
Lecture notes for TMA4320 Introduction to Scientific Computation

Numerical solution of ordinary differential equations

Anne Kværnø

Feb 18, 2022

If you want to have a nicer theme for your jupyter notebook, download the cascade stylesheet file
tma4320.css and execute the next cell:

The Python codes for this note are given in ode.py.

1 Introduction
The topic of this note is the numerical solution of systems of ordinary differential equations (ODEs). This
has been discussed in previous courses, see for instance the webpage Differensialligninger from Mathematics
1.

Scalar ODEs. A scalar ODE is an equation of the form

y′(x) = f(x, y(x)), y(x0) = y0,

where y′(x) = dy
dx . The inital condition y(x0) = y0 is required for a unique solution.

NB! It is common to use the term initial value problem (IVP) for an ODE for which the inital value
y(x0) = y0 is given, and we only are interested in the solution for x > x0. In this note, only initial value
problems are considered.

Example 1: The general solution of the ODE

y′(x) = −2xy(x)

is the function
y(x) = Ce−x

2
,

where C is a constant that depends on the initial condition y(x0). For instance, we obtain for x0 = 0 and
y(0) = 1 the solution

y(x) = e−x
2
,

Systems of ODEs. A system of m ODEs is given by

y′1 = f1(x, y1, y2, . . . , ym), y1(x0) = y1,0

y′2 = f2(x, y1, y2, . . . , ym), y2(x0) = y2,0

...
...

y′m = fm(x, y1, y2, . . . , ym), ym(x0) = ym,0

or, more compactly, by
y′(x) = f(x,y(x)), y(x0) = y0

https://www.math.ntnu.no/emner/TMA4320/2022v/notebooks/tma4320.css
https://www.math.ntnu.no/emner/TMA4320/2022v/notebooks/tma4320.css
https://wiki.math.ntnu.no/tma4100/tema/differentialequations

where we use boldface to denote vectors in Rm.

y(x) =

y1(x)
y2(x)

...
ym(x)

 , f(x,y) =

f1(x, y1, y2, . . . , ym),
f2(x, y1, y2, . . . , ym),

...
fm(x, y1, y2, . . . , ym),

 , y0 =

y1,0

y2,0
...

ym,0

 ,

Example 2: The Lotka-Volterra equation is a system of two ODEs describing the interaction between
predators and prey over time. The system is given as

y′(x) = αy(x)− βy(x)z(x),
z′(x) = δy(x)z(x)− γz(x).

Here x denotes time, y(x) describes the population of the prey species, and z(x) the population of
predators. The parameters α, β, δ, and γ depend on the populations to be modelled.

Autonomous ODEs. An ODE is called autonomous if f is not a function of x, but only of y. The
Lotka-Volterra equation is an example of an autonomous ODE. A nonautonomous system can be made
autonomous by a simple trick, just add the equation

y′m+1 = 1, ym+1(x0) = x0,

and replace t with ym+1.

Higher order ODEs. An initial value ODE of order m is given by

u(m) = f(x, u, u′, . . . , u(m−1)), u(x0) = u0, u′(x0) = u′0, . . . , u(m−1)(x0) = u
(m−1)
0 .

Here u(1) = u′ and u(m+1) = du(m)

dx for m > 0.

Example 3: Van der Pol’s equation is a second order differential equation, given by

u(2) = µ(1− u2)u′ − u, u(0) = u0, u′(0) = u′0,

where µ > 0 is some constant. Common choices for initial values are u0 = 2 and u′0 = 0.

Later in the note we will see how such equations can be rewritten as a system of first order ODEs. Systems
of higher order ODEs can be treated similarly.

2 Numerical methods for solving ODEs
In this note, we will discuss some techniques for the numerial solution of ordinary differential equations.
For simplicity or presentation, we will develop and discuss these methods mostly based on scalar ODEs.
The same methods, however, are equally applicable for systems of equations.

All the methods that we will discuss are so-called one-step methods. Given the ODE and the initial values
(x0, y0), we choose some step size h and let x1 = x0 + h. Based on this information, we calculate an
approximation y1 to y(x1). Then, we repeat this process starting from (x1, y1) in order to calculate an
approximation y2 of y(x2), where x2 = x1 + h. This process is repeated until some final point, here called
xend is reached.

In one-step methods, the approximation yk+1 of y(xk+1) does not depend on the values of yk−1, yk−2,
. . . , y0. The main alternative to this type of methods are multi-step methods, where the approximation
yk+1 of y(xk+1) takes into account those values as well.

It should be emphasized that this strategy only will find approximations to the exact solution in some
discrete points xn, n = 0, 1,

2

https://en.wikipedia.org/wiki/Lotka\begingroup \let \relax \relax \endgroup [Pleaseinsert\PrerenderUnicode{–}intopreamble]Volterra_equations
https://en.wikipedia.org/wiki/Van_der_Pol_oscillator

3 Euler’s method
Let us start with the simplest example, Euler’s method, known from Mathematics 1.

We are given an IVP
y′(x) = f(x, y(x)), y(x0) = y0.

Choose some step size h. The trick is as follows:

Do a Taylor expansion (Preliminaries, section 4) of the exact (but unknown) solution y(x0 + h) around
x0:

y(x0 + h) = y(x0) + hy′(x0) + 1
2h

2y′′(x0) + · · · .

Assume the step size h to be small, such that the solution is dominated by the first two terms. In that
case, these can be used as the numerical approximation in the next step:

y(x0 + h) ≈ y(x0) + hy′(x0) = y0 + hf(x0, y0)

giving
y1 = y0 + hf(x0, y0).

Repeating this, results in

Euler’s method.

• Given a function f(x, y) and an initial value (x0, y0).

• Choose a step size h.

• For i = 0, 1, 2, . . .

yn+1 = yn + hf(xn, yn),

xn+1 = xn + h.

4 Implementation
We would like to make this implementation more like a test platform. It should be simple to implement
and test methods other than Euler’s. That is why the implementaion here is divided in two parts:

• ode_solver: This is a generic solver, and can be used by other methods than Euler’s.

• euler: This function performs one step of Euler’s method.

The function method, which performs one step with a given method, can be changed, but the call of the
function has to be of the following form:

x_next, y_next = method(f, x, y, h).

Numerical example 1: Test the implementation of Euler’s method on the problem

y′(x) = −2xy(x), y(0) = 1, 0 ≤ x ≤ 1,

which has the analytic solution
y(x) = e−x

2
.

Try with different step sizes, for instance h = 0.1, h = 0.05 and h = 0.01. In each case, compare the
numerical solution with the exact one.

The following script solves the equation numerically. See the function num_ex1() in ode.py.

3

https://wiki.math.ntnu.no/tma4100/tema/differentialequations?&#numeriske_losninger

Numerical exercise 1: Repeat the example on a logistic equation, given by

y′ = y(1− y), y(0) = y0,

on the interval [0, 10]. Use y0 = 0.1 as initial value. For comparision, the exact solution is

y(x) = 1
1− (1− 1

y0
)e−x

.

Solve the equation numerically by using different step sizes h, and try different initial values.

4.1 Systems of ODEs
Euler’s method works equally well for systems of m ODEs

y′(x) = f(x,y(x)), y(x0) = y0

Here, Euler’s method is defined as

yn+1 = yn + hf(xn,yn), n = 0, . . . , N − 1.

The implementation above can be used without any changes. The only difference from the scalar ODE
case is that yn ∈ Rm and f : R× Rm → Rm. That is, the function f that defines the right hand side of
the ODE takes a scalar x and an array yn of length m as inputs, and returns an array of length m.

Numerical example 2: Solve the Lotka-Volterra equation

y′1(x) = αy1(x)− βy1(x)y2(x), y1(0) = y1,0,

y′2(x) = δy1(x)y2(x)− γy2(x), y2(0) = y2,0.

In this example, use the parameters and initial values

α = 2, β = 1, δ = 0.5, γ = 1, y1,0 = 2, y2,0 = 0.5.

Solve the equation over the interval [0, 20], and use h = 0.02. Try also other step sizes, e.g. h = 0.1 and
h = 0.002.

NB! In this case, the exact solution is not known. What is known is that the solutions are periodic and
positive. Is this the case for the numerical solutions as well? Check for different values of h.

See the function num_ex2() in ode.py.

5 Theory
5.1 Existence and uniqueness results
Let us first state the conditions for which the ODE has a unique solution. We will need the following
definition (which will also be used later in this note):

Definition: Lipschitz condition.

A function f : R×Rm → Rm satisfies the Lipschitz condition with respect to y on a domain (a, b)×D
where D ⊂ Rm if there exist a constant L so that

‖f(x,y)− f(x, z)‖ ≤ L‖y− z‖, for all x ∈ (a, b), y, z ∈ D.

The constant L is called the Lipschitz constant.

It is not hard to show that the function f satisfies the Lipschitz condition if ∂fi/∂yj , i, j = 1, · · · ,m are
continuous and bounded on the domain and D is open and convex.

4

https://en.wikipedia.org/wiki/Logistic_function#Applications

Theorem: Existence and uniqueness of a solution.

Consider the initial value problem

y′ = f(x,y), y(x0) = y0.

If

• f(x,y) is continuous in (a, b)×D,

• f(x,y) satisfies the Lipschitz condition with respect to y in (a, b)×D.

with given initial values x0 ∈ (a, b) and y0 ∈ D, then the ODE has one and only one solution in
(a, b)×D.

5.2 Error analysis
When an ODE is solved by Euler’s method over some interval [x0, xend], how will the error at xend (or
some arbitrary point) depend on the number of steps. Or more spesific, choose the number of steps
N , let the step size be h = (xend − x0)/N , such that xend = xN , what can we say about the error
eN = y(xend)− yN?

Numerical example 4: Solve the equation of Example 1,

y′(x) = −2xy(x), y(0) = 1,

with exact solution y(x) = e−x
2 , over the interval [0, 1]. Use different step sizes h, and for each h, measure

the error at x = 1.

See the function num_ex4() in ode.py.

The table generated from this code shows that whenever the step size is reduced with a factor of 0.5, so is
the error. Therefore, we expect

|y(xend)− yN | ≈ Ch, h = xend − x0

N
.

The method seems to be of order 1, see Preliminaries, section 3.1.

In the following we will prove that this is in fact the case. The error analysis will be done on a
scalar equation, but it can as well be extended to systems of equations, as described in the end of the
section.

Local and global errors. In this discussion we have to consider two kinds of errors:

• Local truncation error dn+1: This is the error done on one step, starting from (xn, y(xn)).

• Global error en: This is the difference between the exact and the numerical solution after n steps,
that is en = y(xn)− yn.

In the following, we will see how to express the local truncation error, and we will see how the global and
the local errors are related. We will use all this to find an upper bound for the global error at the end
point xN = xend. The technique described here is quite standard for this type of error analysis.

Let us start with the local truncation error. Euler’s method is nothing but the first two terms of the
Taylor expansion of the exact solution. As a consequence, the local truncation error is the remainder term
R2(x) (see Preliminaries, section 4):

dn+1 = y(xn + h)−
(
y(xn) + hy′(xn)

)
= 1

2h
2y′′(ξ), ξ ∈ (xn, xn + h).

5

t
n

t
n+1t

0
t
end

y
0

y
n

y
n+1

y
Nstep

y(t
n
)

y(t
n+1

) y(t
end

)

d
n+1

e
n

Figure 1: Lady Windermere’s fan

Next, we use the fact that y′(xn) = f(xn, y(xn)) and obtain the following two expressions:

y(xn + h) = y(xn) + hf(xn, y(xn)) + dn+1, the equation above
yn+1 = yn + hf(xn, yn), Euler’s method

We subtract the second from the first, use that en = y(xn)− yn, and finally use Result 3 in Preliminaries,
section 5. This yields the expression

en+1 = en + h
(
f(xn, y(xn))− f(xn, yn)

)
+ dn+1 = en + hfy(xn, η)en + dn+1,

where fy = ∂f
∂y , and η is some value between yn and y(xn). We now take the absolute value on each side,

and apply the triangle inequality:

|en+1| = |en + hfy(xn, η)en + dn+1| ≤ |en|+ h|fy(xn, η)||en|+ |dn+1|.

Assume now that there exist positive constants D and L satisfying

|fy(x, y)| ≤ L and |y′′(x)| ≤ 2D

for all values of x, y. From the inequality above we get that

|en+1| ≤ (1 + hL)|en|+Dh2.

Since y0 = y(x0) we get e0 = 0. The inequality above therefore results in the following estimates for the
global errors:

|e1| ≤ Dh2

|e2| ≤ (1 + hL)|e1|+Dh2 ≤
(
(1 + hL) + 1

)
Dh2

|e3| ≤ (1 + hL)|e2|+Dh2 ≤
(
(1 + hL)2 + (1 + hL) + 1

)
Dh2

...

|eN | ≤ (1 + hL)|eN+1|+Dh2 ≤
N−1∑
n=0

(1 + hL)nDh2

We will now apply two well known results:

6

• The sum of a truncated geometric series:
N−1∑
n=0

rn = rN − 1
r − 1 for r ∈ R.

• The series of the exponential:

ex = 1 + x+ 1
2x

2 + · · · = 1 + x+
∞∑
n=2

xn

n!

which proves that 1 + x < ex whenever x > 0.

Using these results, we obtain that
N−1∑
n=0

(1 + hL)n = (1 + hL)N − 1
(1 + hL)− 1 <

(ehL)N − 1
hL

= ehLN − 1
hL

= eL(xend−x0) − 1
hL

,

where the last equality holds because (xend − x0) = hN . Finally, we plug this into the inequality for |eN |
above, and we see that we have proved the the following upper bound for the global:

|y(xend)− yN | = |eN | ≤
eL(xend−x0) − 1

L
Dh = Ch,

where the constant C = eL(xend−x0)−1
L D depends on the length of the integration interval xend − x0, of

certain properties of the equation (L and D), but not on the step size h.

The numerical solution converges to the exact solution since

lim
N→∞

|eN | = 0.

If the step size is reduced by a factor of 0.5, so will the error. This is in agreement with the previous
numerical result.

Remark: Following the proof of the error estimate for Euler’s method, we see that a local truncation
error of size h2 leads to a final, global error of size h. Intuitively, this is because we need to take roughly
1/h steps in order to reach the point xend, although a precise proof is quite a bit more complicated than
that, as we have seen. However, what this also should mean is that a method with a truncation order of
size hp+1 should lead to a global error of hp. The results of the next section show that, under certain
conditions, this is indeed the case.

5.3 A general convergence result
A one-step method applied to a system of ODEs y′(x) = f(x,y(x)) can be written in the generic
form

yn+1 = yn + hΦ(xn,yn;h),
where the increment function Φ typically depends on the function f and some parameters defining the
method.

Definition: Order of a method.
A method is of order p > 0 if there is a constant C > 0 such that

‖eN‖ = ‖y(xend)− yN‖ ≤ Chp,

where N is the number of steps taken to reach xend using the step size h = (xend − x0)/N .

The local truncation error dn+1 of such a method is

dn+1 = y(xn+1)− (y(xn) + hΦ(xn,y(xn);h))

Replace the absolute values in the above proof with norms (Preliminaries, section 1), and the argument
above can be used to prove the following:

7

Theorem: Convergence of one-step methods.

Assume that there exist positive constants M and D such that the increment function satisfies

‖Φ(x,y;h)−Φ(x, z;h)‖ ≤M‖y− z‖

and the local truncation error satisfies

‖y(x+ h)− (y(x) + hΦ(x,y(x), h)) ‖ ≤ Dhp+1

for all x, y and z in a neighbourhood of the solution. In that case, the global error satisfies

‖eN‖ = ‖y(xend)− yN‖ ≤ Chp, with C = eM(xend−x0) − 1
M

D.

Example: Let us consider Eulers method, yn+2 = yn + hf(xn,yn). So in this case Φ(x,y) = f(xn,yn)
and the first condition is satisfied as long as f satisfy the Lipschitz condition in y.

It can be proved that the first of these conditions is satisfied for all the methods that will be considered
here, provided that the function f is continuously differentiable.

Heun’s method. We will now discuss a first, improved alternative to Euler’s method:

Assume that we want to solve an
y′(x) = f(x,y(x)).

Its exact solution can be written in integral form as

y(xn + h) = y(xn) +
∫ nn+h

xn

y′(x) dx = y(xn) +
∫ xn+h

xn

f(x,y(x))dx.

We now replace the integral on the right hand side by a numerical approximation using the trapezoidal
rule:

y(xn + h) ≈ y(xn) + h

2
(
f(xn,y(xn)) + f(xn+1,y(xn+1)

)
.

Then we replace y(xn) and y(xn+1) by the approximations yn and yn+1. The resulting method is the
trapezoidal rule for ODEs, given by

yn+1 = yn + h

2
(
f(xn,yn) + f(xn+1,yn+1)

)
.

This is an example of an implicit method. The numerical approximation yn+1 appears on both sides of
this equation as is therefore only implicitly given: If xn,yn is known, a nonlinear equation has to be solved
in order to find yn+1, and this has to be done for each step. There are important applications where this
actually makes sense, which we will discuss in a later lecture in the context of stiff ODEs.

However, for the moment we want to avoid this additional complication and thus replace the yn+1 on
the right hand side by some approximation. One natural possibility here is to apply one step of Euler’s
method. This results in Heun’s method:

un+1 = yn + hf(xn,yn),

yn+1 = yn + h

2
(
f(xn,yn) + f(xn+1,un+1)

)
.

The method is commonly written in the form

k1 = f(xn,yn),
k2 = f(xn + h,yn + hk1),

yn+1 = yn + h

2 (k1 + k2).

The increment function for this method is

Φ(x,y;h) = 1
2
(
f(x,y) + f(x+ h,y + hf(x,y))

)
.

8

https://wiki.math.ntnu.no/tma4100/tema/differentialequations?&#numeriske_losninger

Implementation. One step of Heuns’s method is implemented as follows:

Numerical example 5: Let us compare the numerical solution from Euler’s and Heun’s methods on
the scalar test problem

y′ = −2xy, y(0) = 1

with the exact solution y(x) = e−x
2 on the interval [0, 1]. Use h = 0.1 for Euler’s method and h = 0.2

for Heun’s metode. Thus both require a total of 10 function evaluations, and the total amount of
computational work is comparable.

See the function num_ex5() in ode.py. The errors of the two approximations are:

Let us finally compare the error at xend when the two methods are applied to our test problem, for
different values of h:

First of all, Heun’s method is significantly more accurate than Euler’s method, even when the number of
function evaluations are the same. Further, we notice that the error in Heun’s method is reduced by a
factor of approximately 1/4 whenever the step size is reduced by a factor 1/2, indicating that the error
|y(xend − yN | ≈ Ch2, and the method is of order 2.

Numerical example 6: Solve the Lotka-Volterra equation from Numerical example 2 by Euler’s and
Heun’s methods, again using twice as many steps for Euler’s method than for Heun’s method.

• Use h = 0.01 for Euler’s method and h = 0.02 for Heun’s method.

• Use h = 0.1 for Euler’s method and h = 0.2 for Heun’s method.

See the function num_ex6() in ode.py.

Numerical exercises:

1. Solve Van der Pol’s equation by use of Heun’s method and with Euler’s method, and compare.
Experiment with different choices of the step size h. Use µ = 2, and solve the equation on the
interval [0,20]. Experiment with different values of µ.

2. Implement the classical Runge–Kutta method and verify numerically that the order of the method
is 4. The method is given by

k1 = f(xn,yn)

k2 = f
(
xn + h

2 ,yn + h

2 k1

)
k3 = f

(
xn + h

2 ,yn + h

2 k2

)
k4 = f(xn + h,yn + hk3)

yn+1 = yn + h

6 (k1 + 2k2 + 2k3 + k4).

Convergence properties of Heun’s method. To prove convergence and to find the order of a method
two things are needed:

• the local truncation error, expressed as a power series in the step size h

• the condition ‖Φ(x,y;h)−Φ(x, z;h)‖ ≤M‖y− z‖

The local truncation error is found by comparing Taylor series expansions of the exact and the numerical
solutions starting from the same point. In practice, this is not trivial. For simplicity, we will here do this
only for a scalar equation y′(x) = f(x, y(x)). The result is valid for systems as well.

In the following, we will use the notation

fx = ∂f

∂x
, fy = ∂f

∂y
, fxx = ∂2f

∂x2 fxy = ∂2f

∂x∂y
etc.

9

https://en.wikipedia.org/wiki/Runge\begingroup \let \relax \relax \endgroup [Pleaseinsert\PrerenderUnicode{–}intopreamble]Kutta_methods#The_Runge\begingroup \let \relax \relax \endgroup [Pleaseinsert\PrerenderUnicode{–}intopreamble]Kutta_method

Further, we will surpress the arguments of the function f and its derivatives. So f is to be understood as
f(x, y(x)) although it is not explicitly written.

The Taylor expansion of the exact solution y(x+ h) is given by

y(x+ h) = y(x) + hy′(x) + h2

2 y
′′(x) + h3

6 y
′′′(x) +

Higher derivatives of y(x) can be expressed in terms of the function f by using the chain rule and the
product rule for differentiation:

y′(x) = f,

y′′(x) = fx + fyy
′ = fx + fyf,

y′′′(x) = fxx + fxyy
′ + fyxf + fyyy

′f + fyfx + fyfyy
′ = fxx + 2fxyf + fyyf

2 + fyfx + (fy)2f.

We then find the series of the exact and the numerical solution around x0, y0 (any other point will do
equally well). From the discussion above, the series for the exact solution becomes

y(x0 + h) = y0 + hf + h2

2 (fx + fyf) + h3

6 (fxx + 2fxyf + fyyf
2 + fyfx + (fy)2f) + . . . ,

where f and all its derivatives are evaluated in (x0, y0). For the numerical solution we get

k1 = f(x0, y0) = f,

k2 = f(x0 + h, y0 + hk1)

= f + hfx + fyhk1 + 1
2fxxh

2 + fxyhhk1 + 1
2fyyh

2k2
1 + . . .

= f + h(fx + fyf) + h2

2 (fxx + 2fxyf + fyyf
2) + . . . ,

y1 = y0 + h

2 (k1 + k2) = y0 + h

2

(
f + f + h(fx + fyf) + h2

2 (fxx + 2fxyf + fyyf
2) + . . .

)
= y0 + hf + h2

2 (fx + fyf) + h3

4 (fxx + 2fxyf + fyyf
2) + . . . ,

and the local truncation error will be

d1 = y(x0 + h)− y1 = h3

12(−fxx − 2fxyf − fyyf2 + 2fyfx + 2(fy)2f) +

The first nonzero term in the local truncation error series is called the principal error term. For h
sufficiently small this is the term dominating the error, and this fact will be used later.

Although the series has been developed around the initial point, series around xn, y(xn) will give similar
results, and it is possible to conclude that, given sufficient differentiability of f , there is a constant D
such that

|dn| ≤ Dh3.

Further, we have to prove the condition on the increment function Φ(x, y). For f differentiable, there is
for all y, z some ξ between x and y such that f(x, y)− f(x, z) = fy(x, ξ)(y− z). Let L be a constant such
that |fy| ≤ L, and for all x, y, z of interest we get

|f(x, y)− f(x, z)| ≤ L|y − z|.

The increment function for Heun’s method is given by

Φ(x, y) = 1
2
(
f(x, y) + f(x+ h, y + hf(x, y))

)
.

10

By repeated use of the condition above and the triangle inequalitiy for absolute values we get

|Φ(x, y)− Φ(x, z)| = 1
2 |f(x, y) + f(x+ h, y + hf(x, y))− f(x, z)− hf(x+ h, z + hf(x, z))|

≤ 1
2
(
|f(x, y)− f(x, z)|+ |f(x+ h, y + hf(x, y))− f(x+ h, z + hf(x, z))|

)
≤ 1

2
(
L|y − z|+ L|y + hf(x, y)− z − hf(x, z)|

)
≤ 1

2
(
2L|y − z|+ hL2|y − z|

)
=
(
L+ h

2L
2
)
|y − z|.

Assuming that the step size h is bounded above by some H, we can conclude that

|Φ(x, y)− Φ(x, z)| ≤M |y − z|, M = L+ H

2 L
2.

In conclusion: Heun’s method is convergent of order 2.

6 Error estimation and step size control
To control the global error y(xn)− yn is notoriously difficult, and far beyond what will be discussed in this
course. To control the local error in each step and adjust the step size accordingly is rather straightforward,
as we will see.

6.1 Error estimation
Given two methods, one of order p and the other of order p+ 1 or higher. Assume we have reached a
point (xn,yn). One step forward with each of these methods can be written as

yn+1 = yn + hΦ(xn,yn;h), order p,
ŷn+1 = yn + hΦ̂(xn,yn;h), order p+ 1 or more.

Let y(xn+1;xn,yn) be the exact solution of the ODE through (xn,yn). We would like to find an estimate
for the local error ln+1, that is, the error in one step starting from (xn,yn),

ln+1 = y(xn+1;xn,yn)− yn+1.

As we already have seen, the local error is found by finding the power series in h of the exact and the
numerical solution. The local error is of order p if the lowest order terms in the series where the exact
and the numerical solution differ is of order p+ 1. So the local errors of the two methods are

y(xn+1;xn,yn)− yn+1 = Ψ(xn, yn)hp+1 + . . . ,

y(xn+1;xn,yn)− ŷn+1 = + . . . ,

where Ψ(xn, yn) is a term consisting of method parameters and differentials of f and . . . contains all the
terms of the series of order p+ 2 or higher. Taking the difference gives

ŷn+1 − yn+1 = Ψ(xn,yn)hp+1 +

Assume now that h is small, such that the principal error term Ψ(xn,yn)hp+1 dominates the error series.
Then a reasonable approximation to the unknown local error ln+1 is the local error estimate len+1:

len+1 = ŷn+1 − yn+1 ≈ y(xn+1;xn,yn)− yn+1.

11

Example 4: Apply Euler’s method of order 1 and Heun’s method of order 2 with h = 0.1 to the
equation

y′ = −2xy, y(0) = 1.
Use this to find an approximation to the error after one step.

Euler’s method:
y1 = 1.0− 0.1 · 2 · 0 · 1.0 = 1.0.

Heun’s method

k1 = −2 · 0.0 · 1.0 = 0.0,
k2 = −2 · 0.1 · (1 + 0.0) = −0.2,

ŷ1 = 1.0 + 0.1
2 · (0.0− 0.2) = 0.99.

The error estimate and the local error are respectively

le1 = ŷ1 − y1 = −10−2, l1 = y(0.1)− y1 = e−0.12
− 1.0 = −0.995 · 10−2.

So in this case the error estimate is a quite decent approximation to the actual local error.

6.2 Stepsize control
The next step is to control the local error, that is, choose the step size so that ‖len+1‖ ≤ Tol for some
given tolerance Tol, and for some chosen norm ‖ · ‖.

Essentially:

Given xn,yn and a step size hn.

• Do one step with the method of choice, and find an error estimate len+1.

• if ‖le‖n+1 < Tol

Accept the solution xn+1,yn+1.

If possible, increase the step size for the next step.

• else

Repeat the step from (xn,yn) with a reduced step size hn.

In both cases, the step size will change. But how?

From the discussion above, we have that

‖len+1‖ ≈ Dhp+1
n .

where len+1 is the error estimate we can compute, D is some unknown quantity, which we assume almost
constant from one step to the next. What we want is a step size hnew such that

Tol ≈ Dhp+1
new.

From these two approximations we get:

Tol
‖len+1‖

≈
(
hnew
hn

)p+1
⇒ hnew ≈

(
Tol
‖len+1‖

) 1
p+1

hn.

That is, if the current step hn was rejected, we try a new step hnew with this approximation. However, it
is still possible that this new step will be rejected as well. To avoid too many rejected steps, it is therefore
common to be a bit restrictive when choosing the new step size, so the following is used in practice:

hnew = P ·
(

Tol
‖len+1‖

) 1
p+1

hn.

where the pessimist factor P < 1 is some constant, normally chosen between 0.5 and 0.95.

12

6.3 Implementation
We have all the bits and pieces for constructing an adaptive ODE solver based on Euler’s and Heuns’s
methods. There are still some practical aspects to consider:

• The combination of the two methods, implemented in heun_euler can be written as

k1 = f(xn,yn),
k2 = f(xn + h,yn + hk1),

yn+1 = yn + hk1, Euler

ŷn+1 = yn + h

2 (k1 + k2), Heun

len+1 = ‖ŷn+1 − yn+1‖ = h

2 ‖k2 − k1‖.

• Even if the error estimate is derived for the lower order method, in this case Euler’s method, it is
common to advance the solution with the higher order method, since the additional accuracy is for
free.

This is usually referred to as local extrapolation.

• Adjust the last step to be able to terminate the solutions exactly in xend.

• To avoid infinite loops, add some stopping criteria. In the code below, there is a maximum number
of allowed steps (rejected or accepted).

• The main driver ode_adaptive is written to make it simple to test other pairs of methods. This is
also the reason why the function heun_euler returns the order of the lowest order method.

Numerical example 7: Apply the code on the test equation:

y′ = −2xy, y(0) = 1.

See the function num_ex7() in ode.py.

The error |y(xn)− yn| is:

And the step size will change like

Numerical exercises:

1. Solve the Lotka-Volterra equation, use for instance h0 = 0.1 and Tol = 10−3. Notice also how the
step size varies over the integration interval.

2. Repeat the experiment using Van der Pol’s equation.

6.4 Runge–Kutta methods
Euler’s and Heun’s method are both examples of explicit Runge-Kutta methods (ERK). Such schemes are
given by

k1 = f(xn,yn),
k2 = f(xn + c2h,yn + ha21k1),
k3 = f

(
xn + c3h,yn + h(a31k1 + a32k2)

)
,

...

ks = f
(
xn + csh,yn + h

s−1∑
j=1

asjkj
)
,

yn+1 = yn + h

s∑
i=1

biki,

13

where ci, aij , and bi are coefficients defining the method. We always require ci =
∑s
j=1 aij . Here, s is the

number of stages, or the number of function evaluations needed for each step. The vectors ki are called
stage derivatives. Also implicit methods, like the trapezoidal rule,

yn+1 = yn + h

2
(
f(xn,yn) + f(xn + h,yn+1)

)
can be written in a similar form,

k1 = f(xn,yn),

k2 = f
(
xn + h,yn + h

2 (k1 + k2)
)
,

yn+1 = yn + h

2 (k1 + k2).

But, contrary to what is the case for explicit methods, a nonlinear system of equations has to be solved to
find k2.

14

Definition: Runge–Kutta methods.

An s-stage Runge-Kutta method is given by

ki = f
(
xn + cih,yn + h

s∑
j=1

aijkj
)
, i = 1, 2, · · · , s,

yn+1 = yn + h

s∑
i=1

biki.

The method is defined by its coefficients, which are given in a Butcher tableau

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
...

cs as1 as2 · · · ass

b1 b2 · · · bs

with
ci =

s∑
j=1

aij , i = 1, · · · , s.

The method is explicit if aij = 0 whenever j ≥ i; otherwise it is implicit.

A Runge–Kutta methods with an error estimate are usually called embedded Runge–Kutta methods or
Runge–Kutta pairs, and the coefficients can be written in a Butcher tableau as follows

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
...

cs as1 as2 · · · ass

b1 b2 · · · bs Order p
b̂1 b̂2 · · · b̂s Order p+ 1

.

The error estimate is then given by

len+1 = h

s∑
i=1

(̂bi − bi)ki.

Example 5: The Butcher-tableaux for the methods presented so far are

0 0
1

0 0 0
1 1 0

1
2

1
2

0 0 0
1 1

2
1
2

1
2

1
2

Euler Heun trapezoidal rule

and the Heun-Euler pair can be written as

0
1 1

1 0
1
2

1
2

15

A particular mention deserves also the classical Runge-Kutta method from a previous numerical exercise,
which can be written as

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

1
3

1
3

1
6

See this list of Runge–Kutta methods for more.

Order conditions for Runge–Kutta methods. It can be proved that a Runge–Kutta method is of
order p if all the conditions up to and including p in the table below are satisfied.

p conditions
1

∑
bi = 1

2
∑
bici = 1/2

3
∑
bic

2
i = 1/3∑

biaijcj = 1/6
4

∑
bic

3
i = 1/4∑

biciaijcj = 1/8∑
biaijc

2
j = 1/12∑

biaijajkck = 1/24

where sums are taken over all the indices from 1 to s.

Example 6: Apply the conditions to Heun’s method, for which s = 2 and the Butcher tableau is

c1 a11 a12

c2 a21 a22

b1 b2

=
0 0 0
1 1 0

1
2

1
2

.

The order conditions are:

p = 1 b1 + b2 = 1
2 + 1

2 = 1 OK

p = 2 b1c1 + b2c2 = 1
2 · 0 + 1

2 · 1 = 1
2 OK

p = 3 b1c
2
1 + b2c

2
2 = 1

2 · 0
2 + 1

2 · 1
2 = 1

2 6=
1
3 Not satisfied

b1(a11c1 + a12c2) + b2(a21c1 + a22c2) = 1
2(0 · 0 + 0 · 1) + 1

2(1 · 0 + 0 · 1)

= 0 6= 1
6 Not satisfied

The method is of order 2.

16

https://en.wikipedia.org/wiki/List_of_Runge\begingroup \let \relax \relax \endgroup [Pleaseinsert\PrerenderUnicode{–}intopreamble]Kutta_methods

7 Stiff ODEs
When an ODE is solved by an adaptive solver we will expect that more steps are required for stricter
tolerances. Specifically, the step size control is based on the assumption that the local error estimate
len+1 satisfies

‖len+1‖ ≈ Dhp+1
n ≈ Tol,

where p is the order of the lowest order method, and D is independent of the step size h. The constant D
depends on the solution point (x,yn), but it will usually not change much from one step to the next.

If we use different tolerances Tol1 and Tol2 for the solution of the same problem with the same adaptive
method, we will therefore expect that the step sizes h1 and h2 near the same point will behave like

Tol1 ≈ Dhp+1
1 , Tol2 ≈ Dhp+1

2 ,

so that
h1

h2
≈
(
Tol1
Tol2

) 1
p+1

≈ N2

N1
.

where N1 and N2 are the total number of steps used for the two tolerances.

In the case of the Heun-Euler scheme, the lower order is p = 1. By reducing the tolerance by a factor
1/100 we will expect that the number of steps increases by a factor of 10.

Numerical example 1: Given the following system of two ODEs

y′1 = −2y1 + y2 + 2 sin(x), y1(0) = 2,
y′2 = (a− 1)y1 − ay2 + a

(
cos(x)− sin(x)

)
, y2(0) = 3,

where a is some positive parameter. The exact solution, which is independent of the parameter, is

y1(x) = 2e−x + sin(x), y2(x) = 2e−x + cos(x).

Solve this problem now with some adaptive ODE solver, for instance the Heun-Euler scheme.

Now try the tolerances Tol = 10−2, 10−4, 10−6, and perform the experiment with two different values of
the parameters, a = 2 and a = 999.

For a = 2 the expected behaviour is observed. But the example a = 999 requires much more steps, and
the step size seems almost independent of the tolerance, at least for Tol = 10−2, 10−4.

The example above with a = 999 is a typically example of a stiff ODE. What defines these types of
ODEs is that there are (at least) two different time scales at play at the same time: a slow time scale
that dominates the time evolution of the solution of the ODE, and a fast time scale at which small
perturbations of the solution may occur. In physical systems, this might be due to very strong damping
of selected components of the system.

If we consider for instance the ODE in the numerical example above, then we obtain, after some
computation, that the general solution is

y(x) = c1

(
1
1

)
e−x + c2

(
−1
a− 1

)
e−(a+1)x +

(
sin(x)
cos(x)

)

for some constants c1, c2. The terms e−x, sin(x), and cos(x) evolve at a time scale of order 1. In contrast,
the term e−(a+1)x reverts back to being essentially equal to zero at a time scale of order 1/(a+ 1).

When a stiff ODE is solved by some explicit adaptive method like the Heun-Euler scheme, an unreasonably
large number of steps is required, and this number seems independent of the tolerance. The problem is
that, for explicit methods, the local error is dominated by what is happening at the fast time scale, and
the step length will be adapted to that time scale as well. Even worse, any larger step size will lead to
instabilities and exponentially increasing oscillations in the numerical solution.

In the remaining part of this note we will explain why this happens, and how we can overcome the problem.
For simplicity, the discussion is restricted to linear problems, but also nonlinear ODEs can be stiff, and
often will be.

17

Exercise 1: Repeat the experiment on the Van der Pol equation

y′1 = y2, y1(0) = 2,
y′2 = µ(1− y2

1)y2 − y1, y2(0) = 0.

Use µ = 2, µ = 5 and µ = 50.

7.1 Linear stability analysis
Motivation. We are given a system of m differential equation of the form

y′ = Ay + g(x). (*)

Such systems have been discussed in Mathematics 3, and the technique for finding the exact solution will
shortly be repeated here:

Solve the homogenous system y′ = Ay, that is, find the eigenvalues λi and the corresponding eigenvectors
vi satisfying

Avi = λivi, i = 1, 2, . . . ,m. (**)

Assume that A has a full set of linearly independent (complex) eigenvectors vi with corresponding (complex)
eigenvalues λi. Let V = [v1, . . . ,vm], and Λ = diag{λ1, . . . , λm}. Then V is invertible and

AV = V Λ and therefore V −1AV = Λ.

The ODE (*) can thus be rewritten as

V −1y′ = V −1AV V −1y + V −1g(x).

Let z = V −1y and q(x) = V −1g(x) such that the equation can be decoupled into a set of independent
scalar differential equations

z′ = Λz + q(x) or, equivalently z′i = λizi + qi(x), i = 1, . . . ,m.

The solution of such equations has been discussed in Mathematics 1. When these solutions are found, the
exact solution is given by

y(x) = V z(x),
and possible integration constants are given by the initial values.

As it turns out, the eigenvalues λi ∈ C are the key to understanding the behaviour of the adaptive
integrators. So we will discuss the stability properties of the very simplified, though complex, linear test
equation

y′ = λy.

The discussion below is also relevant for nonlinear ODEs y′(x) = f(x,y(x)), in which case we have to
consider the eigenvalues of the Jacobian fy of f with respect to y.

Example 1: We now return to the introductory example. There, the ODE can be written as

y′ = Ay + g(x),

with

A =
(
−2 1
a− 1 −a

)
, g(x) =

(
sin(x)

a(cos(x)− sin(x))

)
.

The eigenvalues of the matrix A are λ1 = −1 and λ2 = −(a+ 1). The general solution is given by

y(x) = c1

(
1
1

)
e−x + c2

(
−1
a− 1

)
e−(a+1)x +

(
sin(x)
cos(x)

)
.

In the introductory example, the initial values were chosen such that c1 = 2 and c2 = 0. However, for
large values of a, the term e−(a+1)x will still go to 0 almost immediately, even if c2 6= 0. It is this term
that creates problems for the numerical solution.

18

https://wiki.math.ntnu.no/tma4100/tema/differentialequations

Stability functions and stability regions. We consider the linear test equation

y′ = λy, y(0) = y0,

where the parameter λ ∈ C satisfies
<λ < 0.

Here, and in the following, <λ will denote the real part of λ, and =λ will denote the imaginary part. The
analytic solution of this problem is

y(x) = y0 e
λx = y0 e

<λx(cos(=λx) + i sin(=λx)
)
.

Since <λ < 0, the solution y(x) tends to zero as x→∞. We want a similar behaviour for the numerical
solution, that is |yn| → 0 when n→∞.

One step of some Runge–Kutta method applied to the linear test equation can always be written as

yn+1 = R(z)yn, z = λh.

The function R(z) : C→ C is called the stability function of the method.

Example 2: The application of Euler’s method for the linear test equation results in the iteration

yn+1 = yn + hλyn = (1 + hλ)yn = (1 + z)yn with z = hλ.

The stability function of Euler’s method is therefore the function

R(z) = 1 + z.

For a comparison, Heun’s method for this test equation is

k1 = λyn,

k2 = λ(yn + hk1),

yn+1 = yn + h

2 (k1 + k2),

which can be rewritten as

yn+1 = yn + h

2 (λyn + λ(yn + hλyn) = yn + hλyn + (hλ)2

2 yn.

As a consequence, the stability function for Heun’s method is

R(z) = 1 + z + z2

2 .

We now return back to the analysis of the behaviour of an arbitrary Runge-Kutta method with stability
function R. Taking the absolute value on each side of the expression

yn+1 = R(z)yn,

we see that there are three possible outcomes:

|R(z)| < 1 ⇒ |yn+1| < |yn| ⇒ yn → 0 (stable)
|R(z)| = 1 ⇒ |yn+1| = |yn|
|R(z)| > 1 ⇒ |yn+1| > |yn| ⇒ |yn| → ∞ (unstable)

The stability region of a method is defined by

S = {z ∈ C : |R(z)| ≤ 1}.

To get a stable numerical solution, we have to choose the step size h such that z = λh ∈ S.

19

Example 2, continued: In the case of Euler’s method, we have obtained the stability function

R(z) = 1 + z.

As a consequence, the stability region for Euler’s method is

S = {z ∈ C : |1 + z| ≤ 1}.

This is a ball in the complex plane, which is centered at −1 and has a radius of 1.

Numerical example 2: We have already discussed the stability function and stability region for Euler’s
method in the example above. We now solve the introductory problem

y′ =
(
−2 1
a− 1 −a

)
y +

(
sin(x)

a(cos(x)− sin(x))

)
, y(0) =

(
2
3

)
, a > 0.

by Euler’s method. We know that the eigenvalues of the matrix A are λ1 = −1 and λ2 = −(1 + a).

For the numerical solution to be stable for both eigenvalues, we have to require that the step length h
satisfies

|1 + λ1h|≤ 1 and |1 + λ2h|≤ 1.
Since both eigenvalues in this case are real and negative, we see after a short computation that this results
in the requirement that

h ≤ 2
1 + a

.

Try a = 9 and a = 999. Choose step sizes a little bit over and under the stability boundary, and you can
experience that the result is sharp. If h is just a tiny bit above, you may have to increase the interval of
integration to see the unstable solution.

It is the term corresponding to the eigenvalue λ2 = −(a+ 1) which makes the solution unstable. And the
solution oscillate since R(z) < −1 for h > 2/(1 + a).

Exercise 2:

1. Find the stability region for Heun’s method.

2. Repeat the experiment in Example 2 using Heun’s mehod.

NB! Usually the error estimation in adaptive methods will detect the unstability and force the step
size to stay inside or near the stability interval. This explains the behaviour of the experiment in the
introduction of this note.

8 A-stable methods.
In an ideal world, we would prefer the stability interval to satisfy

S ⊃ C− := {z ∈ C : <z ≤ 0},

such that the method is stable for all λ ∈ C with <λ ≤ 0 and for all h. Such methods are called
A-stable. For all explicit methods, like Euler’s and Heun’s, the stability function will be a polynomial, and
|R(z)| → ∞ as <z → −∞. Explicit methods can never be A-stable, and we therefore have to search among
implicit methods. The simplest of those is the implicit, or backward, Euler’s method, given by

yn+1 = yn + hf(xn+1, yn+1).

Applied to the linear test equation y′ = λy, this results in the update

yn+1 = yn + hλyn+1 or yn+1 = 1
1− hλyn.

We therefore see that we have the stability function

R(z) = 1
1− z .

20

The stability region for the implicit Euler function is thus

S =
{
z ∈ C :

∣∣∣ 1
1− z

∣∣∣ ≤ 1
}

= {z ∈ C : |1− z| ≥ 1}.

This is the whole complex plan apart from an open ball with center +1 and radius 1. Thus the method is
A-stable, as every complex number z with <z ≤ 0 is contained in S.

8.1 Implementation of implicit Euler’s method
For simplicity, we will only discuss the implementation of implicit Euler’s method for linear systems of
the form

y′ = Ay + g(x),
where A is a constant matrix. In this case, one step of implicit Euler is given by

yn+1 = yn + hAyn+1 + hg(xn+1).

Thus a linear system
(I − hA)yn+1 = yn + hg(xn+1)

has to be solved with respect to yn+1 for each step.

In the implementation below, the right hand side of the ODE is implemented as a function rhs, returning
the matrix A and the vector g(x) for each step. The function implicit_euler does one step with implicit
Euler. It has the same interface as the explicit method, so that the function ode_solve can be used as
before.

Numerical example 3: Solve the test equation with

A =
(
−2 1
a− 1 −a

)
, g(x) =

(
sin(x)

a(cos(x)− sin(x))

)
,

by the implicit Euler method. Choose a = 2 and a = 999, and try different stepsizes like h = 0.1 and
h = 0.01. Are there any stability issues in this case?

Exercise 2: The trapezoidal rule is an implicit method which for a general ODE y′(x) = f(x,y(x)) is
given by

yn+1 = yn + h

2

(
f(xn,yn) + f(xn+1,yn+1)

)
.

1. Find the stability function to the trapezoidal rule, and prove that it is A-stable.

2. Implement the method, and repeat the experiment above.

8.2 Adaptive methods.
Implicit Euler is a method of order 1, and the trapezoidal rule of order 2. Thus, these can be used for
error estimation: Perform one step with each of the methods, use the difference between the solutions as
an error estimate, and use the solution from the trapezoidal rule to advance the solution. This has been
implemented in the function trapezoidal_ieuler. The interface is as for the embedded pair heun_euler,
so the adaptive solver ode_adaptive can be used as before.

Numerical example 4: Repeat the experiment from the introduction, using trapezoidal_euler.

We observe that there are no longer any step size restriction because of stability. The algorithm behaves
as expected.

Comment: Implicit methods can of course also be applied for nonlinear ODEs. Implicit Euler’s method
will be

yn+1 = yn + hf(x,yn+1),
which is a nonlinear system which has to be solved for each step. Similar for the trapezoidal rule. Usually
these equations are solved by Newton’s method or some simplification of it.

21

8.3 A summary of some terms and definitions
There have been quite a few definitions and different error terms in this note. So let us list some of them
(not exclusive):

Definitions:

y′ = f(x,y) the ODE
y(x ; x∗,y∗), the exact solution of the ODE through (x∗,y∗)
y(x) = y(x ; x0,y0), the exact solution of y′ = f(x,y), y(x0) = y0

yn+1 = yn + hΦ(xn, yn;h), one step of the method

Let Φ represent a method of order p and Φ̂ a method of order p+ 1.

Error concepts:

dn+1 = y(xn + h ; xn,y(xn))−
(

y(xn) + hΦ(xn,y(xn);h)
)
, the local truncation error

ln+1 = y(xn + h ; xn,yn)−
(

yn + hΦ(xn,yn;h)
)
, the local error

len+1 = h

(
Φ̂(xn,yn;h)−Φ(xn,yn;h)

)
, the local error estimate, len+1 ≈ ln+1

en = y(xn)− yn the global error

Stability concepts:

Linear test equation:
y′ = λy, λ < 0.

Stability function R(z), given by the method applied to the test problem:

yn+1 = R(z)yn, z = λh.

Stability region S:
S = {z ∈ C, |R(z)| ≤ 1}.

A-stability:
S ⊃ C− = {z ∈ C : <z ≤ 0},

which is the same as the requirement that

|R(z)| ≤ 1 for all z with <z ≤ 0.

22

	Introduction
	Numerical methods for solving ODEs
	Euler's method
	Implementation
	Systems of ODEs

	Theory
	Existence and uniqueness results
	Error analysis
	A general convergence result

	Error estimation and step size control
	Error estimation
	Stepsize control
	Implementation
	Runge–Kutta methods

	Stiff ODEs
	Linear stability analysis

	A-stable methods.
	Implementation of implicit Euler's method
	Adaptive methods.
	A summary of some terms and definitions

