no interaction cannot be rejected.
Ba). Letting $y_{i j}$ and $x_{i j}$ denote the bi thweigth and sex (encoded as 0 and 1) for litter $i=1, \ldots, m$ and pup $j=1,2, \ldots, n_{i}$, we assume that

$$
y_{i j}=\beta_{0}+\beta_{i i d} x_{i j}+\gamma_{0, i}+\gamma_{1, i} x_{i j}+\varepsilon_{i j}
$$ where $\varepsilon_{i j} \stackrel{\text { id }}{\sim} N\left(0, \sigma^{2}\right)$ and

$$
\left[\begin{array}{l}
\gamma_{0, i} \\
\gamma_{1, i}
\end{array}\right] \stackrel{i i d}{\sim} N\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
\tau_{0}^{2} & \tau_{01} \\
\tau_{01} & \tau_{1}^{2}
\end{array}\right]\right)
$$

- The cotimates are

$$
\begin{aligned}
& \hat{\beta}_{0}=6.40, \hat{\beta}_{A}=-0.39 \\
& \hat{\sigma}_{0}^{2}=0.42, \tau_{7}^{2}=0.02
\end{aligned}
$$

and

$$
\hat{\rho}=\frac{\hat{\tau}_{01}}{\sqrt{\hat{\tau}_{0}^{2} \hat{\tau}_{7}^{2}}}=-1.0
$$

- The REML estimate of τ_{01} is this

$$
\hat{\tau}_{01}=-\sqrt{0.42 \cdot 0.02}=-0.0955
$$

3b). To test $H_{0}: \beta_{1}=0$ vs $H_{1}: \beta_{7} \neq 0$ (an effect if sex on birth weight), the the likehiood ratio stat based on the ML fits is

$$
L R T=2(-206.82-(-233.06))=54
$$

The critical value is

$$
x_{0.05,1}^{2}=3.86
$$

We thus reject H_{0} in favour of H_{1}.

- To test if the random intercept is signifient we can use either the REML or the ML fits. As only the latter is avail able, we get

$$
L R T=2(-206.82-(-309.51))=205
$$

Since $H_{0}: \tau_{0}^{2}=0$ is on the boundary of the parameter space, the $\angle R T$ statistic is distributed as a $50 \%: 50 \%$ mixture of chi-squares with 0 and 1 def. Hence the cinticul value is at $\alpha=0.05$

$$
x_{0,70,1}^{2}=2.7
$$

We can this reject H_{0}.
Bc) When tasting if the random slipe is significant
we have

$$
H_{0}: \tau_{1}^{2}=0, \quad q_{a}^{2}=0
$$

vs.

$$
H_{2}: \tau_{1}^{2}>0,\left|\tau_{01}\right|<\sqrt{\tau_{0}^{2} \tau_{1}^{2}}
$$

- We are thus estimating two additional parameters under $H_{2}\left(q_{1}^{2}\right.$ and $\left.\tau_{01}\right)$.
- Cons taints
- Asgmp to tically, the LRT-statistic is a 50% : 50% mixtme of chi-squares with 1 and 2 d.f.
- The observed value (based on the REML fits) is

$$
L R T=2(-207.16-(-210.21))=6.1
$$

This gives a p-valua of

$$
\begin{aligned}
p & =P(L R T>6.1) \approx 0.5 P\left(\chi_{1}>6.1\right)+0.5 P\left(\chi_{2}>6.1\right) \\
& =0.03
\end{aligned}
$$

Thus we reject tho.
3d) For two pups j and k within the same litter i,

$$
\begin{aligned}
& \operatorname{Cov}\left(y_{j j}, y_{i k}\right) \\
= & \operatorname{Cov}\left(\beta_{j}+\beta_{1} x_{i j}+\gamma_{0 i}+\gamma_{1, i} x_{i j}+\varepsilon_{i j,}, \beta_{0}+\beta_{1,}\right. \\
= & \operatorname{Cov}\left(\gamma_{0, i}+\gamma_{1, i} x_{i j}, \gamma_{0, i}+\gamma_{1, i} x_{i k}\right) \\
= & T_{0}^{2}+T_{1}^{2} x_{i j} x_{i k}+T_{01}\left(x_{i j}+x_{i k}\right)
\end{aligned}
$$

$$
=\operatorname{Cov}\left(\beta_{u}+\beta_{1} x_{i j}+\gamma_{0 i i}+\gamma_{1, i} x_{i j}+\varepsilon_{i j}, \beta_{0}+\beta_{1} x_{i k}+\gamma_{0, i}+\gamma_{1, i}+x_{i k}\right)
$$

$$
+\varepsilon_{i, k}
$$

Comparing a male $\left(x_{i j}=0\right)$ and female $\operatorname{pup}\left(x_{i_{k}}=1\right)$ an estimate of this coraniane is

$$
\hat{T}_{0}^{2}+\hat{T}_{01}=0.42+(-0.0955)=0.33 .
$$

