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Problem 1 A random variable Y belongs to the univariate exponential family if the point
mass (pmf) or probability density function (pdf) can be written on the form

f(y|θ) = exp

(
yθ − b(θ)

φ
w + c(y, φ, w)

)
(1)

where θ is the natural (or canonical) parameter, b and c are functions, and the support of the
pmf/pdf does not depend on θ. In the following you can assume that the dispersion parameter
φ = 1 and that the weight w = 1.

If X ∼ bin(n, p) and Y has the same distribution as X conditional on X > 0, then Y is
zero-truncated binomial distributed with point mass function

f(y|n, p) =
1

1− (1− p)n

(
n

y

)
py(1− p)n−y

for y = 1, 2, . . . , n.

a) Show that the zero-truncated binomial distribution belongs to the exponential family
and identify θ and the function b(θ).

b) Using the connection between E(Y ) and b(θ), derive expressions for E(Y ) both in terms
of n and θ or n and p.

Explain why E(Y ) should be asymptotically equal to np as n tends to∞ and check that
this is the case by verifying that

lim
n→∞

E(Y )

np
= 1.
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Problem 2

In this problem will we analyse traffic data on number of cyclists passing two different road
points A and B in Trondheim at 56 different days in the months of May and June of 2022.
The first 20 observations in the data frame are given below.

head(df,20)

## daynr weekday location weekend y

## 1 1 mon A FALSE 16

## 2 1 mon B FALSE 12

## 3 2 tue A FALSE 25

## 4 2 tue B FALSE 15

## 5 3 wed A FALSE 14

## 6 3 wed B FALSE 15

## 7 4 tur A FALSE 20

## 8 4 tur B FALSE 7

## 9 5 fri A FALSE 22

## 10 5 fri B FALSE 7

## 11 6 sat A TRUE 14

## 12 6 sat B TRUE 9

## 13 7 sun A TRUE 9

## 14 7 sun B TRUE 5

## 15 8 mon A FALSE 23

## 16 8 mon B FALSE 9

## 17 9 tue A FALSE 19

## 18 9 tue B FALSE 10

## 19 10 wed A FALSE 21

## 20 10 wed B FALSE 10

All variables are encoded as factors except y (the number of cyclists) which is a numeric
variable.

We first fit a generalized linear model to the data in R as follows.

mod1 <- glm(y ~ location + weekday, poisson(link = "log"), data = df)

summary(mod1)

##

## Call:

## glm(formula = y ~ location + weekday, family = poisson(link = "log"),
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## data = df)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -2.0356 -1.0687 -0.2070 0.7586 2.6667

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 2.97467 0.06730 44.202 < 2e-16 ***

## locationB -0.65555 0.05294 -12.382 < 2e-16 ***

## weekdaytue 0.20448 0.08733 2.342 0.0192 *

## weekdaywed 0.14086 0.08861 1.590 0.1119

## weekdaytur 0.07291 0.09004 0.810 0.4181

## weekdayfri 0.10368 0.08938 1.160 0.2461

## weekdaysat -0.57443 0.10800 -5.319 1.04e-07 ***

## weekdaysun -0.62024 0.10961 -5.659 1.53e-08 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 428.75 on 111 degrees of freedom

## Residual deviance: 135.04 on 104 degrees of freedom

## AIC: 638.26

##

## Number of Fisher Scoring iterations: 4

a) State the assumptions of this specific statistical model in suitable mathematical notation.

Based on this model, what is the expected number of cyclists passing road point B on a
Monday?

Also give an interpretation of the coefficient estimate labelled locationB in the output.

Next we fit the following alternative model which includes the factor weekend (with levels TRUE
and FALSE) instead of the factor weekday (which has 7 levels).

mod0 <- glm(y ~ location + weekend, poisson(link = "log"), data = df)

summary(mod0)

##

## Call:
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## glm(formula = y ~ location + weekend, family = poisson(link = "log"),

## data = df)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -2.03707 -1.03971 -0.06234 0.77045 2.75113

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 3.08138 0.03290 93.65 <2e-16 ***

## locationB -0.65555 0.05294 -12.38 <2e-16 ***

## weekendTRUE -0.70378 0.06762 -10.41 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 428.75 on 111 degrees of freedom

## Residual deviance: 141.31 on 109 degrees of freedom

## AIC: 634.52

##

## Number of Fisher Scoring iterations: 4

b) Explain what is meant by nested models and explain why mod0 and mod1 are nested.

Do a likelihood ratio test of mod0 against mod1 using a level of significance of 0.05.

c) Based on mod0, is there any indication of overdispersion in the data?

Discuss possible mechanism that may be responsible for generating overdispersion in the
present data set.

Assuming a quasi-Poisson model where the true variance of the response is inflated by a
factor ϕ, compute an estimate ϕ̂ of this dispersion parameter and use this to compute an
adjusted standard error of the estimated coefficient labelled locationB of model mod0.

Next we extend the GLM considered above by including a random intercept term using daynr

(56 levels) as the grouping factor and fit the following GLMM:

mod2 <- glmer(y ~ location + weekend + (1|daynr), poisson(link = "log"), data = df)

summary(mod2)
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## Generalized linear mixed model fit by maximum likelihood (Laplace

## Approximation) [glmerMod]

## Family: poisson ( log )

## Formula: y ~ location + weekend + (1 | daynr)

## Data: df

##

## AIC BIC logLik deviance df.resid

## 633.2 644.0 -312.6 625.2 108

##

## Scaled residuals:

## Min 1Q Median 3Q Max

## -1.51589 -0.91263 -0.01439 0.62878 2.72762

##

## Random effects:

## Groups Name Variance Std.Dev.

## daynr (Intercept) 0.01402 0.1184

## Number of obs: 112, groups: daynr, 56

##

## Fixed effects:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 3.07461 0.03808 80.730 <2e-16 ***

## locationB -0.65555 0.05290 -12.391 <2e-16 ***

## weekendTRUE -0.70458 0.07618 -9.249 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Correlation of Fixed Effects:

## (Intr) loctnB

## locationB -0.475

## weekendTRUE -0.380 0.000

d) Indexing clusters (different days) by i = 1, 2, . . . , 56 and observations within clusters
by j = 1, 2 in the usual way, and letting yij denote an observed response and xij the
associated fixed effect covariate vector, state the assumptions of this specific statistical
model in mathematical notation.

e) Given the model assumptions, what is the expectation of yij conditional on the random
intercept for day number (cluster) i?

What is the conditional covariance between two observations yi1 and yi2 on the same
day?
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Derive an algebraic expression for the intraclass (or intraday) covariance between two
observations yi1 and yi2 on the same day for given covariate vectors xi1 and xi2. Hint:
You will need to use properties of the log-normal distribution.

f) Does the data provide evidence that there is variation between days as modeled by
mod2? Do a formal hypothesis test of this. This should include precise statements about
the null and alternative hypothesis, your choice of test statistic and its (approximate)
distribution. Compute the critical value of the test using a level of significance of α =
0.05. The maximum log likelihood for the second GLM above (mod0) is -314.26.

g) Given your results in point c), e) and f), would you trust the estimated standard errors
of the estimated regression coefficients of mod0? Why or why not?

h) Let f(yij|β, γi) denote the conditional point mass function of each observation conditional
on the random intercept γi for day i, and let f(γi|τ 2) denote the density function of each
random effect for the above GLMM. Derive an expression for the marginal likelihood
L(β, τ 2) of the above model expressed in terms of these two functions.

Name two methods by which this likelihood can be approximated or evaluated numeri-
cally.


