
Lecture notes for TMA4320 Introduction to Scientific Computation

Polynomial interpolation

Anne Kværnø

Feb 11, 2022

The Python codes for this note are given in polynomialinterpolation.py.

If you want to have a nicer theme for your jupyter notebook, download the cascade stylesheet file
tma4320.css and execute the next cell:

1 Introduction
Polynomials can be used to approximate functions over some bounded interval x ∈ [a, b]. There are plenty
of examples where such polynomials are useful. The function itself may be unknown, and only measured
data are available. In this case, a polynomial may be used to find approximations to intermediate values
of the function. Polynomials are easy to integrate, and can be used to find approximations of integrals of
more complicated functions. This will be exploited later in the course.

Here, only interpolation polynomials will be discussed.

Interpolation problem.

Given n + 1 points (xi, yi)ni=0. Find a polynomial p(x) of lowest possible degree satisfying the
interpolation condition

p(xi) = yi, i = 0, . . . , n. (1)

The solution p(x) is called the interpolation polynomial, the xi values are called nodes, and the points
(xi, yi) interpolation points.

Example 1: Given the points
xi 0 2/3 1
yi 1 1/2 0

.

The corresponding interpolation polynomial is

p2(x) = (−3x2 − x+ 4)/4

The y-values of this example are chosen such that yi = cos (πxi/2). So p2(x) can be considered as an
approximation to cos (πx/2) on the interval [0, 1].

Content of this note. In this part, we will discuss the following:

• Method: How to compute the polynomials?

• Existence and uniqueness results.

• Error analysis: If the polynomial is used to approximate a function, how good is the approximation?

https://www.math.ntnu.no/emner/TMA4320/2022v/notebooks/tma4320.css
https://www.math.ntnu.no/emner/TMA4320/2022v/notebooks/tma4320.css

• Improvements: If the nodes xi can be chosen freely, how should we do it in order to reduce the
error?

1.1 Preliminaries
Let us start with some useful notation and facts about polynomials.

• A polynomial of degree n is given by

pn(x) = cnx
n + cn−1x

n−1 + · · ·+ c1x1 + c0, ci ∈ R, i = 0, 1, . . . , n, with cn 6= 0. (2)

• Pn is the set of all polynomials of degree at most n.

• Cm[a, b] is the vector space of all continuous functions that have continuous first m derivatives.

• The value r is a root or a zero of a polynomial p if p(r) = 0.

• A nonzero polynomial of degree n can never have more than n roots in R (there may be fewer).

• A polynomial of degree n with n real roots r1, r2, . . . , rn can be written as

pn(x) = c(x− r1)(x− r2) · · · (x− rn) = cn

n∏
i=1

(x− ri).

2 Methods
In this section, we present three techniques for finding the interpolation polynomial for a given set of
data.

2.1 The direct approach
For a polynomial of degree n the interpolation condition (1) is a linear systems of n+ 1 equations in n+ 1
unknowns:

n∑
i=0

xijci = yj , j = 0, . . . , n.

If we are basically interested in the polynomials themself, given by the coefficients ci, i = 0, 1, . . . , n, this is
a perfectly fine solution. It is for instance the strategy implemented in MATLAB’s interpolation routines.
However, in this course, polynomial interpolation will be used as a basic tool to construct other algorithms,
in particular for integration. In that case, this is not the most convenient option, so we concentrate on a
different strategy, which essentially makes it possible to just write up the polynomials.

2.2 Lagrange interpolation
Given n+ 1 points (xi, yi)ni=0 with distinct xi values. The cardinal functions are defined by:

`i(x) =
n∏

j=0,j 6=i

x− xj
xi − xj

= x− x0

xi − x0
· · · x− xi−1

xi − xi−1
· x− xi+1

xi − xi+1
· · · x− xn

xi − xn
, i = 0, . . . , n.

The cardinal functions have the following properties:

• `i ∈ Pn, i = 0, 1, . . . , n.

• `i(xj) = δij =
{

1, when i = j

0, when i 6= j
.

• They are constructed solely from the nodes xi’s.

• They are linearly independent, and thus form a basis for Pn.

2

The interpolation polynomial is now given by

pn(x) =
n∑
i=0

yi`i(x)

since
pn(xj) =

n∑
i=0

yi`i(xj) = yj , j = 0, . . . , n.

Example 2: Given the points:
xi 0 1 3
yi 3 8 6

.

The corresponding cardinal functions are given by:

`0(x) = (x− 1)(x− 3)
(0− 1)(0− 3) = 1

3x
2 − 4

3x+ 1

`1(x) = (x− 0)(x− 3)
(1− 0)(1− 3) = −1

2x
2 + 3

2x

`2(x) = (x− 0)(x− 1)
(3− 0)(3− 1) = 1

6x
2 − 1

6x

and the interpolation polynomial is given by (check it yourself):

p2(x) = 3`0(x) + 8`1(x) + 6`2(x) = −2x2 + 7x+ 3.

2.3 Implementation
The method above is implemented as two functions:

• cardinal(xdata, x): Create a list of cardinal functions `i(x) evaluated in x.

• lagrange(ydata, l): Create the interpolation polynomial pn(x).

Here, xdata and ydata are arrays with the interpolation points, and x is an array of values in which the
polynomials are evaluated.

You are not required to understand the implementation of these functions, but you should understand
how to use them.

Example 3: Test the functions on the interpolation points of Example 2.

See example3() in polynomialinterpolation.py.

Numerical exercises:

1. Plot the cardinal functions for the nodes of Example 1.

2. Plot the interpolation polynomials for some points of your own choice.

3

2.4 Existence and uniqueness of interpolation polynomials.
We have already proved the existence of such polynomials, simply by constructing them. But are they
unique? The answer is yes!

Theorem: Existence and uniqueness of interpolation polynomials:

Given n+ 1 points (xi, yi)ni=0 with distinct x values. Then there is one and only one polynomial
pn(x) ∈ Pn satisfying the interpolation condition

pn(xi) = yi, i = 0, . . . , n.

Proof: Suppose there exist two different interpolation polynomials pn and qn of degree n interpolating
the same n+ 1 points. The polynomial r(x) = pn(x)− qn(x) is of degree n with zeros in all the nodes xi,
that is a total of n+ 1 zeros. But then r ≡ 0, thus the two polynomials pn and qn are identical.

2.5 Newton interpolation
This is an alternative approach to find the interpolation polynomial. In the following, we will assume that
yi = f(xi) for some given function f(x).

Let x0, x1, . . . , xn be n+ 1 distinct real numbers. The so-called Newton form of a polynomial of degree n
is an expansion of the form

pn(x) =
n−1∑
i=0

cn−i

n−1−i∏
j=0

(x− xj) + c0,

or more explicitly

pn(x) = cn(x− x0)(x− x1) · · · (x− xn−1) + cn−1(x− x0)(x− x1) · · · (x− xn−2) + · · ·+ c1(x− x0) + c0.

In the light of this form of writing a polynomial, the polynomial interpolation problem leads to the
following observations. Let us start with a single node x0, then f(x0) = p(x0) = c0. Going one step further
and consider two nodes x0, x1. Then we see that f(x0) = p(x0) = c0 and f(x1) = p(x1) = c0 + c1(x1−x0).
The latter implies that the coefficient

c1 = f(x1)− f(x0)
x1 − x0

.

Given three nodes x0, x1, x2 yields the coefficients c0, c1 as defined above, and from

f(x2) = pn(x2) = c0 + c1(x2 − x0) + c2(x2 − x0)(x2 − x1)

we deduce the coefficient

c2 =
f(x2)− f(x0)− f(x1)−f(x0)

x1−x0
(x2 − x0)

(x2 − x0)(x2 − x1) .

Playing with this quotient gives the much more structured expression

c2 =
f(x2)−f(x1)

x2−x1
− f(x1)−f(x0)

x1−x0

(x2 − x0) .

This procedure can be continued and yields a so-called triangular systems that permits to define the
remaining coefficients c3, . . . , cn. One sees quickly that the coefficient ck only depends on the interpolation
points (x0, y0), . . . , (xk, yk), where yi := f(xi), i = 0, . . . , n.

We introduce the folllwing so-called finite difference notation for a function f . The 0th order finite
difference is defined to be f [x0] := f(x0). The 1st order finite difference is

4

f [x0, x1] := f(x1)− f(x0)
x1 − x0

.

The second order finite difference is defined by

f [x0, x1, x2] := f [x1, x2]− f [x0, x1]
x2 − x0

.

In general, the nth order finite difference of the function f is defined to be

f [x0, . . . , xk] := f [x1, . . . , xk]− f [x0, . . . , xk−1]
xk − x0

.

Newton’s method to solve the polynomial interpolation problem can be summarized as follows. Given
n + 1 interpolation points (x0, y0), . . . , (xn, yn), yi := f(xi). If the order n interpolation polynomial is
expressed in Newton’s form

pn(x) = cn(x− x0)(x− x1) · · · (x− xn−1) + cn−1(x− x0)(x− x1) · · · (x− xn−2) + · · ·+ c1(x− x0) + c0,

then the coefficients

ck = f [x0, . . . , xk]

for k = 0, . . . , n. In fact, a recursion is in place

pn(x) = pn−1(x) + f [x0, . . . , xn](x− x0)(x− x1) · · · (x− xn−1)

It is common to write the finite differences in a table, which for n = 3 will look like:

x0 f [x0]
f [x0, x1]

x1 f [x1] f [x0, x1, x2]
f [x1, x2] f [x0, x1, x2, x3]

x2 f [x2] f [x1, x2, x3]
f [x2, x3]

x3 f [x3]

Example 1 again: Given the points in Example 1. The corresponding table of divided differences
becomes:

0 1
−3/4

2/3 1/2 −3/4
−3/2

1 0

and the interpolation polynomial becomes

p2(x) = 1− 3
4(x− 0)− 3

4(x− 0)(x− 2
3) = 1− 1

4x−
3
4x

2.

5

2.6 Implementation
The method above is implemented as two functions:

• divdiff(xdata, ydata): Create the table of divided differences

• newtonInterpolation(F, xdata, x): Evaluate the interpolation polynomial.

Here, xdata and ydata are arrays with the interpolation points, and x is an array of values in which the
polynomial is evaluated. Run the code on the example above: See example_divided_differences() in
polynomialinterpolation.py.

3 Theory
In this section we cover a few theoretical aspects, and give the answer to one natural question:

• If the polynomial is used to approximate a function, can we find an expression for the error?

• How can the error be made as small as possible?

3.1 Error Analysis
Given some function f ∈ C[a, b]. Choose n + 1 distinct nodes in [a, b] and let pn(x) ∈ Pn satisfy the
interpolation condition

pn(xi) = f(xi), i = 0, . . . , n.

What can be said about the error e(x) = f(x)− pn(x)?

Let us start with an numerical experiment, to have a certain feeling of what to expect.

Example 4: Let f(x) = sin(x), x ∈ [0, 2π]. Choose n + 1 equidistributed nodes, that is xi = ih,
i = 0, . . . , n, and h = 2π/n. Calculate the interpolation polynomial by use of the functions cardinal
and lagrange. Plot the error en(x) = f(x)− pn(x) for different values of n. Choose n = 4, 8, 16 and 32.
Notice how the error is distributed over the interval, and find the maximum error maxx∈[a,b] |en(x)| for
each n.

See example4() in polynomialinterpolation.py.

Numerical exercise:

• Repeat the experiment with Runge’s function

f(x) = 1
1 + x2 , x ∈ [−5, 5].

An expression for the interpolation error f(x)− p(x) is given by the following theorem:

Theorem: Interpolation error.

Given f ∈ C(n+1)[a, b]. Let pn ∈ Pn interpolate f in n + 1 distinct nodes xi ∈ [a, b]. For each
x ∈ [a, b] there is at least one ξ(x) ∈ (a, b) such that

f(x)− pn(x) = f (n+1)(ξ(x))
(n+ 1)!

n∏
i=0

(x− xi).

Proof: Start by assuming f to be sufficiently differentialable, what this is will be revealed on the go.
We will also need the following function, defined solely by the nodes:

ω(x) =
n∏
i=0

(x− xi) = xn+1 + · · · .

6

Obviously, in the nodes xi there are no error, thus e(xi) = 0, i = 0, . . . , n. Choose an arbitrary x ∈ [a, b],
x ∈ [a, b], where x 6= xi, i = 0, 1, . . . , n. For this fixed x, define a function in t as:

ϕ(t) = e(t)ω(x)− e(x)ω(t).

where e(t) = f(t)− pn(t). Notice that ϕ(t) is as differentiable with respect to t as f(t). The function ϕ(t)
has n+2 distinct zeros (the nodes and the fixed x). As a consequence of Rolle’s theorem (see Preliminaries,
Some other useful results) the derivative ϕ′(t) has at least n+ 1 distinct zeros, one between each of the
zeros of ϕ(t). So ϕ′′(t) has n distinct zeros, etc. By repeating this argument, we can see that ϕn+1(t) has
at least one zero in [a, b], let us call this ξ(x), as it do depend on the fixed x. Since ω(n+1)(t) = (n+ 1)!
and e(n+1)(t) = f (n+1)(t) we can conclude that

ϕ(n+1)(ξ) = 0 = f (n+1)(ξ)ω(x)− e(x)(n+ 1)!.

Solving this with respect to e(x) gives the statement of the theorem.

The interpolation error consists of three elements: The derivative of the function f , the number of
interpolation points n+ 1 and the distribution of the nodes xi. We cannot do much with the first of these,
but we can choose the two others. Let us first look at the most obvious choice of nodes.

Equidistributed nodes. The nodes are equidistributed over the interval [a, b] if xi = a+ih, h = (b−a)/n.
In this case it can be proved that:

|ω(x)| ≤ hn+1

4 n!

such that

|e(x)| ≤ hn+1

4(n+ 1)M, M = max
x∈[a,b]

|f (n+1)(x)|.

for all x ∈ [a, b].

Let us now see how good this error bound is by an example.

Example 5: Let again f(x) = sin(x) on the interval [0, 2π] and pn(x) the polynomial interpolating f(x)
in n+ 1 equidistributed points. Find an upper bound for the error for different values of n.

Clearly, maxx∈[0,2π] |f (n+1)(x)| = M = 1 for all n, so

|en(x)| = |f(x)− pn(x)| ≤ 1
4(n+ 1)

(
2π
n

)n+1
, x ∈ [a, b].

Use the code in Example 4 to verify the result. How close is the bound to the real error?

3.2 Optimal choice of interpolation points
If you have done the exercise with Runge’s function, you should have noted, that the interpolation
polynomial with equidistant interpolation points in this case appears not to converge to the function f f.
Instead the error becomes larger and the approximation worse as the degree increases. Therefore we are
interested in finding alternatives that yield a better approximation.

So how can the error be reduced? For a given n there is only one choice: to distribute the nodes in order
to make |ω(x)| =

∏n
j=0 |x− xi| as small as possible. We will first do this on a standard interval [−1, 1],

and then transfer the results to some arbitrary interval [a, b].

Let us start taking a look at ω(x) for equidistributed nodes on the interval [−1, 1], for different values of
n:

Run the function plot_omega().

Run the code for different values of n. Notice the following:

7

• maxx∈[−1,1] |ω(x)| becomes smaller with increasing n.

• |ω(x)| has its maximum values near the boundaries of [−1, 1].

A a consequence of the latter, it seems reasonable to move the nodes towards the boundaries. It can be
proved that the optimal choice of nodes are the Chebyshev-nodes, given by

x̃i = cos
(

(2i+ 1)π
2(n+ 1)

)
, i = 0, . . . , n

Let ωCheb(x) =
∏n
j=0(x− x̃i). It is then possible to prove that

1
2n = max

x∈[−1,1]
|ωCheb(x)| ≤ max

x∈[−1,1]
|q(x)|

for all polynomials q ∈ Pn+1 such that q(x) = xn+1 + cnx
n + · · ·+ c1x+ c0.

The distribution of nodes can be transferred to an interval [a, b] by the linear transformation

x = b− a
2 x̃+ b+ a

2

where x ∈ [a, b] and x̃ ∈ [−1, 1]. By doing so we get

ω(x) =
n∏
i=0

(x− xi) =
(
b− a

2

)n+1 n∏
i=0

(x̃− x̃i) =
(
b− a

2

)n+1
ωCheb(x̃).

From the theorem on interpolation errors we can conclude:

Theorem (interpolation error for Chebyshev interpolation).

Given f ∈ C(n+1)[a, b], and let Mn+1 = maxx∈[a,b] |f (n+1)(x)|. Let pn ∈ Pn interpolate f i n + 1
Chebyshev-nodes xi ∈ [a, b]. Then

max
x∈[a,b]

|f(x)− pn(x)| ≤ (b− a)n+1

22n+1(n+ 1)!Mn+1.

The Chebyshev nodes over an interval [a, b] are evaluated in the following function: See chebyshev_nodes(a, b, n)
in polynomialinterpolation.py.

Numerical exercises:

1. Plot ωCheb(x) for 3, 5, 9, 17 interpolation points.

2. Repeat Example 3 using Chebyshev interpolation on the functions below. Compare with the results
you got from equidistributed nodes.

f(x) = sin(x), x ∈ [0, 2π]

f(x) = 1
1 + x2 , x ∈ [−5, 5].

For information: Chebfun is software package which makes it possible to manipulate functions and
to solve equations with accuracy close to machine accuracy. The algorithms are based on polynomial
interpolation in Chebyshev nodes.

8

http://www.chebfun.org/

	Introduction
	Preliminaries

	Methods
	The direct approach
	Lagrange interpolation
	Implementation
	Existence and uniqueness of interpolation polynomials.
	Newton interpolation
	Implementation

	Theory
	Error Analysis
	Optimal choice of interpolation points

