Problem 1 A random variable Y belongs to the univariate exponential family if the point mass (pmf) or probability density function (pdf) can be written on the form

$$
\begin{equation*}
f(y \mid \theta)=\exp \left(\frac{y \theta-b(\theta)}{\phi} w+c(y, \phi, w)\right) \tag{1}
\end{equation*}
$$

where θ is the natural (or canonical) parameter, b and c are functions, and the support of the $\mathrm{pmf} / \mathrm{pdf}$ does not depend on θ. In the following you can assume that the dispersion parameter $\phi=1$ and that the weight $w=1$.

If $X \sim \operatorname{bin}(n, p)$ and Y has the same distribution as X conditional on $X>0$, then Y is zero-truncated binomial distributed with point mass function

$$
f(y \mid n, p)=\frac{1}{1-(1-p)^{n}}\binom{n}{y} p^{y}(1-p)^{n-y}
$$

for $y=1,2, \ldots, n$.
a) Show that the zero-truncated binomial distribution belongs to the exponential family and identify θ and the function $b(\theta)$.
b) Using the connection between $E(Y)$ and $b(\theta)$, derive expressions for $E(Y)$ both in terms of n and θ or n and p.
Explain why $E(Y)$ should be asymptotically equal to $n p$ as n tends to ∞ and check that this is the case by verifying that

$$
\lim _{n \rightarrow \infty} \frac{E(Y)}{n p}=1
$$

Problem 2

In this problem will we analyse traffic data on number of cyclists passing two different road points A and B in Trondheim at 56 different days in the months of May and June of 2022. The first 20 observations in the data frame are given below.

```
head(df ,20)
```

\#\#	daynr	weekday	location	weekend y
\#\# 1	1	mon	A	FALSE 16
\#\# 2	1	mon	B	FALSE 12
\#\# 3	2	tue	A	FALSE 25
\#\# 4	2	tue	B	FALSE 15
\#\# 5	3	wed	A	FALSE 14
\#\# 6	3	wed	B	FALSE 15
\#\# 7	4	tur	A	FALSE 20
\#\# 8	4	tur	B	FALSE 7
\#\# 9	5	fri	A	FALSE 22
\#\# 10	5	fri	B	FALSE 7
\#\# 11	6	sat	A	TRUE 14
\#\# 12	6	sat	B	TRUE 9
\#\# 13	7	sun	A	TRUE 9
\#\# 14	7	sun	B	TRUE 5
\#\# 15	8	mon	A	FALSE 23
\#\# 16	8	mon	B	FALSE 9
\#\# 17	9	tue	A	FALSE 19
\#\# 18	9	tue	B	FALSE 10
\#\# 19	10	wed	A	FALSE 21
\#\# 20	10	wed	B	FALSE 10

All variables are encoded as factors except y (the number of cyclists) which is a numeric variable.

We first fit a generalized linear model to the data in R as follows.

```
mod1 <- glm(y ~ location + weekday, poisson(link = "log"), data = df)
summary(mod1)
##
## Call:
## glm(formula = y ~ location + weekday, family = poisson(link = "log"),
```

```
## data = df)
##
## Deviance Residuals:
\begin{tabular}{lrrrrr} 
\#\# & Min & 1Q & Median & 3Q & Max \\
\#\# & -2.0356 & -1.0687 & -0.2070 & 0.7586 & 2.6667
\end{tabular}
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.97467 0.06730 44.202 < 2e-16 ***
## locationB -0.65555 0.05294 -12.382 < 2e-16 ***
## weekdaytue 0.20448 0.08733 2.342 0.0192 *
## weekdaywed 0.14086 0.08861 1.590 0.1119
## weekdaytur 0.07291 0.09004 0.810 0.4181
## weekdayfri 0.10368 0.08938 1.160 0.2461
## weekdaysat -0.57443 0.10800 -5.319 1.04e-07 ***
## weekdaysun -0.62024 0.10961 -5.659 1.53e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 428.75 on 111 degrees of freedom
## Residual deviance: 135.04 on 104 degrees of freedom
## AIC: 638.26
##
## Number of Fisher Scoring iterations: 4
```

a) State the assumptions of this specific statistical model in suitable mathematical notation. Based on this model, what is the expected number of cyclists passing road point B on a Monday?

Also give an interpretation of the coefficient estimate labelled locationB in the output.
Next we fit the following alternative model which includes the factor weekend (with levels TRUE and FALSE) instead of the factor weekday (which has 7 levels).

```
mod0 <- glm(y ~ location + weekend, poisson(link = "log"), data = df)
summary (mod0)
##
## Call:
```

```
glm(formula = y ~ location + weekend, family = poisson(link = "log"),
    data = df)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.03707 -1.03971 -0.06234 0.77045 2.75113
##
## Coefficients:
## Estimate Std. Error z value Pr}(>|z|
## (Intercept) 3.08138 0.03290 93.65 <2e-16 ***
## locationB -0.65555 0.05294 -12.38 <2e-16 ***
## weekendTRUE -0.70378 0.06762 -10.41 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 428.75 on 111 degrees of freedom
## Residual deviance: 141.31 on 109 degrees of freedom
## AIC: 634.52
##
## Number of Fisher Scoring iterations: 4
```

b) Explain what is meant by nested models and explain why mod0 and mod1 are nested. Do a likelihood ratio test of mod0 against mod1 using a level of significance of 0.05.
c) Based on mod0, is there any indication of overdispersion in the data?

Discuss possible mechanism that may be responsible for generating overdispersion in the present data set.

Assuming a quasi-Poisson model where the true variance of the response is inflated by a factor φ, compute an estimate $\hat{\varphi}$ of this dispersion parameter and use this to compute an adjusted standard error of the estimated coefficient labelled locationB of model mod0.

Next we extend the GLM considered above by including a random intercept term using daynr (56 levels) as the grouping factor and fit the following GLMM:

```
mod2 <- glmer(y ~ location + weekend + (1|daynr), poisson(link = "log"), data = df)
summary(mod2)
```

```
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: y ~ location + weekend + (1 | daynr)
## Data: df
##
## AIC BIC logLik deviance df.resid
## 633.2 644.0 -312.6 625.2 108
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.51589 -0.91263 -0.01439 0.62878 2.72762
##
## Random effects:
## Groups Name Variance Std.Dev.
## daynr (Intercept) 0.01402 0.1184
## Number of obs: 112, groups: daynr, 56
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.07461 0.03808 80.730 <2e-16 ***
## locationB -0.65555 0.05290 -12.391 <2e-16 ***
## weekendTRUE -0.70458 0.07618 -9.249 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) loctnB
## locationB -0.475
## weekendTRUE -0.380 0.000
```

d) Indexing clusters (different days) by $i=1,2, \ldots, 56$ and observations within clusters by $j=1,2$ in the usual way, and letting $y_{i j}$ denote an observed response and $\mathbf{x}_{i j}$ the associated fixed effect covariate vector, state the assumptions of this specific statistical model in mathematical notation.
e) Given the model assumptions, what is the expectation of $y_{i j}$ conditional on the random intercept for day number (cluster) i ?

What is the conditional covariance between two observations $y_{i 1}$ and $y_{i 2}$ on the same day?

Derive an algebraic expression for the intraclass (or intraday) covariance between two observations $y_{i 1}$ and $y_{i 2}$ on the same day for given covariate vectors $\mathbf{x}_{i 1}$ and $\mathbf{x}_{i 2}$. Hint: You will need to use properties of the log-normal distribution.
f) Does the data provide evidence that there is variation between days as modeled by mod2? Do a formal hypothesis test of this. This should include precise statements about the null and alternative hypothesis, your choice of test statistic and its (approximate) distribution. Compute the critical value of the test using a level of significance of $\alpha=$ 0.05. The maximum log likelihood for the second GLM above (mod0) is -314.26 .
g) Given your results in point c), e) and f), would you trust the estimated standard errors of the estimated regression coefficients of modo? Why or why not?
h) Let $f\left(y_{i j} \mid \boldsymbol{\beta}, \gamma_{i}\right)$ denote the conditional point mass function of each observation conditional on the random intercept γ_{i} for day i, and let $f\left(\gamma_{i} \mid \tau^{2}\right)$ denote the density function of each random effect for the above GLMM. Derive an expression for the marginal likelihood $L\left(\boldsymbol{\beta}, \tau^{2}\right)$ of the above model expressed in terms of these two functions.
Name two methods by which this likelihood can be approximated or evaluated numerically.

