Problem 1

a) Rewriting the second expression for $f(y|\lambda)$ we obtain

$$f(y|\lambda) = e^{y\ln\lambda - \ln(e^{\lambda} - 1) - \ln y!} = e^{y\theta - b(\theta) - c(y)}$$

where $\theta = \ln \lambda$, $\lambda = e^{\theta}$ and $b(\theta) = \ln(e^{e^{\theta}} - 1)$.

b) Differentiating $b(\theta)$ we obtain

$$EY = \frac{e^{e^{\theta}}e^{\theta}}{e^{e^{\theta}} - 1} = \frac{\lambda e^{\lambda}}{e^{\lambda} - 1} = \frac{\lambda}{1 - e^{-\lambda}}$$

As $\lambda \to \infty$, the point mass $P(Y = 0) = e^{-\lambda}$ that we remove when truncating the distribution becomes negligable, so we should expect the mean to approach the mean if the distribution was not trucated, that is, λ .

This indeed happens as

$$\lim_{\lambda \to \infty} \frac{EY}{\lambda} = \lim_{\lambda \to \infty} \frac{1}{1 - e^{-\lambda}} = 1.$$

Problem 2

a) The model assumes that the number of covid cases

$$Y_i \sim \text{Poisson}(\mu_i)$$

where

$$\ln \mu_i = \beta_0 + \beta_1 \ln x_i$$

for at school i = 1, 2, ..., n where x_i is the number of pupils at school i.

The parameter estimates are $\hat{\beta}_0 = -3.36$ and $\hat{\beta}_1 = 1.037$.

If we assume that the pupils at a particular school contract covid independently of each other with the same probability p_i , then Y_i would follow a binomial distribution. But because p_i is quite small it is reasonable to approximate this distribution with a Poisson distribution.

b) Under the null hypothesis of no overdispersion, the deviance D is chi-square with n-p = 8-2 = 6 degrees of freedom. We reject H_0 for large values of D. Hence the critical value is 12.59. Since the observed value is 14.28 we reject H_0 in favour of the alternative that ther is overdispersion.

An estimate of the overdisperion parameter φ is $\hat{\varphi} = D/(n-p) = 2.38$.

Adjusting for overdispersion, the standard errors of $\hat{\beta}_0$ and $\hat{\beta}_1$ change to $0.77\sqrt{2.38} = 1.1888$ and $0.1221\sqrt{2.38} = 0.1883$, respectively.

A possible mechanism would be that different pupils (within a particular school) do not contract covid-19 independently but with positive dependency. This would inflate the binomial variance (the variance of a sum of indicator variables) (which we have approximated by a Poisson variance).

c) The estimated relationship between the expected number of cases and the number of pupils is

$$E(Y_i) = e^{\beta_0 + \beta_1 \ln x_i} = 0.03 x_i^{1.034},$$

that is, almost direct proportionality between $E(Y_i)$ and x_i .

A possible simplification would be to build perfect proportionality into the model by instead including $\ln x_i$ as an offset by changing the linear predictor to

$$\ln \mu_i = \beta_0 + \ln x_i.$$

An interpretation of β_0 is that the expected rate of infection is

$$\frac{EY_i}{x_i} = e^{\beta_0}$$

Relying on the standard error adjusted for overdispersion, we can test this null hypothesis of perfect proportionality against the fitted model using the Wald test stastic

$$T = \frac{\hat{\beta}_1 - 1}{\operatorname{SE}(\hat{\beta}_1)} = \frac{0.0368}{0.1883} = 0.1954.$$

which is smaller than the $t_{0.025,6} = 2.44$ in absolute value. Hence we do not reject H_0 .

Problem 3

a) For child $j = 1, 2, ..., n_i$ of mother i = 1, 2, ..., m, we assume that the outcomes (birth delivered at hospital or elswhere), conditinal on the random mother effect γ_i , are independently distributed as

$$Y_{ii}|\gamma_i \sim \text{Bernoulli}(\pi_i)$$

where

$$\operatorname{logit} \pi_{ij} = \beta_0 + \beta_1 \ln(\operatorname{income}_{ij}) + \beta_2 \operatorname{dist}_{ij} + \beta_3 \operatorname{dropout}_i + \beta_4 \operatorname{college}_i + \gamma_i$$

where dropout_i and $college_i$ are 0/1-dummy variables indicating whether the *i*th mother dropped out of schools and finished collega education, respectively.

We also assume that the random mother effects $\gamma_1, \ldots, \gamma_m$ are iid $N(0, \tau^2)$. The parameter estimates are $\hat{\beta}_0 = -3.29, \hat{\beta}_1 = 0.55, \ldots, \hat{\beta}_4 = 1.02$ and $\hat{\tau}^2 = 1.251$. b) To test the signicance of the random intercept term, involves H_0 : $\tau^2 = 0$ versus H_1 : $\tau^2 > 0$. Since H_0 is on the boundary of the parameter space,

$$LRT = 2(l_1 - l_0)$$

where l_0 and l_1 are the maximum log-likelihoods under each alternative is distributed as a 50% : 50% mixture of chi-squares with 0 and 1 degree of freedom.

The critical value c satisfies

$$P(LRT > c) = \frac{1}{2}(\chi_0^2 > c) + \frac{1}{2}(\chi_0^2 > c) = \alpha$$

implying that $c = \chi^2_{1,2\alpha} = 6.63$.

Based on the observed value of

$$LRT = 2(-524.6 - (-537.5)) = 25.8$$

we thus reject H_0 and conclude that there is evidence in the data for a difference between the different mothers.

c) For a given mother, that is, conditional on γ_i , we have

logit
$$P(Y_{ij} = 1 | \gamma_i) = \mathbf{x}_{ij}^T \boldsymbol{\beta} + \gamma_i.$$

Hence, the effect of a unit change in college_{ij} , is that the log odds of birth delivery to a hospital changes by β_4 , and the odds changes by a odds ratio of $e^{\beta_4} = e^{1.023} = 2.78$, that is, the odds increases by 178%. This interpretation is exact.

If we consider the average effect, we have the approximate relation

$$P(Y_{ij} = 1) = \int P(Y_{ij} = 1|\gamma_i) f(\gamma_i) d\gamma_i$$
$$= \int \frac{1}{1 + e^{-(\mathbf{x}_{ij}^T \boldsymbol{\beta} + \gamma_i)}} f(\gamma_i) d\gamma_i$$
$$\approx \frac{1}{1 + e^{-\mathbf{x}_{ij}^T \boldsymbol{\beta} / \sqrt{1 + .6\tau^2}}}$$

or equivalently,

logit
$$P(Y_{ij} = 1) \approx \mathbf{x}_{ij}^T \boldsymbol{\beta} / \sqrt{1 + .6\tau^2}$$

see Agresti (2002), p. 499. Thus, marginally, the odds of birth sdelivery at hospital changes approximately by a factor of $e^{1.023/\sqrt{1+0.6\cdot 1.25}} = 2.16$, that is, under the marginal model, the odds increases by 116% (as opposed to by 178% conditionally for a given mother).

Problem 4

a) Assuming equal strengths of both players, the probability of a white win is

$$P(Y_i = 1) = P(Y_i \le 1) = \Phi(\theta_1) = \Phi(-.2894) = 0.3861,$$

the probability of a draw is

 $P(Y_i = 2) = P(Y_i \le 2) - P(Y_i \le 1) = \Phi(\theta_2) - \Phi(\theta_1) = \Phi(0.8827) - \Phi(-.2894) = 0.4251,$

and a black win has

$$P(Y_i = 3) = 1 - P(Y \le 2) = 1 - \Phi(\theta_2) = 0.1886.$$

b) The model corresponds to the assumption that the event $Y_i = r$ occurs if $\theta_{r-1} < u_i \le \theta_r$, $u_i = \alpha_{j(i)} - \alpha_{k(i)} + \varepsilon_i$, $\varepsilon_i \sim N(0, 1)$ and $\theta_0 = -\infty$ and $\theta_3 = \infty$, since this implies $P(Y_i \le r) = \Phi(\theta_r + \alpha_{j(i)} - \alpha_{k(i)})$.

If a white and black win has equal probabilities (H_0) ,

$$\Phi(\theta_1) = 1 - \Phi(\theta_2).$$

The cdf of the standard normal has the property $\Phi(x) = 1 - \Phi(-x)$. Thus the null hypothesis corresponds to the linear hypothesis

$$\theta_1 = -\theta_2.$$

This can also be seen from the latent variable interpretation of the model, the latent variable

$$u_i = \underbrace{\alpha_{j(i)} - \alpha_{k(i)}}_{=0} + \underbrace{\varepsilon_i}_{\sim N(0,1)}$$

clearly falls below θ_1 (win to white) or above θ_2 (a win black) when θ_1 and θ_2 are located symmetrically around 0. This null hypothesis can be written on the form

$$C\beta = d$$

where $\mathbf{C} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$ and $\mathbf{d} = 0$.

To test this null hypothesis we use

$$\mathbf{C}\hat{\boldsymbol{\beta}} - \mathbf{d} = \hat{\theta}_1 + \hat{\theta}_2$$

as the starting point. This random variable has

$$\operatorname{Var}(\hat{\theta}_1 + \hat{\theta}_2) = \operatorname{Var}\hat{\theta}_1 + \operatorname{Var}\hat{\theta}_2 + 2\operatorname{Cov}(\hat{\theta}_1, \hat{\theta}_2)$$

Hence, relying on approximate/asymptotic normality of $\hat{\boldsymbol{\beta}}$,

$$Z = \frac{\hat{\theta}_1 + \hat{\theta}_2}{\sqrt{\operatorname{Var}(\hat{\theta}_1 + \hat{\theta}_2)}}$$

is asymptotically/approximately N(0,1) under ${\cal H}_0.$ The observed value becomes

$$\frac{-.2894 + .8827}{\sqrt{0.0417 + 0.0528 + 2 \cdot 0.0176}} = 1.64$$

which is not in the critical region |Z| > 1.96 of a two sided test. Hence, the data do not provide sufficient evidence to conclude that there is any difference in the winning chances when playing with white versus black pieces.